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Classic ML and EventML

During this lecture, we are going to learn about a
programming language called Classic ML.

We will actually use a language called EventML (developed
by the Nuprl team [CAB+86, Kre02, ABC+06]). EventML is
based on Classic ML and a logic called the Logic of
Events [Bic09, BC08, BCG11].

We will focus at the Classic ML part of EventML.
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Where does ML come from?

ML was originally designed, as part of a proof system called
LCF (Logic for Computable Functions), to perform proofs
within PPλ (Polymorphic Predicate λ-calculus), a formal
logical system [GMM+78, GMW79].

By the way, what does ML mean? It means Meta Language

because of the way it was used in LCF.

We refer to this original version of ML as Classic ML.

Many modern programming languages are based on Classic
ML: SML (Standard ML), OCaml (object-oriented
programming language), F# (a Microsoft product)...
Nowadays ML is often used to refer to the collection of these
programming languages.
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Where is ML used?

◮ F# is a Microsoft product used, e.g., in the .NET
framework.

◮ OCaml is developed by the INRIA. It has inspired F#.
The Coq theorem prover is written in OCaml. It has been
used in the implementation of
Ensemble [Hay98, BCH+00]. It is also used by companies.

◮ SML has formally defined static and dynamic semantics.
The HOL theorem prover is written in SML. It is
nowadays mainly used for teaching and research.
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What is Classic ML (or just ML for short)?

ML is a strongly typed higher-order impure functional
programming language.

What does it mean?

(Nowadays, ML often refers to a family of languages such as Classic ML,

SML, Caml, F#...)
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What is ML?
Higher-order.

Functions can do nothing (we will come back to that one):

\x. x

Functions can take numerical arguments:

\x. x + 1

let plus three x = x + 3 ;;

Functions can take Boolean arguments:

\a. \b. a or b
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What is ML?
Higher-order.

Functions can also take other functions as arguments.

Function application:

let app = \f. \x. ( f x );;

Function composition:

let comp g h = \x. (g (h x)) ;;

Note that, e.g, app can be seen as a function that takes a
function (f) as input and outputs a function (\x. ( f x)).
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What is ML?
Higher-order.

BTW, a function of the form \x.e (where e is an expression) is
called a λ-expression.

The terms of the forms x (a variable), (e1 e2) (an
application), and \x.e (a λ-expression) are the terms of the
λ-calculus [Chu32, Bar84].

In 1932, Church [Chu32] introduced a system (that led to the
λ-calculus we know) for “the foundation of formal logic”,
which was a formal system for logic and functions.
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What is ML?
Impure and functional.

Functional. Functions are first-class objects: functions can
build functions, take functions as arguments, return
functions...

Impure. Expressions can have side-effects: references,
exceptions.

(We are only going to consider the pure part of ML.)

Other functional(-like) programming language: Haskell (pure),
SML (impure), F# (impure)...
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What is ML?
Strongly typed.

What is a type?

A type bundles together “objects” (syntactic forms) sharing a
same semantics.

(Types started to be used in formal systems, providing
foundations for Mathematics, in the early 1900s to avoid
paradoxes (Russell [Rus08]).)

A type system (typing rules) dictates what it means for a
program to have a type (to have a static semantics).

What are types good for?

Types are good, e.g., for checking the well-defined behavior of
programs (e.g., by restricting the applications of certain
functions – see below).

Nuprl team Classic ML September 6, 2011 11/42

What is ML?
Strongly typed.

What else?

Flexibility. One of the best things about ML is that is has
almost full type inference (type annotations are sometimes
required). Each ML implementation has a type inferencer

that, given a semantically correct program, finds a type.

This frees the programmer from explicitly writing down types:
if a program has a type, the type inferencer will find one.

Given a semantically correct program, the inferred type
provides a static semantics of the program.

Consider \x. x + 2. 2 is an integer. + takes two integers and
returns an integer. This means that x is constrained to be an
integer. \x. x + 2 is then a function that takes an integer
and returns an integer.
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What is ML?
Strongly typed.

Can type inferencers infer more than one type? Is each type as
good as the others?

In ML it is typical that a program can have several types. The
more general the inferred types are the more flexibility the
programmer has (we will come back to that once we have
learned about polymorphism).

(ML’s type system has principal type but not principal
typing [Wel02] (a typing is a pair type environment/type).)
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What is ML?
Strongly typed.

Using types, some operations become only possible on values
with specific types.

For example, one cannot apply an integer to another integer:
integers are not functions. The following does not type check
(it does not have a type/a static semantics):

let fu = (8 6) ;;

Another example: using the built-in equality, one cannot check
whether a Boolean is equal to an integer. The following does
not type check (and will be refused at compile time):

let is eq = (true = 1) ;;
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What is ML?
Strongly typed.

What does type check then?
one can apply our plus three function to integers:

let plus three x = x + 3 ;;
let fu = plus three 6 ;;

One can test whether two integers are equal:

let i1 = 11;;
let i2 = 22;;
let is eq = (i1 = i2) ;;
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ML types

Integer. For example, 12 + 3 has type Int.

Boolean. For example, ! true has type Bool (! stands for the
Boolean negation).

List. For example, [1;7;5;3] has type Int List .

Function type. For example, let plus3 x = x + 3;; has type
Int → Int .

Product type. For example, (true , 3) has type Bool ∗ Int .

Disjoint union type. For example, inl (1 + 5) has type
Int + Int.
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Polymorphism

We claimed that inl (1 + 5) has type Int + Int. But it can
also have type Int + Bool, Int + Int List , . . .

For all type T, inl (1 + 5) has type Int + T. This can be
represented with a polymorphic type: Int + ’a, where ’a is
called a type variable, meaning that it can be any type.

Let us consider a simpler example: let id x = x;;

What’s its type?

The action id performs does not depend on its argument’s
type. It can be applied to an integer, a Boolean, a function, . . .
It always returns its argument. id’s type cannot be uniquely
determined. To automatically assign a (monomorphic type) to
id one would have to make a non-deterministic choice.
Instead, we assign to id the polymorphic type: ’a → ’a.
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Polymorphism

Formally, this form of polymorphism is expressed using the ∀
quantification.

This form of polymorphism is sometimes called infinitary

parametric polymorphism [Str00, CW85] and ∀ types are
called type schemes (see, e.g., system F [Gir71, Gir72]).

Polymorphism complicates type inference but does not make it
impossible.
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Polymorphism

Polymorphism allows one to express that a single program can
have more than one meaning. Using the ∀ quantification, one
can express that a single program has an infinite number of
meaning, i.e., can be used in an infinite number of ways.

The following function null has type ’a List → Bool:

l e t n u l l l s t =
ca se l s t o f [ ] => t r u e

o f x . x s => f a l s e ; ;
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Polymorphism

let declarations allow one to define polymorphic functions
while lambda expression do not. For example, the following
piece of code is typable:

l e t x = (\ x . x ) i n ( x 1 , x t r u e )

However, the following piece of code is not typable:

(\ x . ( x 1 , x t r u e ) ) (\ x . x )

In the first example, the two last x’s stand for the identity
function for two different types. In the second example, the
two bound x’s in \x. (x 1, x true) have to be the same
function.
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Recursion

Another important feature of ML (and functional languages in
general) is recursion

Recursion allows functions to call themselves.

Recursion accomplishes what “while” loops accomplish in
imperative languages but in a functional way: functions call
functions.

For example, to compute the length of a list, one wants to
iterate through the list to count how many elements are in the
list. The following function computes the length of a list:

l e t r e c l e n g t h l s t =
ca se l s t o f [ ] => 0

o f x . x s => 1 + l eng t h x s ; ;
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Recursion

Given x and y , find q (quotient) and r (remainder) such that
x = (q ∗ y ) + r .

The “while” solution:

q := 0; r := x;

while r >= y do q := q + 1; r := r - y; od

return (q, r);

The recursive solution:

l e t quot and rem x y =
l e t r e c aux q r =

i f r < y then (q , r )
e l s e aux ( q + 1) ( r − y )

i n aux 0 x ; ;
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Recursion

Another example: the factorial.

The “while” solution:

f := 1; i := 1;

while i <= x do

f := i * f;;

i := i + 1;;

od

The recursive solution:

l e t f x = i f x <= 1
then 1
e l s e x ∗ f ( x − 1 ) ; ;

Nuprl team Classic ML September 6, 2011 23/42

Typing rules
Let us consider the following expression language (sometimes
referred to as core ML:

v ∈Var (a countably infinite set of variables)
exp ∈Exp ::= v | exp1 exp2 | \v.exp | let v = exp1 in exp2

Let us consider the following type language:

a ∈TyVar (a countably infinite set of type variables)
τ ∈ ITy ::= a | τ1 → τ2
σ∈ ITyScheme ::= ∀{a1, . . . , an}.τ

Let environments (metavariable Γ ) be partial functions from
program variables to type schemes. We write environments as
follows: {v1 7→ σ1, . . . , vn 7→σn}.

We sometimes write a 7→ τ for a 7→ ∀∅.τ .
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Typing rules

the function fv computes the set of free type variables in a
type or in a type environment.

We define the domain of an environment as follows:
dom({v1 7→σ1, . . . , vn 7→σn}) = {a1, . . . , an}.

Let substitutions (metavariable sub) be partial functions from
type variables to types. We write substitutions as follows:
{a1 7→ τ1, . . . , an 7→ τn}.

We write substitution in a type as follows: τ [sub].
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Typing rules

Let the instantiation of a type scheme be defined as follows:

τ ≺ ∀{a1, . . . , an}.τ
′

⇐⇒ ∃τ1, . . . , τn. (τ = τ ′[{ai 7→ τi | i ∈ {1, . . . , n}}])

We also define a function to “merge” environments:

Γ1 + Γ2
= {a 7→ τ | Γ2(a) = τ or (Γ1(a) = τ and a 6∈ dom(Γ2))}
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Typing rules
(A variant of Damas and Milner’s type system, sometimes
referred to as the Hindley-Milner type system and therefore
often called DM or HM.)

τ ≺ Γ (vid)

v : 〈Γ , τ〉

exp1 : 〈Γ , τ1 → τ2〉 exp2 : 〈Γ , τ1〉

exp1 exp2 : 〈Γ , τ2〉

exp : 〈Γ + {v 7→ τ}, τ ′〉

\v.exp : 〈Γ , τ → τ ′〉

exp : 〈Γ , τ〉 exp2 : 〈Γ + {v 7→ ∀(fv(τ) \ fv(Γ )).τ}, τ ′〉

let v = exp1 in exp2 : 〈Γ , τ
′〉
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Typing rules

For example:

Let Γ = {f 7→ (a1 → a2), g 7→ (a2 → a3), v 7→ a1}.

g : 〈Γ , a2 → a3〉

f : 〈Γ , a1 → a2〉 v : 〈Γ , a1〉

f v : 〈Γ , a2〉

g (f v) : 〈Γ , a3〉

\v.g (f v) : 〈{f 7→ (a1 → a2), g 7→ (a2 → a3)}, a1 → a3〉

\g.\v.g (f v) : 〈{f 7→ (a1 → a2)}, (a2 → a3) → a1 → a3〉

\f.\g.\v.g (f v) : 〈∅, (a1 → a2) → (a2 → a3) → a1 → a3〉
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Typing rules

For example:

Let Γ = {id 7→ ∀{a}.a → a}.
Let τ = a1 → a1

id : 〈{id 7→ a}, a〉

\id.id : 〈∅, a → a〉

id : 〈Γ , τ → τ〉 id : 〈Γ , τ〉

id id : 〈Γ , τ〉

let id = \id.id in id id : 〈∅, τ〉
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Type inference

Type inference vs. type checking. Let S be a type system:

◮ Type checking: given a (closed) expression exp and a type
τ , a type checker checks that exp has type τ w.r.t. S .

◮ Type inference: given a (closed) expression exp, a type
inferencer infers a type τ such that exp has type τ w.r.t.
S , or fails if no such type exists.

Classic ML has decidable type inference: there exists an
algorithm that given an expression exp, infers a type for exp
which is valid w.r.t. the static semantics of Classic ML.

Classic ML seats between the simply typed λ-calculus [Bar92]
(no polymorphism) and system F [Gir71, Gir72] (undecidable
type inference).
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Type inference

Type inference for Classic ML is exponential in theory. Many
algorithms are efficient in practice (quasi-linear time under
some assumptions).

Milner [Mil78] proposed a type inference algorithm, called the
W algorithm, for an extension of core ML and proved it sound.

Damas (Milner’s student) and Milner [DM82] later proved the
completeness of W.
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Type inference

The W algorithm takes two inputs: a type environment Γ and
an expression exp; and returns two outputs: a type
substitution s and a type τ ; such that exp has type τ in the
environment Γ [s] w.r.t. the type system presented above.

W is defined by induction on the structure of its expression
parameter.

Nuprl team Classic ML September 6, 2011 32/42



Type inference
Remark 1: These inference algorithms use first-order

unification [MM82, BN98].

Given an application exp1 exp2, W produces, among other
things, τ1 a type for exp1, and τ2 a type for exp2. A
unification algorithm is then used to unify τ1 and τ2 → a

where a is a “fresh” type variable (meaning that τ1 has to be a
function that takes an argument of type τ2).

Remark 2: Many algorithms have been designed since the W.
In some algorithms constraint generation and unification
interleave [Mil78, DM82, LY98, McA99, Yan00], in others the
constraint generation and constraint solving phases are
separated [OSW99, Pot05, PR05].

Remark 3: EventML’s inferencer is constraint based (second
category).
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Type inference

Example:

let plus1 x = x + 1 in plus1 3

◮ + is a function that takes two Ints and returns an Int.

◮ 1 and x are constrained to be Ints.

◮ plus1 is constrained to be a function that takes an Int
and returns an Int.

◮ plus1 3 is an Int.

◮ Therefore the whole expression is an Int.
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Type inference
Example:

let app f x = f x in app (\x.x + 1) 3

◮ If x has type ’a then f is constrained to have type
’a → ’b.

◮ app has polymorphic type (’a → ’b) → ’a → ’b.

◮ + is a function that takes two Ints and returns an Int.

◮ 1 and x are constrained to be Ints.

◮ The function \x.x + 1 is constrained to have type
Int → Int and 3 is an Int.

◮ An instance of app’s type is ( Int → Int ) → Int → Int ,
where both ’a and ’b are instantiated to Int. This is the
type of app’s second occurrence.

◮ Therefore the whole expression is an Int.
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Type inference
Example:

let id x = x in id id

◮ id has polymorphic type ’a → ’a. Each instance of id’s
type is a functional type.

◮ id’s first bound occurrence is a function that takes a
function as parameter.

◮ Therefore, id’s first bound occurrence’s type is an
instance of ’a → ’a such that ’a is substituted by a
functional type.

◮ That functional type has to be an instance of ’a → ’a.

◮ For example, we can assign (’b → ’b) → (’b → ’b) to
id’s first bound occurrence, and ’b → ’b to id’s second
bound occurrence.

◮ Therefore, the whole expression has type ’b → ’b.
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Type inference
Example:

l e t quot and rem x y =
l e t r e c aux q r =

i f r < y then (q , r )
e l s e aux ( q + 1) ( r − y )

i n aux 0 x ; ;

◮ Because + and − both take Ints and return Ints, q, r,
and y are constrained to be Ints.

◮ aux’s first bound occurrence is constrained to be a
function that takes two Int’s and returns a pair of Int’s
(aux has type Int → Int → ( Int ∗ Int )).

◮ Because aux is applied to 0 and x in the last line, x is
constrained to be an Int.

◮ quot and rem has type Int → Int → ( Int ∗ Int ).
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