CS611 Lecture 9 Semantics via Translation 16 September, 2005
Scribe: Olga Belomestnykh Lecturer: Andrew Myers

This lecture concentrates on sematics by way of translation from a source language to a target language. It
includes two examples of translation from Call By Name (CBN) semantics to Call By Value (CBV) semantics
and from a simplified version of untype ML called uML into CBV lambda calculus. The notion of adequacy
of translation is introduced. Big-step semantics for CBV lambda calculus are described.

e Big-step semantics for CBV A-calculus
e Definition of translation

e Translation of CBN into CBV

Adequacy of translation

Translation of uML into CBV

1 Big-step semantics for CBV \-calculus

e{lv/z} Jv" el (Az.e) € o e{v/x} 0"
(Az.e) v ee v

2 Translation

Translation from a well formed source language to a well understood target language is useful not only for
reasoning about a program, but also for writing compilers.

e If the target language is a programming language then the translation is called a definitional translation.
Note that a definitional translation does not necessarily produce clean or efficient code.

e If the target language is mathematical objects then the translation is called denotational semantics.

2.1 Notation

[-] is a function that translates an expression in the source language to something meaningful. The things
that have meaning are in the target languages. C[e] or [e]cpy notation can be used to name translation
functions.

2.2 CBN into CBV

Recall CBN and CBV sematincs with evaluation contexts:

e CBN

E:=Fe | []
E[(Az.¢e) '] — Ele{e’/x}}]
e CBV

E:=[] | Ee | vE
E[(Az.e) v] — Ele{v/x}]

Can we translate CBN into CBV? In CBV an application e €’ is not evaluated unless €’ is a value. To delay
evaluation of €/, we can place it inside a value. This trick effectively makes a thunk.

e CBV:e¢
e CBN: e (A\z.¢)

Using this trick, we can define a translation function from CBN into CBV as follows:

e € [e] (A= [€])
[Az.e)] = Xz [e]
[x] = =zID

Notice that the translation from CBN to CBV describes a CBN compiler. This translation would have to
be performed if CBN were to be implemented in hardware.

2.3 Short-circuiting if-statements in CBV

Recall these definitions:

true 2 AT Ay
false = Az \y.y
it 2 bz ybry

Using CBV semantics to evaluate the experssion if b e; es both e; and es are evaluated before a choice is
made. As we have defined it so far, if is strict in e; and es; that is, if either e; or es fail to terminate, if
won’t either. Ordinarily, we would expect if to be strict only in b, and lazy in e; and es.

Example: false Q ID

e CBYV semantics evaluate to €2
o CBN semantics evaluate to ID
We can use CBN translation to achieve this effect. First attempt:
[MeAy.x] = Ax.[Ay.2] = Az \y.(x ID)
[N Ay.z] = Az.[My.y] = Az Ay.(y ID)
[Ab. Az Ay.byx] = Ab. Az Ay.[bry] = Ao \x Ay . [bx](Az.[y]) = Ab. Az Ay.(b ID)(Az.[z])(Az.[y])

Notice that this translation is trying to be lazy in b, which is not necessary. Second attempt:
[if ey €1 e2]if = [en]ir(Az-[er]ir) (A2 [e2]ir)
2.4 Adequacy of translation

What does it mean to say that a translation is correct? Intuitively, we think that if an expression e in the
source language steps in zero or more steps to a values v and the translation of e step in zero or more steps
to a value v; in the target language, then v; = [v].

source e—="v

target [e] —=* vy =~ [v]
There are two criteria for a translation to be considered adequate: soundness and completeness.

e Soundness:
[e] =" v = Fv | (e —="v)A([v] = vy))

Every target evaluation represents a source evaluation.

e Completeness:
e—="v = Ju | ([e] —=f ve) A (ve = [v]))

Every source evaluation represents a target evaluation.

There is one caveat: it is difficult to define equivalence on functions. One possible solution is to show that
function agree on base types (integers, booleans, etc.). The idea is that if the source and target language
disagree on some functions, we could use write another program that used the disagreement on functions to
force a disagreement on base types, by applying those functions to values at which the function disagreed.

25 uML
untyped ML syntax:

ex=n | x| true | false | Azy...axne | eger ... e, | let x=e; in ey
| (e1,e2) | #le | #2e | if ey then e; else ey

Let’s define a translation function from uML to CBV A-calculus

[[]] cuML —)\CBV

[n] = church numeral for n
[2] = =z

[true] = Az.\y.x

[false] = Az.\y.y

[[b](Az.[er]) (A= [e2])] 1D
Azy.[Axa.. Az, €]

leo---en—1][exn]

= (Az.[ez])[ed]

)
>
8
[l
8
[V)
8
3
i=ll=ll=ll=l=l&l=li=ll=ﬂl=ll=l
I

[[(617 62) = CONS[[el]][[eQ]]
[#le] = FIRST[e]
[#2¢] = SECONDI€]

Unfortunately, this translation is not sound, because it allows target-language evaluations that correspond
to no source- language evaluation. For example, the the source code expression true true has no legal next
step; it gets stuck, because there is no operational semantics rule in uML of the form true true —,,, e.
However, the translation of true true is a valid lambda-calculus expression that evaluates to another lambda-
calculus expression. What happens in this evaluation depends on the implementation of true and cannot
be understood from the equational specification of booleans.

A possible solution to the soundness difficulty is to introduce many rules that transition stuck expressions
to a special “error” value. For example, we might have a rule true e — error to cover the case just given.
However, we will still have to fix our translation to add run-time type checking, in order to catch these
errors, and we’ll have to add a representation of error. Another solution is type checking and throwing a
compile-time type error!

