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Scribe: Yisong Yue, Yunsong Guo Lecturer: Andrew Myers
1 Syntax

A rule instance is of the form: %

And given B C S, the rule operator R(B)={ z | % is a rule instance and {z; 22 ... z,} C B}

The following facts can be easily verified:
e R(()={axioms}
e R(A)UR(B)C R(AUB)
e R: 25 — 2% where 29=P(S) is the power set of S
Our goal is to find what set A C S is defined by the rules instances. In addition, A should be:
1. Consistent: ACR(A)
2. Closed : R(A)CA

i.e., A=R(A). In other words, A is a fixed point of the function R. The there are two natural questions we
want to ask: 1.Is there actually a fized point of R? 2.1f yes, which one is A?

2 Definition of set A

We define the set A as: A=U,enR"(0) = R(0) U R(R(D)). ..
Next, we prove 3 properties of A, namely:

1. A is closed
2. A is consistent

3. A is the least fixed point of R

2.1 Alis closed: R(A)CA

For any x €R(A), we know that there is some rule instance % where {z1 z2 ... x,} C A.

Thus, for some minimum m, we must have {x1 3 ... x,} C R™(0). Then z € R™T}()) C A

2.2 Ais consistent: ACR(A)

We need to introduce a concept here: the monotonicity of the rule operator R. We say R is monotonic if and
only if ACB =R(A)CR(B)

So, if x€ A then x€ R™ () for some m, i.e. x€ R(R™~'(0)). Since R™~(0) C A, by the monotonicity of R,
we have R(R™1(0)) C R(A). Thus x€R(A) and A is consistent.

2.3 A is the least fixed point

Suppose A is not the least fixed point of R, then there is some B such that B=R(B) and BCA.

Since § CB=R(0)CR(B)=B by the monotonicity of R. Similarly, we will have R™(0)CR(B)=B where
m=1,2,3,... Then if we union the left-hand side of C we will get A by definition. And the union of the
right-hand side is just B. So ACB which is a contradiction. As a result, A must be the least fixed point of
R.



3 Rule Induction

We use well founded induction on the sub-derivation relation to prove properties of inference rules.
Note - should there exist more than one derivation, consider only the shortest derivation.

Theorem: (FV(e)=0Ae— €)= (FV(e)=0)
Proof: by induction on derivation of ¢ — ¢’

e1 — €

Case 1: (e1 es) — (€] e2)
Assume: FV(e; e3) = FV(e1) UFV(ez) =0, thus FV(e1) = FV(ea) =0

We can use the inductive hypothesis (FV(e1) =0 Ae; — e}) = (FV(e}]) = 0) to show that that

FV(e} ea) = FV(e))UFV(ex) =10

es — €,

Case 2: (vey) — (v €hy)
This case is symmetric to Case 1 where now es is used in the inductive hypothesis

Case 3: (Az.e)v — e{v/x}

Assume: FV(Az.e)v =0, FV(v)=0, FV(Azx.e)=FV(e)—{z} =0, thus FV(e) € {z}

This case requires a lemma (stated below) to show that F'V(e{v/z}) = (). Once that is shown, the proof
for this case is complete.

We have now considered all three rules of derivation for Lambda Calculus to show that FV(e) = 0§ is

preserved as derivation rules are applied to e
O

Lemma: (FV(v) = 0) = (FV(e{v/z}) = FV(e) — {z}) (this lemma is used by Case 3 in the above
theorem)

Proof: by induction on derivation of the substitution relation. Note that substitution isn’t really a
function because there is choice of variable when the body of a lambda abstraction is alpha-renamed.

Case 1: e =z, thenz{e/z} =e
FV(e{v/z}) = FV(v) = 0 = {z} — {z} = FV(z) — {2}
Case 2: e =y, theny{e/z} =y
FV(efv/z}) = FV(y) = {y} = FV(y) — {z}
Case 3: ¢ = ¢; e

Recall that by definition: FV (e{v/x}) = FV(e1{v/z} ea{v/x}) = FV(er{v/x}) U FV (ex{v/z})
By the inductive hypothesis, FV (e1{v/z}) = FV(e1) — {z} and FV(e2{v/z}) = FV(e2) — {z}

FV(ei{v/a}) UFV(ex{v/a}) = (FV(er) —{z}) U (FV(e2) — {z})
= (FV(e1) UFV(e2)) —{z}
FV(ey e2) — {x}

Case 4: e = (\x.¢'){v/z}



FV((Az.€'){v/z}) = FV(e) = FV(e) — {x} (because x ¢ F'V (e))

Case 5: ¢ = (\y. e ){v/x} where y # .
Note that y ¢ FV (v) because FV (v) =
terms.

(). Therefore we can use the simpler substitution rule for lambda

FV((hy.e){v/z}) = FV(Qay.e'{v/x})
= FV(e{v/2}) —{y}
= FV({v/a}) —{y}
= FV()—{z} —{y} (by the inductive hypothesis)
= FV(y.e)—{z}
= FV(e)—{x}



