Classic ML and EventML

During this lecture, we are going to learn about a

Classic ML programming language called Classic ML.
Nuprl team We will actually use a language called EventML (developed
by the Nuprl team [CAB*86, Kre02, ABC*06]). EventML is
Comell University based on Classic ML and a logic called the Logic of

Events [Bic09, BC08, BCG11]
September 1, 2011

We will focus at the Classic ML part of EventML.

Nopr team Clssic ML Seotember 12011 12 Nopr team Clasic ML September 1, 2011 2

Where does ML come from? Where is ML used?

ML was originally designed, as part of a proof system called

LCF (Logic for Computable Functions), to perform proofs

within PP (Polymorphic Predicate -calculus), a formal > F# is a Microsoft product used, e.g., in the .NET
logical system [GMM*78, GMW79] framework.

» OCaml is developed by the INRIA. It has inspired F#.
The Coq theorem prover is written in OCaml. It has been
used in the implementation of
Ensemble [Hay98, BCH*00]. It is also used by companies.

By the way, what does ML mean? It means Meta Language
because of the way it was used in LCF.

We refer to this original version of ML as Classic ML.
)) » SML has formally defined static and dynamic semantics.

Many modern programming languages are based on Classic The HOL theorem prover is written in SML. It is

ML: SML (Standard ML), OCaml (object-oriented

programming language), F# (a Microsoft product)...

Nowadays ML is often used to refer to the collection of these

programming languages.

nowadays mainly used for teaching and research.

Nopr team Clssic ML September 12011 32 Nopr team Clasic ML September 1, 2011 e

What is Classic ML (or just ML for short)?

ML is a strongly typed higher-order impure functional
programming language.

What does it mean?

(Nowadays, ML often refers to a family of languages such as Classic ML,
SML, Caml, F#...)

Nopr team Clssic ML Seotember 12011 s

What is ML?

Higher-order.

Functions can also take other functions as arguments.

Function application:
let app =\f. \x. (f x):; |

Function composition:
let compgh=\x (g(hx)) & |

Note that, e.g, app can be seen as a function that takes a
function (f) as input and outputs a function (\x. (f x)).

Nopr team Clssic ML September 12011 78

What is ML?

Higher-order.
Functions can do nothing (we will come back to that one):

X, x J

Functions can take numerical arguments:
xox +1 |

let plus three x =x + 3 ;; J

Functions can take Boolean arguments:

\a. \b. aor b |

Nupr team Clasic ML September 12011 P

What is ML?

Higher-order

BTW, a function of the form \x.e (where e is an expression) is
called a \-expression.

The terms of the forms x (a variable), (el €2) (an
application), and \x.e (a A-expression) are the terms of the
A-calculus [Chu32, Bar84].

In 1932, Church [Chu32] introduced a system (that led to the

-calculus we know) for “the foundation of formal logic”,
which was a formal system for logic and functions.

Nupr team Clasic ML September 12011 BEd

What is ML?

Impure and functional

Functional. Functions are first-class objects: functions can
build functions, take functions as arguments, return
functions...

Impure. Expressions can have side-effects: references,
exceptions.

(We are only going to consider the pure part of ML.)

Other functional(-like) programming language: Haskell (pure),
SML (impure), F# (impure)...

Nopr team Clasic ML Seotember 12011 o/

What is ML?
Strongly typed.
What else?

Flexibility. One of the best things about ML is that is has
almost full type inference (type annotations are sometimes
required). Each ML impl ion has a type i

that, given a semantically correct program, finds a type.

This frees the programmer from explicitly writing down types:
if a program has a type, the type inferencer will find one.

Given a semantically correct program, the inferred type
provides a static semantics of the program.

Consider \x. x + 2. 2 s an integer. + takes two integers and
returns an integer. This means that x is constrained to be an
integer. \x. x + 2 is then a function that takes an integer
and returns an integer.

Nopr team Clssic ML September 1, 2011 11728

What is ML?

Strongly typed
What is a type?
A type bundles together “objects” (syntactic forms) sharing a
same semantics.

(Types started to be used in formal systems, providing
foundations for Mathematics, in the early 1900s to avoid
paradoxes (Russell [Rus08]).)

A type system (typing rules) dictates what it means for a
program to have a type (to have a static semantics).
What are types good for?

Types are good, e.g., for checking the well-defined behavior of
programs (e.g., by restricting the applications of certain
functions — see below)

Nupr team Clasic ML September 1, 2011 10728

What is ML?

Strongly typed.

Can type inferencers infer more than one type? Is each type as
good as the others?

In ML it is typical that a program can have several types. The
more general the inferred types are the more flexibility the
programmer has (we will come back to that once we have
learned about polymorphism).

(ML's type system has principal type but not principal
typing [Wel02] (a typing is a pair type environment,/type).)

Nupr team Clasic ML September 1, 2011 /2

What is ML?

Strongly typed
Using types, some operations become only possible on values
with specific types.

For example, one cannot apply an integer to another integer
integers are not functions. The following does not type check
(it does not have a type/a static semantics):

Another example: using the built-in equality, one cannot check
whether a Boolean is equal to an integer. The following does
not type check (and will be refused at compile time):

iseq = (true = 1) ;

Nopr team Clssic ML Seotember 12011

ML types

Integer. For example, 12 + 3 has type Int.

Boolean. For example, !true has type Bool (! stands for the
Boolean negation).

List. For example, [1;7;5;3] has type Int List.

Function type. For example, let plus3 x = x + 3;; has type
Int — Int.

Product type. For example, (true, 3) has type Bool * Int.

Disjoint union type. For example, inl (1 + 5) has type
Int + Int.

Nopr team Clssic ML September 12011

1372

15728

What is ML?

Strongly typed
What does type check then?
one can apply our plus_three function to integers:

let plus_three x =x + 3 ;;
let fu = plus_three 6 ;;

One can test whether two integers are equal:
let il =
let i2 =
let is_eq

Nupr team Clasic ML September 12011 14728

Polymorphism

We claimed that inl (1 + 5) has type Int + Int. But it can
also have type Int 4 Bool, Int + Int List, ...

For all type T, inl (1 + 5) has type Int -+ T. This can be
represented with a polymorphic type: Int + 'a, where 'ais
called a type variable, meaning that it can be any type.

Let us consider a simpler example: let id x = x;;

What's its type?

The action id performs does not depend on its argument’s
type. It can be applied to an integer, a Boolean, a function, ...
It always returns its argument. id’s type cannot be uniquely
determined. To ically assign a (ic type) to
id one would have to make a non-deterministic choice.
Instead, we assign to id the polymorphic type: 'a — 'a.

Nupr team Clasic ML September 12011 16728

Polymorphism

Formally, this form of polymorphism is expressed using the ¥
quantification.

This form of polymorphism is sometimes called infinitary
parametric polymorphism [5tr00, CW85] and ¥ types are
called type schemes (see, e.g., system F [Gir71, Gir72]).

Polymorphism complicates type inference but does not make it
impossible

Nopr team Clasic ML Seotember 12011 1772

Polymorphism

let declarations allow one to define polymorphic functions
while lambda expression do not. For example, the following
piece of code is typable:

let x = (\x. x) in (x 1, x true) J

However, the following piece of code is not typable:

(\x. (x 1, x true)) (\x. x) J

In the first example, the two last x's stand for the identity
function for two different types. In the second example, the
two bound x's in \x. (x 1, x true) have to be the same
function.

Nopr team Clasic ML September 12011 19728

Polymorphism

Polymorphism allows one to express that a single program can
have more than one meaning. Using the Y quantification, one
can express that a single program has an infinite number of
meaning, i.e., can be used in an infinite number of ways.

The following function null has type 'a List — Bool:
let null Ist =

case Ist of [] => true
of x . xs => false;;

Nupr team Clasic ML September 1, 2011 1072

Recursion
Another important feature of ML (and functional languages in
general) is recursion
Recursion allows functions to call themselves.
Recursion accomplishes what “while” loops accomplish in
imperative languages but in a functional way: functions call
functions.
For example, to compute the length of a list, one wants to
iterate through the list to count how many elements are in the
list. The following function computes the length of a list:

letrec length Ist =
case Ist of [[=0
of x . xs => 1 + length xs;;

Nupr team Clasic ML September 1, 2011 EY)

Recursion
Given x and y, find g (quotient) and r (remainder) such that
x=(q*y)+r
The “while" solution:
q:=0; r:=x;
while r >= y doq :=q+1; r
return (q, 1);

T -y; od

The recursive solution:

let quot_and_rem x y =
letrec aux q r =
if r<y then (q, r)
clse aux (q + 1) (r —y)
inaux 0 x ;;

Nopr team Clasic ML Seotember 12011 2

Typing rules
Let us consider the following expression language:
v €Var (a countably infinite set of variables)
expEExp=v | exp; exp, | \v.exp | let v = exp; in exp,

Let us consider the following type language:

a € TyVar (a countably infinite set of type variables)
relTy =alm >

o €TyScheme :=V{ar, ..., a,}.7

Let environments (metavariable /) be partial functions from
program variables to type schemes. We write environments as
follows: {vi++01,..., Vo> 0,}.

Let substitutions (metavariable sub) be partial functions from
type variables to types. We write substitutions as follows:

{171, a0 T}

Nupr team Clasic ML September 12011 23

Recursion
Another example: the factorial.

The “while” solution:

£ 1,4 := 15
while i <= x do
f 155
i 1;;

od

The recursive solution:

let f x = if x<=1
then 1
else x * f (x — 1);;

Nupr team Clasic ML September 1, 2011)

Typing rules
the function fv computes the set of free type variables in a
type or in a type environment.

We define the domain of an environment as follows:
dom({vi—01,....vo>0}) = {ar..... a5}

We write substitution in a type as follows: 7[sub]

Let the instantiation of a type scheme be defined as follows:

T<V{ay,...,a,}.7"
= 3, (r= @ | i€ (L. n})])
We also define a function to “merge” environments:

n+r
={a—7|M(a) =7 or (M(a) =7 and a & dom(/3))}

Nupr team Clasic ML September 1, 2011 w8

Typing rules

7 < (vid)
vi(l.7)
ep (Mm = n) ey (M)
expy exp, : (I,7)
e (M {vorr)r)
Woep: ([.7 = 7)

e (7)) ey (M4 {ver Y(v(r) \ ()7} 7)
Tet v = exp, in exp,: ([.7)

R
Nopr team Clssic ML Seotember 12011)

References I

[E] L Conmatle 5. Al .M. By W . ol . . Come . W. o 0. . Hovm
1P Merdr . Prngaden T St nd 5. -5
Inplmenting mthenaics wi b g oo devlomman
PrEniee Ha - Uppr Sl s 3, G, 1500
B Aorzo cruen
At ofpstc for he untaions ok
2) 340366 Aprl 1932

(B o Code and eter Wegrer
On understandin types, dataabstracton, and polymarphis.
acw & Suneys, 11471522, 1995

B envies Gioa
jon de Vinterprétaton de Gadel 3 Fanlyse, <t son appication a [limintion des coupres dans
Tanas et s e 30

B v Gioa

[ichae . . Gordon, Roin Milner L Mari, Makcom C. Ny, nd Chrstopher . Wadavorth

A mecaangusg o rctve proot
neuns e 11513, Hew Yol N, USA. 1975 ACH

[wichae .. Gordon, Roin Miler and Chistopher P, Wadcrth
iburgh LCF: A Mechanied Logic of Computsion. volume 76 of Lecture Notes in Computer Scence.

R
Nopr team Clssic ML September 12011)

References |

B A ik ki b ot R s, i i L e 1
.
R ——

B ook P, B
e s I Syt and Semantics
Nori-land.reed edon, 1661
[B vk Bkt ana Robert L Constase
Form fdatons of computer sty
I RAT
[B Mk Bikter, Robert Consable, and David Guaspar
ing e s it Higherrer roceses s sz
Techrica epant, Cornel Uy

¥ Secis, D inform, ommunication Secuty volume 14,

BB e i R Cons o, ik, s K b o e, O
el e s s

B v vt
S

I Giaca A. Liwis, man Posrmom. snd Chrstine Hofmeiste, ditors, CBSE,volume 5582 of Lecture Notes
in Computer Scionce, pages 140-155. Springer, 2000
LR R
Nupr team Classe ML September 12011

References IlI

B vk vaysen
The e 5
D theds: Cornll Unversity, Departmen of Computer Science, 1998
e Repo TR0 058
B coistoph weeis
The Nt P Decopment S, Varion . Rterrce Ml an U i
ety

[E -
Mathemstical

fc 2 based on th theory of ypes.

B chvistopher strachey
Fondamentl conces i ogamning gusgs.

B 1owas

e e ofpinial ping.
Aiomats, Languages and Pogramming, 208 o) Collo., ICALP

-
Nupr team Classe ML September 12011

52

22

http://www.nuprl.org/html/02cucs-NuprlManual.pdf

