
CS611 Lecture 7 Inductive definitions and rule induction 12 September, 2005
Scribe: Yisong Yue, Yunsong Guo Lecturer: Andrew Myers

1 Syntax

A rule instance is of the form:
x1 x2 . . . xn

x

And given B ⊆ S, the rule operator R(B)={ x |
x1 x2 . . . xn

x is a rule instance and {x1 x2 . . . xn} ⊆ B}
The following facts can be easily verified:

• R(∅)={axioms}

• R(A)∪R(B)⊆ R(A∪B)

• R: 2S → 2S where 2S=P(S) is the power set of S

Our goal is to find what set A ⊆ S is defined by the rules instances. In addition, A should be:

1. Consistent: A⊆R(A)

2. Closed : R(A)⊆A

i.e., A=R(A). In other words, A is a fixed point of the function R. The there are two natural questions we
want to ask: 1.Is there actually a fixed point of R? 2.If yes, which one is A?

2 Definition of set A

We define the set A as: A=∪n∈NRn(∅) = R(∅) ∪R(R(∅)). . .
Next, we prove 3 properties of A, namely:

1. A is closed

2. A is consistent

3. A is the least fixed point of R

2.1 A is closed: R(A)⊆A

For any x ∈R(A), we know that there is some rule instance
x1 x2 . . . xn

x where {x1 x2 . . . xn} ⊆ A.

Thus, for some minimum m, we must have {x1 x2 . . . xn} ⊆ Rm(∅). Then x ∈ Rm+1(∅) ⊆ A

2.2 A is consistent: A⊆R(A)

We need to introduce a concept here: the monotonicity of the rule operator R. We say R is monotonic if and
only if A⊆B ⇒R(A)⊆R(B)
So, if x∈ A then x∈ Rm(∅) for some m, i.e. x∈ R(Rm−1(∅)). Since Rm−1(∅) ⊆ A, by the monotonicity of R,
we have R(Rm−1(∅)) ⊆ R(A). Thus x∈R(A) and A is consistent.

2.3 A is the least fixed point

Suppose A is not the least fixed point of R, then there is some B such that B=R(B) and B⊂A.
Since ∅ ⊆B⇒R(∅)⊆R(B)=B by the monotonicity of R. Similarly, we will have Rm(∅)⊆R(B)=B where
m=1,2,3,. . . Then if we union the left-hand side of ⊆ we will get A by definition. And the union of the
right-hand side is just B. So A⊆B which is a contradiction. As a result, A must be the least fixed point of
R.
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3 Rule Induction

We use well founded induction on the sub-derivation relation to prove properties of inference rules.

Note - should there exist more than one derivation, consider only the shortest derivation.

Theorem: (FV (e) = ∅ ∧ e → e′) ⇒ (FV (e′) = ∅)

Proof : by induction on derivation of e → e′

Case 1:
e1 −→ e′1

(e1 e2) −→ (e′1 e2)
Assume: FV (e1 e2) = FV (e1) ∪ FV (e2) = ∅, thus FV (e1) = FV (e2) = ∅

We can use the inductive hypothesis (FV (e1) = ∅ ∧ e1 → e′1) ⇒ (FV (e′1) = ∅) to show that that

FV (e′1 e2) = FV (e′1) ∪ FV (e2) = ∅

Case 2:
e2 −→ e′2

(v e2) −→ (v e′2)
This case is symmetric to Case 1 where now e2 is used in the inductive hypothesis

Case 3: (λx. e)v −→ e{v/x}
Assume: FV (λx. e)v = ∅, FV (v) = ∅, FV (λx. e) = FV (e)− {x} = ∅, thus FV (e) ∈ {x}
This case requires a lemma (stated below) to show that FV (e{v/x}) = ∅. Once that is shown, the proof

for this case is complete.
We have now considered all three rules of derivation for Lambda Calculus to show that FV (e) = ∅ is

preserved as derivation rules are applied to e

Lemma: (FV (v) = ∅) ⇒ (FV (e{v/x}) = FV (e) − {x}) (this lemma is used by Case 3 in the above
theorem)

Proof : by induction on derivation of the substitution relation. Note that substitution isn’t really a
function because there is choice of variable when the body of a lambda abstraction is alpha-renamed.

Case 1: e = x, then x{e/x} = e

FV (e{v/x}) = FV (v) = ∅ = {x} − {x} = FV (x)− {x}

Case 2: e = y, then y{e/x} = y

FV (e{v/x}) = FV (y) = {y} = FV (y)− {x}

Case 3: e = e1 e2

Recall that by definition: FV (e{v/x}) = FV (e1{v/x} e2{v/x}) = FV (e1{v/x}) ∪ FV (e2{v/x})
By the inductive hypothesis, FV (e1{v/x}) = FV (e1)− {x} and FV (e2{v/x}) = FV (e2)− {x}

FV (e1{v/x}) ∪ FV (e2{v/x}) = (FV (e1)− {x}) ∪ (FV (e2)− {x})
= (FV (e1) ∪ FV (e2))− {x}
= FV (e1 e2)− {x}

Case 4: e = (λx. e′){v/x}
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FV ((λx. e′){v/x}) = FV (e) = FV (e)− {x} (because x 6∈ FV (e))

Case 5: e = (λy. e′){v/x} where y 6= x.
Note that y 6∈ FV (v) because FV (v) = ∅. Therefore we can use the simpler substitution rule for lambda

terms.

FV ((λy. e′){v/x}) = FV (λy. e′{v/x})
= FV (e′{v/x})− {y}
= FV (e′{v/x})− {y}
= FV (e′)− {x} − {y} (by the inductive hypothesis)
= FV (λy. e′)− {x}
= FV (e)− {x}
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