Cs Sgco @

Thee Nov (7, 20U A Theoor o5 Events (a Fiest-Ocdec Log(c

Last Line we deliaed e vecy (mpockant cavsal ocdec

(\e("’h"“) €<, Th s e teanschive closoece oF PCeg(C'\qu_

Now \NZ, \Mc((S(\ow -\-(\a{‘ -(—(\&S S « &ecakag(e re(«:(—wq,;t.p.

Vx& Ny E.(0x<y) « ~(x<q))

We Licst loolk closely <t Lie POSSL()(.Q cstcoctoce o€ Hus
ocdecins and reviewr (s doliadon. We vse nessege

Sfeqoeace dlagcans

The ced evecks show {ose whih ace cavsally beboce e, ok loc,.
The accows (—) (ndicate message <ece sent; so e lacsget of

He accewt 1§ A cecewe evect. The lines wilboot accows,(—),
Say SGrom €g to 2, at (ocy shows a swple predecesse o
teldioo, evest Lc midk clesge Ue state at lecy acd cac
alkeck bk bappess alles 2. '

Cs s %o @

oo Nov 17, 20U A theocy of Evects (v Fol

\We can deofine Lhe PCQAQCQSSOC' evecds at a locatoa «s

a list, say «f loc, e Qc‘zct.ecesror events of o, ace,
So tha Wst befoce(®r) = Ues,2u,23,2,2] the evecks

cavsally beloce an eyect Locm a +cee wehicel =

Ca((He cooe of +He eveat

Defiaitioa beloce(e) = 3__:- Sicsk(e) Lhea (e, nil7
Llse coas(<, befoc< Cpred cay))
wheece <coas(®, LR, 2,03 =

= 2,) 20, add,

Dﬂ‘('u\c‘r(oo CoQg (-2) -

V& cev?(e) thea \—-\:— Flest(e)
thea (2, locce), moag (sendecte)) >

2lse {2, cone(pred(a)) , Cone (seadeccar)
s 2lse _5- Seestk(e)
Hoa R, locey,nd>

2lse {2, Coc\g(?ceé(e)), “‘(>

acd Heo check 4o soe £ Q e cong(R,) ULSstas e Lact

Lot -219'&(«.-(«(o eveaks (é.-ecuia.‘((.
Aoellec way s fo prove + by (dockwoa of cavsal ocdec

Theotem \c('x,g‘-(:_-‘ (x< ‘1)v~(¥<‘3) = Eausal strder 18 dectdable,

C<g s8¢0

Thee Noy (7, 20U A Theory o€ Evects (n ol coctved

The ndvctien principle $oc cavsal ocdec s Ahis

Axron VM'—E-<V‘3."E- (%4'\‘ =2 P(ﬂq)\ => \?(Q()) = dx:E. Plx)

Thes s hke Coo&P\Q-\'Q U.\Luc-‘rLOC\ o N, cecall

\/n((\//y.(@;«\ = P(y)\ D Pa)) = Y. Prx)

See the Suppﬁemt\-‘m(notes Soc Tue Nov IS. Lo aun ac-gum-ec\-('
et cavsal ocder s sheonsly well Locaded, given a the

dechical e ro—(— A Cavsal Logte of Evects w Fo cM(c}ei

Co M()o"t«-‘ho(\‘i(Ty ¢= T&Qoo{.

To Hab achicle we do ot digcoss Hhe dea o€ a choce Loocloa
-{; Lhat meps E Lo coatocel qombecs . Thos oot accovedk does
oot dake wlo sz coostdecation dhe kiads of noadetecmins o
dhat acse (n resl wocd systems. Sudl an accovat depeads oa
Come medhanisom 4o tnkcodoce cholce oc vaceokiedy y Ao meodel.
This choce aases §ron not krowtins o advacnce the accwal

ocdec oF M2 SSacs ées-Léc\ei. foc a locatica. \We can coaduvct a
oL\LY allec e -Qac—@, We do ao'&

cllscuss JrLQ MQC,L«.(\(S Mg -ro* QoL
wd\ \r\o-We\Let Lrex MO -Ume L'\o-QLo(\

W oo o 2vent ocdecinss

e -\—(\xs Co0OCS2 -‘vo
\\e

‘nonwz J‘. (S

(Le“\'ec‘oku\(S (N A.Q_-Lad

(. toce deled when we
weaek, We wll skekch He Wdex oL cheolce segocaces.

study consensos (Dr:o-@oc'a(s e y

CS §¥¢o
Thoo Nov \7, Lo\ A Theocy oL Evects Fol oataoed.

N.@\A' we excasune Lle L\o‘@w(\ o‘G S%A“Q 4‘(' &< \oca—(-taa. \We

Lonagae dhact P Cocesses at loc: have access 4o loca l

S-(-A:Z accesscble b{ \é&em‘cv@tecs, 4.(\0-(—(>Qc‘ baste soct oF€
4he -\-C\.ro-\{ decoted Td(). The st<te stoces datx oc

\{L(U‘?S. \Ne Say

\JA'.,/}(, (LOQL\ £ Tded =2 F o Valoe (o) o 'S-E-(/()))
We assome oaly Sindely maay deatiliers Coc bhe exanles
W2 cocxsdec, deaoted A, ey, ¥y - \We can spzcu@{ e

tadral valves ~oadkelly £ s e wadhal valve o€
tdeckifiec ot |ocatkon 2.

We «lso (nheedoce tha Lo O&QO_C"(o__QQCﬁ:L&C§

N achea <
e allec e

A oo e:E. — Qm%@z) = (X whea <) = @(allec peed e)

D.a(r‘(,&e_ ~ANe &S;g' A(a.gr‘cece_ + X whga e
thise s e chrose opeceioec.

CsS Ssg¢o

Thoco Nov (7, 20(1 A Theooy of Evedts (a Fol coatoed

Message Auvtonata (Zea.(c3 ecs Coc event shtenects

. @¢ px wadhaliyd) cealges Ve el Licste) = P wbea =)

L @L tey, () effeck = $(s,0) Coc s dthe state ot £
vealges
Y as: Valve . ¥L: Link, \YearL 2= Cay, () = Ox aldec e) = Scs,e)

3. @4 sendy (V) realyes

Ve ed (kind@) = seadple)) = Te'e dest(@). kindd) = T (v)
k secdec(e’) =¢

q. @A‘, 0‘-\\‘/ ¢ a_gQZC‘QS A Q—o(‘ L a lList o€ achkeas. (:..ea.ltz,es

Jeei Cad@ ¢l = —(xbe)r (xae = kuwdysl)

This 8 called a Lecanme coaodbioo.

S. @L oaly L seds (u,dag® realizes
e @ dest (1), knd@) = Tcy, (<antasy) = kad (seadeccey) el

Ths 5 called a seads Lcame coad ten.

Now we ace prepaced +to lreat Lo aclknow led gement pootecel
Lo Nov lo o mote delacl. Recall the Coo.-\fz:c@.

S and R ace pcocesses lcakel by FLFO Co sty atcarteon

chanaels L., 4,.

As an example, suppose we want a system of processes P with the property
that two of its processes, say .S and R connected by link ¢; from S toR and ¢, from R
to S should operate using explicit acknowledgement. So when S sends to R on ¢; with
tag tg, it will not send again on ¢; with this tag until receiving an acknowledgement tag,
ack, on ¢,. The specification can be stated as a theorém about event structures arising
from extensions mathcal(P)’ of P, namely:

Theorem 1 For any distributed system P with two designated processes S and R linked

by S R and RS with two new tags, tg and ack, we can construct an extension P’
of P such that the following specification holds: Vey,es : E.loc(e;) = loc(ez) =
S & kind (e1) = kind(ez) = send(41,tg). e1 < ex = Ir : E. loc(r) =
S & kind (r) = rcv(€a,ack). e; < r < es.

This theorem is true because we know how to add clauses to processes S and R to
achieve the specification, which means that the specification is constructively achievable.
We can prove the theorem constructively and in the process define the extension P’
implicitly. Here is how.

Proof: What would be required of P’ to meet the specification? Suppose in P’ we
have e; < e; as described in the theorem. We need to know more than the obvious fact
that two send events occurred namely < tg,m; >,< tg,mg > were sent to K. One
way to have more information is to remember the first event in the state. Suppose we
use a new Boolean state variable of S, called rdy, and we require that a send on ¢; with
tag tg happens only if rdy = true and that after the send, rdy = false. Suppose we
also stipulate in a frame condition that only a receive on ¢, sets ready to true, then we
know that 7dy when e; = true, rdy after e; = false and rdy when e, = true. So
between e; and e5, some event e’ must happen at S that sets rdy to true. But since only
a rcv(€s, ack) can do so, then ¢’ must be the receive required by the specification.

This argument proves constructively that P’ exists, and it is clear that the proof
shows how to extend process S namely add these clauses:

a : if rdy = truethen
send(£y, < tg,m >);rdy = false
T : rev({y, ack) effect rdy = true
only|a, r] affect rdy
QED

We could add a liveness condition that a send will occur by initializing 7dy to true.
If we want a live dialogue we would need to extend R by.

rev(éy, < tg,m >) effect send (£, ack)

but our theorem did not require liveness.

