S 5960 (oasensvs Protocols

Tve Nov 22, 2ol

Logical Properties

 All decided values are input values.

All e:E(Decide). Exists e’:E(Input).
e’ <e & Decide(e) = Input(e’)

We can see that P2 will imply P1, so we take
P2 as part of the requirements.

Event Classes

If X is an event class, then E(X) are the events
in that class. Note E(X) effectively partitions all
events E into E(X) and E-E(X), its complement.

Every event in E(X) has a value of some type T
which is denoted X(e). In the case of E(Input)
the value is the typed input, and for E(Decide)
the value is the one decided.




Further Requirements for Consensus

The key safety property of consensus is that
all decisions agree.

Any two decisions have the same value.
This is called agreement.

All e1,e2: E(Decide). Decide(el) = Decide(e2).

Specific Approaches to Consensus

Many consensus protocols proceed in rounds,
voting on values, trying to reach agreement.
We have synthesized two families of
consensus protocols, the 2/3 Protocol and the
Paxos Protocol families.

We structure specifications around events
during the voting process, defining E(Vote)
whose values are pairs <n,v>, a ballot number,
n, and a value, v.




Properties of Voting

Suppose a group G of n processes, Pi, decide by
voting. If each Pi collects all n votes into a list L,
and applies some deterministic function f(L), such
as majority value or maximum value, etc., then
consensus is trivial in one step, and the value is
known at each process in the first round —
possibly at very different times.

The problem is much harder because of possible
failures.

Fault Tolerance

Replication is used to ensure system availability in
the presence of faults. Suppose that we assume
that up to f processes in a group G of n might fail,
then how do the processes reach consensus?

The TwoThirds method of consensus is to take n =
3f +1 and collect only 2f+1 votes on each round,
assuming that f processes might have failed.




Example forf=1,n=4

Hereis a sample of voting in the case T = {0,1}.

1 1 inputs
. l

_11 011 001_ 00 _1 collected votes
1 1 0 0 next vote

00_1 001_ 011 o011
0 0 1 1
where f is majority voting, first vote is input

Specifying the 2/3 Method

We can specify the fault tolerant 2/3 method
by introducing further event classes.

E(Vote), E(Collect), E(Decide)

E(Vote): the initial vote is the <0,input value>,
subsequent votes are <n,f(L)>

E(Collect): collect 2f+1 values from G into list L
E(Decide): decide v if all collected values are v




The Hard Bits

The small example shows what can go wrong
with 2/3. It can waffle forever between 0 and
1, thus never decide.

Clearly if there is are decide events, the values
agree and that unique value is an input.

Can we say anything about eventually
deciding, e.g. liveness?

Liveness

If f processes eventually fail, then our design
will work because if f have all failed by round r,
then at round r+1, all alive processes will see
the same 2f+1 values in the list L, and thus
they will all vote for v’ = (L), so in round r+2
the values will be unanimous which will
trigger a decide event.




Exampleforf=1,n=4
Here is a sample of voting in the case T ={0,1}.
0 0 1 y | inputs
001_ 001_ 001_ 011 collected votes
0 0 0 il next vote

000_ 001 001 _001
0 0 0 0

where f is majority voting, first vote is input,
round numbers omitted.

Safety Example

We can see in the f = 1 example that once a
process Pi receives 2/3 unanimous values, say
0, it is not possible for another process to over
turn the majority decision.

Indeed this is a general property of a 2/3
majority, the remaining 1/3 cannot overturn it
even if they band together on every vote.




Safety Continued

In the general case when voting is not by
majority but using f(L) and the type of values
is discrete, we know that if any process Pi sees
unanimous value v in L, then any other
process Pj seeing a unanimous value v’ will
see the same value, i.e. v = v’ because the two
lists, Li and Lj at round r must share a value,
that is they intersect.







