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As an example, suppose we want a system of processes P with the property
that two of its processes, say .S and R connected by link ¢; from S toR and ¢, from R
to S should operate using explicit acknowledgement. So when S sends to R on ¢; with
tag tg, it will not send again on ¢; with this tag until receiving an acknowledgement tag,
ack, on ¢,. The specification can be stated as a theorém about event structures arising
from extensions mathcal(P)’ of P, namely:

Theorem 1 For any distributed system P with two designated processes S and R linked

by S R and RS with two new tags, tg and ack, we can construct an extension P’
of P such that the following specification holds: Vey,es : E.loc(e;) = loc(ez) =
S & kind (e1) = kind(ez) = send(41,tg). e1 < ex = Ir : E. loc(r) =
S & kind (r) = rcv(€a,ack). e; < r < es.

This theorem is true because we know how to add clauses to processes S and R to
achieve the specification, which means that the specification is constructively achievable.
We can prove the theorem constructively and in the process define the extension P’
implicitly. Here is how.

Proof: What would be required of P’ to meet the specification? Suppose in P’ we
have e; < e; as described in the theorem. We need to know more than the obvious fact
that two send events occurred namely < tg,m; >,< tg,mg > were sent to K. One
way to have more information is to remember the first event in the state. Suppose we
use a new Boolean state variable of S, called rdy, and we require that a send on ¢; with
tag tg happens only if rdy = true and that after the send, rdy = false. Suppose we
also stipulate in a frame condition that only a receive on ¢, sets ready to true, then we
know that 7dy when e; = true, rdy after e; = false and rdy when e, = true. So
between e; and e5, some event e’ must happen at S that sets rdy to true. But since only
a rcv(€s, ack) can do so, then ¢’ must be the receive required by the specification.

This argument proves constructively that P’ exists, and it is clear that the proof
shows how to extend process S namely add these clauses:

a : if rdy = truethen
send(£y, < tg,m >);rdy = false
T : rev({y, ack) effect rdy = true
only|a, r] affect rdy
QED

We could add a liveness condition that a send will occur by initializing 7dy to true.
If we want a live dialogue we would need to extend R by.

rev(éy, < tg,m >) effect send (£, ack)

but our theorem did not require liveness.



