CS611 Lecture 8 Evaluation Contexts 14 September, 2005

Scribe: Georgios Piliouras, Raghuram Ramanujan Lecturer: Andrew Myers

In this lecture, we
e revisit the notion of defining functions inductively
e explore the use of Evaluation Conterts for creating more compact structural operational semantics

e and observe how non-determinism in a language creates problems for big step semantics

1 Inductive Definitions

Consider the following definition of the Fibonacci sequence:

1 ifz<2
f@)y=% fla—1)+flz—-2) ifx>2
where x € N

This is a well-founded definition since f(z) is defined in terms of fapplied to successively smaller arguments
i.e. there is no infinitely descending recursive chain. The function can thus be captured with the following
pair of rewrite rules:

r—1—a —2+—b
<
lex_Z T atb x> 2

In general, in a valid inductive definition, the argument that appears in the rule must be related through
some well-founded relation to what appears in the left-hand side of the premise(s). A function with such a
definition has a finite derivation tree. Now consider the function:

flx)=f(z)+1
This yields the rewrite rule:

T a
r—a-+1

This is an example of an invalid inductive definition. In fact, this definition derives the empty function.

2 Evaluation Contexts

Recall the context-free grammar that was used to define expressions in the lambda calculus:

e == x | eger | Azee

This context-free grammar induces a language. The language corresponding to a context-free grammar
is a set comprising all the finitely-derivable strings (or abstract syntax trees). In this example, the following
rewrite rules derive all the members of the language:

_e e €
T Axr.e € el

The rewrite rules for structural operational semantics can broadly be classified into two types:



e reduction rules - these are often more interesting as they offer an insight into the workings of the
language

e evaluation order rules - these are typically as not interesting, though they are usually more numerous

Earlier in the semester, we captured the semantics of the call-by-value lambda calculus via the following
rewrite rules:

e1 — e} eg — €l

Ar.e) — e{v/z} ej e —¢ees vey — v el
1 2

The first rule here (3 reduction) falls under the category of reduction rules, whereas the latter two are
evaluation order rules. Though there are relatively few evaluation order rules in the call-by-value lambda
calculus, they are much more numerous in real-world programming languages and thus tedious to write.
This motivates the need to find a more compact representation for such rules. Fvaluation Contexts provide
a mechanism to do just that. An evaluation context E (alternately E[e]) is an expression (term) with a "hole’
where a reduction is allowed. For example:

((A\x.x)[e])(A\z.z 2)) where [o] represents the hole

If E is a context, then E[e] represents E with the hole plugged by e. This definition of a context yields a
generic context rule that can be applied to any defined context E:

e — ¢

Ele] — E[¢/]

For the case of the call-by-value lambda calculus that we have been looking at so far, the two evaluation
order rules give rise to the following two contexts:

e1 — €
eres— €l es = [o]e
es — €
veg—uvey, = vle]

These define the legal evaluation contexts i.e. the ones in which the context rule defined earlier can be
applied. Hence, we derive a compact way for representing rules. Namely, for the case of call-by-value
lambda calculus we get:

E == [o]e | v]e]

The benefits of evaluation context will become exceedingly obvious in the future, as we add more features
to the language than just applications. For the time being however, we will present an example of its usage
for producing the proof tree of a given expression:

(Ax.x)0 — 0
(Axx)((Az.2)0) — (Ax.x)0
((Az.z)((Az.x)0)(Az.22)) — (((Az.2)0)(Nz2.22))

where E = (Ax.x)[e]
where E = [o](A\z.zz)

where in the above tree we indicate the term being reduced in italic typeface.

For the case of call-by-name lambda calculus, given the context rule, we achieve an equally compact
representation:



E:=Je] e

(A\x.e) e — efe'/x}

The contexts defined above look like one of these two abstract syntax trees:

(e @e)and (v Qe)

where the @ symbol denotes application.
Consider the following tree:

(v@e)@e)

To define a semantic small-step for this piece of syntax, we have to apply the E[e] — FEl[e’] rule twice
(once for each @ starting from the topmost @), because by our current definition, E can only have one
application (@). The example above illustrates this, with v = (Az.z), e = (Az.2z).

So our definition of contexts does not cover such “deep” contexts in one step. You have to apply the
reduction rule multiple times, thus requiring a multi-level proof tree.

But by changing our definition of evaluation contexts to include these “deep” contexts, we can make our
proof trees shorter. This fits the bill:

E == [of | Ee | VE
This yields a a modified context rule:

e —, €

Ele] — E[¢']

Taken together, the new representation flattens out the multiple “boring” steps corresponding to the
repeated application of the evaluation order rules to a single level.

This means that the lower arrow in the context rule actually does more stepping than the upper arrow,
and so they are not the same arrow. Hence the r suffix on the upper arrow. Technically (for the same reason)
e —,. ¢’ should actually be a side condition.

Note that even though the lower arrow does more stepping, it only does the stepping that is defined in
the grammar for evaluation contexts: that is, the stepping of evaluation-order rules only, not the reduction
rules. So the single level still contains only one reduction.

Revisiting the example above, we get a much shorter proof tree, where we use a single evaluation order
rule:

(Ax.x)0 — 0
((Az.x)((Az.x)0)(Az.22)) — (((A2.7)0)(A2.22))

where E = (A\z.z))(Az.2)

Lastly, evaluation contexts can be used to easily define the semantics of error exeptions, since we can
very easily propagate an error value using the evaluation order rule below:

Elerror] — error

This alleviates the need to show in painstaking detail how error propagates up through each rewrite rule.



3 Non-determinism

A non-deterministic computation can be informally defined as one, where starting from the same input we
might have more than one possible transition, each one leading possibly to different results.

e— ¢

/ 1
, where e/ #£ e

e — e

Of course, this raises the issue of how can one express non-determinism. As we shall see, a rather natural
choice is by the use of small step semantics. Indeed, we can easily define the non-deterministic choice operator
U, where by c¢10co we express that the system can do either:

(¢10c¢a,0) — {c1,0)

<01|:|02, O’> — <C2,U>

However, if we try to express non-determinism using big step semantics, then we immediately face severe
problems. For example, a natural approach for tackling the issue of non-determinism in big step semantics
would be the following:

(er,0) | o (co,0) | o
(c10co,0) b o' (c10ca,0) | o’

Although at a first glance this approach seems to work, let’s examine what happens if exactly one of
c1, co diverges. Indeed, in this case, according to our semantics we will always choose the good one, the one
that terminates. For obvious reasons this kind of non-determinism is referred to as angelic nondeterminism.

A closely related issue to the definition of non-determinism using semantics is capturing the notion of

parallel processing. Again, in this case small step semantics seem to provide a rather natural solution to the
problem:

<Clv U> I <C/13 OJ>

{erllez; o) — {cile2; 07)

(c2,0) — (¢5,0")

{arlle2, o) — (anlley, ')

Big step semantics on the other hand does not capture interleaving. For example, we could try to express
the semantics for the concurrent statements ¢1]||co as follows:

(c1,0) I 0" (ca,0") | 0’

(cillez, 0) § o

However, we have only ended up defining c1; ¢z, that is the serial execution of commands ¢; and cs. Thus,
in general, big step semantics are often not faithful when it comes to representing non-determinism.



