
CS611 Lecture 4 Equivalence, Reductions and Normal Forms 02 September 2005
Scribe: Ymir Vigfusson, Daria Sorokina Lecturer: Andrew Myers

1 Term equivalence

When are two terms equal to one another? Consider, for example, λx.x and λx.λy.x. Are these two
terms equal? It turns out that defining a precise mathematical model for determining equivalence of two
λ-terms is tricky. In fact Alonzo Church received the Turing-award for explaining how to define functions
in Lambda-calculus. One way of attacking the problem is to try all possible arguments and compare the
results. However, we cannot be sure whether we get a result or not. Let us formulate this.

We say that an expression e terminates or converges if there is a finite sequence of expressions such that

e → e′ → e′′ → · · · → v

where v is a value. This is denoted by e ⇓ v. Otherwise, when e → e′ → e′′ → · · · and we never get
anywhere, we say that e diverges. This is denoted by e ⇑.

There are infinitely many divergent terms. An example of one is Ω which was defined in the last lecture.
In some way they are equal to one another, they all go off to infinity. We are now ready to give a better
notion of equality.

1.1 Equality of terms

Two terms are equal if:

• they behave the same in every context, or

• they cause divergence in every context.

If two terms converge, we should naturally require that they converge to the same value. But we do not
need this requirement explicitly, because if they converge to different values, there exists a context in which
they behave differently.

In an attempt to formalize the previous definition, consider the following notation.

• C[·] is a context, an expression with a hole.

• C[e] is C with the hole replaced by e

We then define equality in the following manner.

e1 = e2 if for all C[·] we have C[e1] ⇓ ⇐⇒ C[e2] ⇓ .

Sounds simple in the mathematical sense, but this is hard to compute. We need to test all different
contexts, and so we would need to enumerate them all. We may also want to talk about whether open terms
are equal to one another, and there we need to be more careful.

We need a conservative test of whether two terms are equal. However, we must realize that we can never
tell precisely whether two terms are equal to one another, else we would have solved the halting problem.
But how close can we get?

How about the following definition? Let e1 and e2 be expressions. If

e1 → e′1 → · · · → v1,

e2 → e′2 → · · · → v2,

and v1 = v2 then e1 = e2.
In other words, if we can show that two expressions evaluate to the same thing, then the expressions

are equal. This is especially useful for compiler optimization. The previous definition raises the following
questions.

• What should be the right notion of equality in this sense?

• What kind of rewrite rules (i.e. e1 → e2) should we allow?

1



2 Rewrite rules

The order of the following rewrite rules is somewhat arbitrary.

2.1 β-reduction

A β-reduction is the following rule:
(λx.e1)e2

β−→ e1{e2/x}.

For example,
(λx. (λy.y)x︸ ︷︷ ︸

β redex

)
β−→ λx.x

2.2 α-equivalence

In λx.xz the name of the bound variable x doesn’t really matter. This term should really be the same as
e.g. λy.yz. Renamings like that are known as α-conversions or α-renamings. In other words: λx.xz and
λy.yz are α-equivalent to one another. Note that this defines an equivalence relation on the set of terms, so
e1 =α e2 is well defined.

Let’s introduce the notation of FV (e) as the set of free variables of e. In general we have

λx.e =α λx′.e{x′/x}.

But what if x′ is already being used in e? Then instead we must define

λx.e =α λx′.e{x′/x} if x′ /∈ FV (e).

When writing a λ-interpreter, the job of looking for α-renamings doesn’t seem all that practical. However,
we can e.g. use them to improve our earlier definition of equality:

If
e1 → e′1 → · · · → v1, and

e2 → e′2 → · · · → v2,

and v1 =α v2 then e1 = e2.

Figure 1: Stoy-diagram for λx.(λy.y)x

We can create a Stoy diagram for a closed term in the following manner. Instead of writing λx.(λy.y)x,
we write λ · .(λ · .·)· and connect variables that are the same by edges. Then α-equivalent terms have the
same Stoy-diagram.

2.3 η-reduction

Think about e and λx.ex. If these two things represent functions, then you apply them to something, say
e′, what’s going to happen? They are the same, because ee′ and (λx.ex)e′

β−→ ee′, so they β-reduce to the
same thing. We must be sure that x does not appear inside of e.

Formally:
(λx.e1x)e2

β−→ e1e2 if x /∈ FV (e1)

2



This we call an η-reduction, that is

λx.ex
η−→ e if x /∈ FV (e).

In other words, if we apply two expressions to the same thing, they reduce to the same thing.
This reverse operation, i.e. an η-expansion, is practical as well. It was e.g. used to create Ω in the last

lecture.
But there is a problem, what if e diverges? We need another condition:

e ⇑ ⇐⇒ λx.ex ⇑

3 Normal forms

What if the rewrite rules do more than one thing? If we do not fix the ordering in which rewrite rules should
be done, such as in CBV, you can have a choice between rewrite rules.

For example, consider that
e1 → e′1 → · · · → v1

and
e2 → e′2 → · · · → v2.

But what if you can have e′1 → v3 ? Then e1 and e2 are not necessarily equal. This is not a problem, because
under β-reduction or β + η reduction rewriting is confluent. This is also known as the diamond property or
Church-Rosser property.

What is confluence? The Church-Rosser theorem says that the λ-calculus that regardless of order of
rewrite rules, we will arrive at a unique final result if one exists. This final form is called the normal form.
However, because it is possible for an expression not to terminate, it does not necessarily have a normal
form.

e′

↗ ↘
e v (normal form)

↘ ↗
e′′

Note that under Call By Value, there is at most one rule possible at each time, so you will not get the
above diamond form.

It may not be apparent, but there is a catch. We may not always pick the easiest rewrite rule to expedite
termination, in fact, we may get stuck in a loop or a trace when rewriting. However, the Church-Rosser
theorem provides a guarantee that it is possible to get unstuck, provided that the end result exists. Let’s
formalize this. We will denote by an arrow closure, that is e1 →∗ e2, that we perform zero or more rewrite
rules to get from e1 to e2.

Suppose e1 →∗ e2 and e1 →∗ e′2. More formally, the Church-Rosser theorem states that there exists an
expression e3 such that e2 →∗ e3 and e′2 →∗ e3. This tells us that if we hit a trace when rewriting a reducible
expression (we get stuck), we can always get unstuck and hit the value. (A value is something you cannot
do any more rewrites on, except for α-reductions)

However, we could also get stuck by doing an infinite number of rewrites. For example:

(λxy.y)Ω
β−→ λy.y

Yet in this case, if we choose evaluate the right-most argument, we get

(λxy.y)Ω
β−→ (λxy.y)Ω →β · · ·

and we’re fine. There is an ordering to prevent such traces, a so-called normal order where you reduce the
leftmost redex. By using normal order, we are guaranteed to get to a normal form if one exists. This corre-
sponds to Call By Name evaluation. Another ordering is the applicative order where one reduces arguments

3



to the normal form, and then applies β-reductions. This corresponds to Call By Value evaluation.

Example: In C the evaluation order of arguments to functions is implementation-specific. Also, C does
not specify in what order operands work. Hence C is not confluent.

To demonstrate this, in C, (x = 1) + x can be evaluated as 2 if you start by evaluating the left argument
to the + operand. If you start with the right argument, it evaluates to x + 1. This depends on the
implementation.

4


