CS611 Lecture 11 Naming 21 September, 2005
Scribe: Yookyung Jo, Lars Backstrom Lecturer: Andrew Myers

1 Overview

This lecture talks about more on naming.
e scoping semantics

e non-hierarchical scoping

2 Scoping semantics as translation

Last time, we looked at how names are interpreted. Naming is a key issue in programming. How to name
affects how easy or secure it is to program. We feel that Turing machines or other programming languages
that do not have names seem missing something. Somehow, programs with naming map closer to how we
solve problems.

We build semantics for name scoping by translation. Let’s define our target language as below.

e ==z | Ax.e | eger
| error | s | n
| let z =e7iney |

where error represents programs with variables that are not bound, s is a string, n is a number. The
language is much like uML. The allowed expressions are not exhaustively enumerated. (When we say
if e1 = ey then eg else eq, €1 = e means string comparison.)

What is the meaning of the translated expression, [e]?
We need to recognize the meaning of an expression by considering the context (environment). We can think
of our translation as conversion from an expression e into a function that expects a mapping from names to
values. An environment is such a function that maps variable names to values.

environment p : variable names — values
Then we could think of [e] as a function that maps an environment to a value.
[e] : environment — value
We could get the target language expression by applying [e] to some environment.

[e]p : target language expression

Here are some examples of environments.
The empty environment is,
po = Ax. error

because there are no variables bound in the empty environment.
Another example of an environment definition is,

{“y” — 2} = Az.if x = “y” then 2 else error

Let’s take a look at the actual translation of expressions.
[n] = Xp.n
HI]] —)\p p“X”

Or it is more convenient to think of target language expression, which is the translation applied to an
environment.

[nlp = n
Llp = o
flet x =e1inexp = lety = [e1]pin [ex] (EXTEND p“x”y)

where EXTEND is a function that generates a new environment by overriding some of the mappings in the
original environment. It can be defined as,

EXTEND = M\pzv. A2 .if 2’ = x then v else p “2’”

2.1 static scoping

So far, we dealt with the translation of expressions that does not depend on whether we use static scoping
or dynamic scoping. However, the translation of application and lambda abstraction depends on scoping. In
static scoping, an identifier is bound to a value when it first occurs in the program. Thus, the binding of a
variable in function definition is determined by the scope present in the the function definition.

[er ea]p = let f = [ei]p inlet v = [es]p in fv
[Mx.e]p = Ay.[e] (EXTEND p“x"y) y ¢ FV(e)

2.2 Dynamic scoping

For dynamic scoping, we need to adjust our notion of variable binding in function application and abstraction.
In dynamic scoping, an identifier is bound to a value when the function is called, not when the function
expression is evaluated. Thus, the scope present in function definition is ignored. And when we do the actual
function evaluation, we need to pass the dynamic environment to the function we call.

[[61 eQ]]pdyn = let f= [[ell]pdyn in let v = [[62]]pdyn in fUden
[Ax. €] piex

AYNpdyn - [e] (EXTEND pgyn “x’y) . (throw out lexical environment)

2.3 Static scope vs. dynamic scope

Dynamic scoping translates function code into just another code. While in static scope translation, both
function code and the naming environment ([e], pjes) is included.

Dynamic scoping has its advantages. Translation of certain features in the program is easier with dynamic
scope. For example, we do not need to look up the lexical environment for variable binding for function
code, while in static scope, we have to carry the function closure which is the function code and its lexical
environment.

Also, sometimes, it becomes handy to be able to customize a function by providing new values for its free
variables.

However, its advantages also imply its disadvantages. In dynamic scoping, program optimization is hard,
because the compiler does not know statically how to determine the value of a variable. Simple optimization
techniques with string matches used in static scoping cannot be used in dynamic scoping.

Dynamic scoping hurts program modularity because of the free variables in function that can change their
values according the execution environment. As more and more of programming activities are to glue existing
big modules into something, rather than writing a new piece of code, modularity is a serious concern. This
is why people gradually moved to designing programming languages with lexical(static) scoping.

3 Modules

We'd like to be able to share resources easily across large blocks of code. There are a few different ways to do
this. In some languages (like C), this is done with a global namespace. Every part of the program has access
to the variables in this global namespace. Unfortunately, this can cause problems, as different blocks of code
cannot use the same name from the global namespace to refer to two different variables. Additionally, it
causes a large amount of clutter in the global namespace for large amounts of code.

An alternative to this is to use modules. These are similar to classes in Java and C++. The modules
contain a number of different variable names, and given a particular module, we can access the variables in
it. Now, we would like to extend our definition of uML to include the concept of modules as follows:

e = module(x; =e1,x2 =eg,..., 2, =€)
| em.x | with ey e |

Simply put, we can now have modules in uML that bindings for a number of names to variables. Then,
given a module, we can extract a single variable from it using e,,.z or we can evaluate an expression e with
all of the variables in the module e, by doing with e,, e, which brings all variables in e,, into scope and
then evaluates e.

Naturally, we would now like to extend our translation from uML to lambda calculus to include our new
modules. The basic idea is that a module is very much like our naming environment, p. With this intuition,
we define the following translations:

[module(zy = e1, 72 = €,...,xn = €x)]p = Av.if x=x; then [e1]p else if
x=x9 then [es]p else if

x=x,, then [e,]p else error

[em-z]p = [emlp “z”
[with e, e]p = [e] (MERGE p ([en] p))

Notice that we’ve made a number of important decisions in our translation. In the module definition, we
evaluate all of the expressions in the same naming environment. Thus, the functions and variables within
the environment cannot refer to each other. In some senses this makes sense. We probably don’t want to be
able to do:

x1 = x2
x2 = x1

However, we might want to have functions in the module that refer to values in the same module. It is
possible to modify the definition to account for this.

