

1 Syntax

A rule instance is of the form:
$$\frac{x_1 \ x_2 \ \dots \ x_n}{x}$$

And given $\mathbf{B} \subseteq \mathbf{S}$, the rule operator $R(\mathbf{B}) = \{ x \mid \frac{x_1 \ x_2 \ \dots \ x_n}{x} \text{ is a rule instance and } \{x_1 \ x_2 \ \dots \ x_n\} \subseteq \mathbf{B}\}$

The following facts can be easily verified:

- $R(\emptyset) = \{\text{axioms}\}$
- $R(A) \cup R(B) \subseteq R(A \cup B)$
- $R: 2^S \rightarrow 2^S$ where $2^S = P(S)$ is the power set of S

Our goal is to find what set $\mathbf{A} \subseteq \mathbf{S}$ is defined by the rules instances. In addition, \mathbf{A} should be:

1. Consistent: $\mathbf{A} \subseteq R(\mathbf{A})$
2. Closed : $R(\mathbf{A}) \subseteq \mathbf{A}$

i.e., $\mathbf{A} = R(\mathbf{A})$. In other words, \mathbf{A} is a fixed point of the function R . The there are two natural questions we want to ask: 1. *Is there actually a fixed point of R ?* 2. *If yes, which one is \mathbf{A} ?*

2 Definition of set \mathbf{A}

We define the set \mathbf{A} as: $\mathbf{A} = \bigcup_{n \in N} R^n(\emptyset) = R(\emptyset) \cup R(R(\emptyset)) \dots$

Next, we prove 3 properties of \mathbf{A} , namely:

1. \mathbf{A} is closed
2. \mathbf{A} is consistent
3. \mathbf{A} is the least fixed point of R

2.1 \mathbf{A} is closed: $R(\mathbf{A}) \subseteq \mathbf{A}$

For any $x \in R(\mathbf{A})$, we know that there is some rule instance $\frac{x_1 \ x_2 \ \dots \ x_n}{x}$ where $\{x_1 \ x_2 \ \dots \ x_n\} \subseteq \mathbf{A}$.

Thus, for some minimum m , we must have $\{x_1 \ x_2 \ \dots \ x_n\} \subseteq R^m(\emptyset)$. Then $x \in R^{m+1}(\emptyset) \subseteq \mathbf{A}$

2.2 \mathbf{A} is consistent: $\mathbf{A} \subseteq R(\mathbf{A})$

We need to introduce a concept here: the monotonicity of the rule operator R . We say R is monotonic if and only if $\mathbf{A} \subseteq \mathbf{B} \Rightarrow R(\mathbf{A}) \subseteq R(\mathbf{B})$

So, if $x \in \mathbf{A}$ then $x \in R^m(\emptyset)$ for some m , i.e. $x \in R(R^{m-1}(\emptyset))$. Since $R^{m-1}(\emptyset) \subseteq \mathbf{A}$, by the monotonicity of R , we have $R(R^{m-1}(\emptyset)) \subseteq R(\mathbf{A})$. Thus $x \in R(\mathbf{A})$ and \mathbf{A} is consistent.

2.3 \mathbf{A} is the least fixed point

Suppose \mathbf{A} is not the least fixed point of R , then there is some \mathbf{B} such that $\mathbf{B} = R(\mathbf{B})$ and $\mathbf{B} \subset \mathbf{A}$. Since $\emptyset \subseteq \mathbf{B} \Rightarrow R(\emptyset) \subseteq R(\mathbf{B}) = \mathbf{B}$ by the monotonicity of R . Similarly, we will have $R^m(\emptyset) \subseteq R(\mathbf{B}) = \mathbf{B}$ where $m=1,2,3,\dots$. Then if we union the left-hand side of \subseteq we will get \mathbf{A} by definition. And the union of the right-hand side is just \mathbf{B} . So $\mathbf{A} \subseteq \mathbf{B}$ which is a contradiction. As a result, \mathbf{A} must be the least fixed point of R .

3 Rule Induction

We use well founded induction on the sub-derivation relation to prove properties of inference rules.

Note - should there exist more than one derivation, consider only the shortest derivation.

Theorem: $(FV(e) = \emptyset \wedge e \rightarrow e') \Rightarrow (FV(e') = \emptyset)$

Proof: by induction on derivation of $e \rightarrow e'$

$$\text{Case 1: } \frac{e_1 \longrightarrow e'_1}{(e_1 \ e_2) \longrightarrow (e'_1 \ e_2)}$$

Assume: $FV(e_1 \ e_2) = FV(e_1) \cup FV(e_2) = \emptyset$, thus $FV(e_1) = FV(e_2) = \emptyset$

We can use the inductive hypothesis $(FV(e_1) = \emptyset \wedge e_1 \rightarrow e'_1) \Rightarrow (FV(e'_1) = \emptyset)$ to show that that

$$FV(e'_1 \ e_2) = FV(e'_1) \cup FV(e_2) = \emptyset$$

$$\text{Case 2: } \frac{e_2 \longrightarrow e'_2}{(v \ e_2) \longrightarrow (v \ e'_2)}$$

This case is symmetric to Case 1 where now e_2 is used in the inductive hypothesis

Case 3: $\frac{(\lambda x. e)v \longrightarrow e\{v/x\}}{(\lambda x. e)v = \emptyset}$

Assume: $FV(\lambda x. e)v = \emptyset$, $FV(v) = \emptyset$, $FV(\lambda x. e) = FV(e) - \{x\} = \emptyset$, thus $FV(e) \in \{x\}$

This case requires a lemma (stated below) to show that $FV(e\{v/x\}) = \emptyset$. Once that is shown, the proof for this case is complete.

We have now considered all three rules of derivation for Lambda Calculus to show that $FV(e) = \emptyset$ is preserved as derivation rules are applied to e

□

Lemma: $(FV(v) = \emptyset) \Rightarrow (FV(e\{v/x\}) = FV(e) - \{x\})$ (this lemma is used by Case 3 in the above theorem)

Proof: by induction on derivation of the substitution relation. Note that substitution isn't really a function because there is choice of variable when the body of a lambda abstraction is alpha-renamed.

Case 1: $e = x$, then $x\{e/x\} = e$

$$FV(e\{v/x\}) = FV(v) = \emptyset = \{x\} - \{x\} = FV(x) - \{x\}$$

Case 2: $e = y$, then $y\{e/x\} = y$

$$FV(e\{v/x\}) = FV(y) = \{y\} = FV(y) - \{x\}$$

Case 3: $e = e_1 \ e_2$

Recall that by definition: $FV(e\{v/x\}) = FV(e_1\{v/x\} \ e_2\{v/x\}) = FV(e_1\{v/x\}) \cup FV(e_2\{v/x\})$
By the inductive hypothesis, $FV(e_1\{v/x\}) = FV(e_1) - \{x\}$ and $FV(e_2\{v/x\}) = FV(e_2) - \{x\}$

$$\begin{aligned} FV(e_1\{v/x\}) \cup FV(e_2\{v/x\}) &= (FV(e_1) - \{x\}) \cup (FV(e_2) - \{x\}) \\ &= (FV(e_1) \cup FV(e_2)) - \{x\} \\ &= FV(e_1 \ e_2) - \{x\} \end{aligned}$$

Case 4: $e = (\lambda x. e')\{v/x\}$

$$FV((\lambda x. e')\{v/x\}) = FV(e) = FV(e) - \{x\} \quad (\text{because } x \notin FV(e))$$

Case 5: $e = (\lambda y. e')\{v/x\}$ where $y \neq x$.

Note that $y \notin FV(v)$ because $FV(v) = \emptyset$. Therefore we can use the simpler substitution rule for lambda terms.

$$\begin{aligned} FV((\lambda y. e')\{v/x\}) &= FV(\lambda y. e'\{v/x\}) \\ &= FV(e'\{v/x\}) - \{y\} \\ &= FV(e'\{v/x\}) - \{y\} \\ &= FV(e') - \{x\} - \{y\} \quad (\text{by the inductive hypothesis}) \\ &= FV(\lambda y. e') - \{x\} \\ &= FV(e) - \{x\} \end{aligned}$$

□