€CS 5gco

Eveat Logic Rases

Thoe Nev 10, Rotl

Formal Foundations of Computer Security

Mark BICKFORD and Robert CONSTABLE
Department of Computer Science, Cornell University

1. Introduction

We would like to know with very high confidence that private data in computers is not
unintentionally disclosed and that only authorized persons or processes can modify it.
Proving security properties of software systems has always been hard because we are
trying to show that something bad cannot happen no matter what a hostile adversary tries
and no matter what coding errors are made. For a limited interactive program like a chess
player, it might be possible to "prove" that all rules are followed and king is safe in a
certain board position, but in a large complex system, like the Internet, the many points
of attack and many ways to introduce errors seem to defy absolute guarantees.

Services such as public key cryptography, digital signatures, and nonces provide
the means to secure selected Internet communications and specific transactions. How-
ever, public key cryptography depends on mathematically deep computational complex-
ity assumptions, and nonces depend on statistical assumptions. When formal methods
researchers include complexity theory and probability theory in the formal mathematical
base, the task of giving a formal logical account of security properties and proving them
formally becomes daunting.

In this paper we explain a significantly less costly and more abstract way of pro-
viding adequate formal guarantees about cryptographic services. Our method is based
on properties of the data type of Atoms in type theory and it is most closely related to
the use of types in abstract cryptographic models [2,4,1,16,3]. Atoms provide the ba-
sis for creating "unguessable tokens" as shown in Bickford [10]. Essential to the use of
atoms is the concept that an expression e of type theory is compuzationally independent
of atom a, written e||a. Bickford [10] discovered this concept and has shown that this
logical primitive is sufficient for defining cryptographic properties of processes in the
rich model of distributed computing formalized by the authors in [11,12] and elaborated
and implemented in Nuprl [7]. We will explain independence in detail.

The goal of this paper is to elaborate this approach to proving security properties
and illustrate it on simple examples of security specifications and protocols of the kind
presented in John Mitchell’s lectures [29] including Needham-Schroeder-Lowe protocol
[25,19] and the core of the SSL protocol. We illustrate new ways of looking at proofs in
terms of assertions about events that processes "believe’ and "conjecture," and we relate
them to what is constructively known. We will show how to provide formal proofs of
security properties using a logic of events. It is possible that proofs of this type could be
Jully automated in provers such as Cog, HOL, MetaPRL, Nuprl, and PVS — those based
on type theory. We also exposit elements of our formal theory of event structures needed

to understand these simple applications and to understand how they can provide guar-
anteed security services in the standard computing model of asynchronous distributed
computing based on message passing.

Mark Bickford has implemented the theory of event structures and several applica-
tions in the Nuprl prover and posted them in its Formal Digital Library [7], the theory
of event structures could be implemented in the other provers based on type theories,
though it might be less natural to treat some concepts in intensional theories. At certain
points in this article we will refer to the formal version of concepts and the fundamental
notions of type theory in which they are expressed.

2. Intuitive Account of Event Structures.
2.1. The Computing Model — General Features

Our computing model resembles the Internet. It is a network of asynchronously commu-
nicating sequential processes. Accommodating processes that are multi-threaded sharing
local memory is accomplished by building them from sequential processes if the need
arises - it won’t in our examples.

At the lowest level, processes communicate over directed reliable links, point to
point. Links have unique labels, and message delivery is not only reliable but messages
arrive at their destination in the order sent (FIFO). Messages are not blocked on a link,
so the link is a queue of messages. These are the default assumptions of the basic model,
and it is easy to relax them by stipulating that communication between P; and P; goes
through a virtual process Py, which can drop messages and reorder them. Moreover, we
can specify communications that do not mention specific links or contents, thus modeling
Internet communications.

Messages are tagged so that a link can be used for many purposes. The content
is typed, and polymorphic operations are allowed. We need not assume decidability of
equality on message contents, but it must be possible to decide whether tags are equal.

Processes In our formal computing model, processes are called message automata
(MA). Their state is potentially infinite and contents are accessed by typed identifiers,
1, Z2,... The contents are typed, using types from the underlying type theory. We use
an extremely rich collection of types, capable of defining those of any existing program-
ming language as well as the types used in computational mathematics, e.g. higher-order
functions, infinite precision computable real numbers, random variables, etc.

Message automata are finite sets of clauses (order is semantically irrelevant). Each
clause is either a declaration of the types of variables, an action or a frame condition.
The frame conditions are a unique feature distinguishing our process model from others,
so we discuss them separately in the next subsection. The other clauses are standard for
process models such as I/O automata [21,20] or distributed programs [8] or distributed
state machines, or distributed abstract state machines.

The action clauses can be labeled so that we speak of action a. Actions also have
kinds k1, ko... so that we can classify them. One of the essential kinds is a receive action.
Such an action will receive a tagged message on a link (by reading a message queue),
but we can classify an action without naming the link. All actions can send messages. An
initial action will initialize a state variable, and an internal action will update a state vari-

able, possibly depending on a received value or a random value, z; := f (state, value).
We will not discuss the use of random values. Actions that update variables can be
guarded by a boolean expression, called the precondition for the action. (Note, receive ac-
tions are not guarded.) The complete syntax for message automata is given by the Nuprl
definition [12]. There is also an abstract syntax for them in which message automata are
called realizers.

For each base level receive action a, we can syntactically compute the sender by
looking at the link. For a receive action routed through the network, we may not be able
to compute the sender. For each action that updates the state, if it is not the first, we can
compute its predecessor from a trace of the computation (discussed below).

2.2. Composition and Feasibility

Frame Conditions One of the novel features of our process model is that execution
can be constrained by frame conditions which limit which actions can send and receive
messages of a certain type on which links and access the state using identifiers. For
example, constraints on state updates have the form only a can affect ;.

Composition of Processes Processes are usually built from subprocesses that are com-
posed to create the main process. Suppose S, Ss..., S, are sub processes. Their compo-
sition is denoted S1 @ ... & S,,. In our account of processes, composition is extremely
simple, namely the union of the actions and frame conditions, but the result is a Seasible
process only if the subprocesses are compatible. For S; and S; to be compatible, the
frame conditions must be consistent with each other and with the actions. For example,
if 1 requires that only action k can change 1, then S, can’t have an action %’ that also
changes z.

We say that a process is feasible if and only if it has at least one execution. If S;
and S are feasible and compatible with each other, then Sy @ S» is feasible. If we allow
any type expression from the mathematical theory to appear in the code, then we can’t
decide either feasibility or compatibility. So in general we use only standard types in the
process language, but it is possible to use any type as long as we take the trouble to prove
compatibility "by hand" if it is not decided by an algorithm.

2.3. Execution

Scheduling ~ Given a network of processes P (distributed system, DSystem) it is fairly
clear how they compute. Each process P; with state S; with a schedule sch; and message
queues m; at its links executes a basic action a;; it can receive a message by reading a
queue, change its state, and send a list of tagged messages (appending them to outgoing
links). Thus given the queues, m;;, state s;, and action a;, the action produces new queues,
m, state s;, and action a}. This description might seem deterministic

!

’
1797

S;,

Mg, S, Q5 — M a”/i

But in fact, the new message queues can be changed by the processes that access them,
and in one transition of P, an arbitrary number of connected processes P; could have
taken an arbitrary number of steps, so the production of m} is not deterministic even

given the local schedule sch;. Also, the transition from s; to s} can be the execution of

any computable function on the state, so the level of atomicity in our model can be very
"large," in terms of the number of steps that it takes to compute the state transition.

Given the whole network and the schedules, sch;, we can define deterministic exe-
cution indexed by natural numbers t.

—
(mi, 8i,a:;)@t sch; (m},s},a;)@t+1

for each 4 in N, a process might "stutter” by not taking any action (s} = s;,a} = a;,
and outbound message links are unchanged). If we do not provide the scheduler, then the
computation is underdetermined.

Fair Scheduling We are interested in all possible fair executions, i.e. all possible fair
schedules. A fair schedule is fair if each action is tried infinitely often. If a guard is true
when an action is scheduled, then the action is executed. A round-robin scheduler is fair.
Note, if a guard is always true, then the action is eventually taken. This gives rise to a set
of possible executions, £. We want to know those properties of systems that are true in
all possible fair executions.

2.4. Events

As a distributed system executes, we focus on the changes, the "things that happen.”
We call these events. Events happen at a processes P;. In the base model, events have
no duration, but there is a model wtih time where they have duration. We allow that
the code a process executes may change over time as sub-processes are added, so we
imagine processes as locations where local state is kept; they are a locus of action where
events are sequential. This is a key idea in the concept of cooperating (or communicating)
sequential processes [Dijkstra, Hoare]. So in summary, we say that all events happen at
a location (locus, process) which can be assigned to the event as loc(e). We also write
e@j for events at <.

Events have two dimensions, or aspects, local and communication. An update is
local and can send a message, and a receive event can update state, modify the state
and send a message. These dimensions are made precise in terms of the order relations
induced. The dimensional is sequentially ordered, say at FP;, eg < e1 < ez < ... starting
from an initial event. The communication events are between processes, say e@; receives
a message from €’'@j, than ¢’ < e and in general sender(e) < e. (Note, a process can
send to itself so possibly ¢ = j.) The transitive closure of these distinct orderings defines
Lamport’s causal order, e < €. To say e < €’ means that there is a sequence of local
events and communication events such that

e=e <e<..<e,=¢.

One of the most basic concepts in the theory of events is that causal order is well-
founded. If f(e) computes the immediate predecessor of e, either a local action or a send,
then e > f(e) > f(f(e)) > eo. The order is strongly well founded in that we can
compute the number of steps until we reach an initial event.

Event Structures There are statements we cannot make about an asynchronous message
passing system. For example, there is no global clock that can assign an absolute time
t to every event of the system. It is not possible to know the exact time it takes from
sending a message to its being read. We don’t always know how long it will take before
a pending action will be executed.

What can we say about executions? What relationships can we reason abour? The
simplest relationship is the causal order among events at locations. We can say that a
state change event e at 4 causes another one ¢’ at 4, so e < e! We can even say that e is
the predecessor of ¢/, say pred(e’) = e. We can say that event e at i sends a message to j
which is received at event e’ at j. We will want to say sender(e’) = e. Also pred(e’) =
e.

The language for causal order involves events e in the type E of all events. These
occur at a location from the type Loc. If we talk about E, Loc, < we have events with
order. This is a very spare and abstract account of some of the expressible relationships
in an execution of a distributed system.

Given an execution (or computation) comp, we can pick out the locations say
Py, P, P3, and the events - all the actions taken, say e, ez, e, ... Each action has a loca-
tion apparent from its definition, say loc(e). Some of the events are comparable e; < €;
and others aren’t, e.g. imagine two processes that never communicate e, e, ... at i and
€;,€5, ... at j. Then never do we have ¢; < e; nor e; < e;. These events and their
relationship define an event structure with respect to E, Loc, <.

It is natural to talk about the value of events which receive messages, the value,
val(e), is the message sent. For the sake of uniformity, we might want all events to have
a value, including internal events. In the full theory implemented in Nuprl, this is the
case, but we do not need those values in this work.

Temporal Relationships 'We can use events to define temporal relationships. For exam-
ple, when an event occurs at location ¢, we can determine the value of any identifier x
referring to the state just as the event occurs, z when e. To pin down the value exactly,
we consider the kind of action causing e. If e is a state change, say x := f(state), then
z when e is the value of z used by f. If the action is reading the input queue at link
< i,j > labeled by e, the value of x is the value during the read which is the same as
just before or just after the read because reads are considered atomic actions that do not
change the state. They do change the message queue.

In the same way we can define x after e. This gives us a way to say when an event
changes a variable, namely "e changes ", written zAe is defined as

zAeiff after e # z when e.

This language of "temporal operators" is very rich. At a simpler level of granularity
we can talk about the network topology and its labeled communication links £ < 7,5 >.
This is a layer of language independent of the state, say the network layer. The actions
causing events are send and receive on links.

Computable Event Structures 'We are interested in event structures that arise from com-
putation, called computable event structures. There is a class of those arising from the
execution of distributed systems. We say that these structures are realizable by the sys-

tem, and we will talk about statements in the language of events that are realizable. For
example, we can trivially realize this statement at any process: there is an event e; at P
that sends a natural number, and after each such event there is a subsequent event e;1
that sends a larger number, so at the receiving process there will be corresponding events
e.g. val(e;) < val(ej,;)over N. To realize this assertion, we add to P a clause that ini-
tializes a variable counter of type (IV) and another clause that sends the counter value
and then increments the counter.

2.5. Specifying Properties of Communication

Processes must communicate to work together. Some well studied tasks are forming pro-
cess groups, electing group leaders, attempting to reach consensus, synchronizing ac-
tions, achieving mutually exclusive access to resources, tolerating failures of processes,
taking snapshots of state and keeping secrets in a group. Security properties usually in-
volve properties of communication, and at their root are descriptions of simple handshake
protocols that govern how messages are exchanged. These are the basis of authentication
protocols. As an example, suppose we want a system of processes P with the property
that two of its processes, say S and R connected by link ¢; from S toR and 4, from R
to .S should operate using explicit acknowledgement. So when S sends to R on ¢; with
tag tg, it will not send again on ¢; with this tag until receiving an acknowledgement tag,
ack, on £5. The specification can be stated as a theorem about event structures arising

from extensions msthemERy of P, namely:

Theorem 1 For any distributed system P with two designated processes S and R linked

by SYR and R2 S with two new tags, tg and ack, we can construct an extension P’
of P such that the following specification holds: Yei,es : E.loc(e;) = loc(es) =
S & kind (e1) = kind(e2) = send({y,tg). e1 < ea = Ir : E. loc(r) =
S & kind (r) = rcv(fa,ack). e; <r < es.

This theorem is true because we know how to add clauses to processes .S and R to
achieve the specification, which means that the specification is constructively achievable.
We can prove the theorem constructively and in the process define the extension P’
implicitly. Here is how.

Proof: What would be required of P’ to meet the specification? Suppose in P’ we
have e; < es as described in the theorem. We need to know more than the obvious fact
that two send events occurred namely < tg,m; >,< tg,mo > were sent to R. One
way to have more information is to remember the first event in the state. Suppose we
use a new Boolean state variable of .9, called rdy, and we require that a send on £; with
tag tg happens only if rdy = true and that after the send, rdy = false. Suppose we
also stipulate in a frame condition that only a receive on {3 sets ready to true, then we
know that rdy when e; = true, rdy after e; = false and rdy when ey = true. So
between e; and ey, some event ¢’ must happen at S that sets rdy to true. But since only
arcu({s, ack) can do so, then e’ must be the receive required by the specification.

This argument proves constructively that P’ exists, and it is clear that the proof
shows how to extend process .S namely add these clauses:

a : if rdy = truethen
send(41,< tg,m >);rdy := false
7 : rev(fy, ack) effect rdy = true
onlyla,r] affect rdy
QED

We could add a liveness condition that a send will occur by initializing rdy to true.
If we want a live dialogue we would need to extend R by

rev(éy, < tg,m >) effect send (4o, ack)

but our theorem did not require liveness.

Now suppose that we don’t want to specify the communication at the basic level of
links but prefer to route messages from S to R and back by a network left unspecified
assuming no attackers. In this case, the events e;, e, have destinations, say kind(ez) =
sendto(R, tag) and kind(r) = rcv from(R, ack). The same argument just given works
assuming that there is a delivery system, and the frame conditions govern the message
content not the links.

We might want to know that the communication is actually between S and R even
when there is potential eavesdropper. What is required of the delivery system to authen-
ticate that messages are going between S and R? This question already requires some
security concepts to rule out that the messages are being intercepted by another party
pretending to be R for example.

Here is a possible requirement. Suppose S and R have process identifiers,
uid(S), wid(R). Can we guarantee that if S sends to R at event e; then sends to R again
at ey, there will be a message r such that e; < r < ey and from receiving 7, S has evi-
dence that at R there was an event v; which received the uid (S) and tg from e; and an
event vz at R that sent back to S an acknowledgement of receiving tag from S? This can
be done if we assume that the processes S and R have access to a Signature Authority
(SA). This is a cryptographic service that we will describe in the next section building it
using nonces.

A plausible communication is that S will sign uid(S) and sendto(R). Let
signg(m) be a message signed by S. Any recipient can ask the signature authority S A
to verify that signs(m) is actually signed by S. So when R receives signg (uid(s)) it
verifies this and sends sign z (uid(R)) back as acknowledgement. An informal argument
shows that this is possible, and only R can acknowledge and does so only if .S has signed
the message. We take up this issue in the next section.

3. Intuitive Account of Cryptographic Services

In the previous section we suggested how a signature authority can be used to guarantee
that a message came from the process which signed it. That argument can be the basis for
guaranteeing that the signing process receives a message. If the message includes a nonce
created by another process, say by S at event e, then it is certain that the signing event s

came after e, thus e < s. Thus nonces can be used to signal the start of a communication
exchange as we saw earlier, and in addition, for us they are the basis of the signature
authority as well as a public key service. Thus we will examine a Nonce Service and the
concept of a nonce first.

3.1. Nonce Services and Atoms

Informal definitions of nonce might say "a bit string or random number used only once,
typically in authentication protocols."” This is not a very precise or suggestive definition,
and it is not sufficiently abstract. We will provide a precise definition and explain other
uses of nonces. One way to implement them is using a long bit string that serves as a
random number that is highly unlikely to be guessed. We will not discuss implementation
issues, nevertheless, the standard techniques will serve well to implement our abstract
definition.

Nonce Server We will define a Nonce Server to be a process NS that can produce on
demand an element that no other process can create or guess. Moreover, the NS produces
a specific nonce exactly once on request. So it is not that a nonce is "used only once,"
it is created exactly once, but after it is created, it might be sent to other processes or
combined with other data. But how can a Nonce Server be built, how can it provide an
element n that no other process can create, either by guessing it or computing it out of
other data? To answer this question, we must look at the concept of an Atom in a type
theory such as Computational Type Theory (CTT), a logic implemented by Nuprl and
MetaPRL. Then we will explain how a Nonce Server is built using atoms.

The Type of Atoms The elements of the type Atoms in CTT are abstract and unguess-
able. Their semantics is explained by Stuart Allen [6]. There is only one operation on
the type Atom, it is to decide whether two of them are equal by computing atomeg(a, b)
whose type is a Boolean. The canonical elements of Atom are tok(a),tok(b),...where
the names a, b,... are not accessible except to the equality test and are logically indistin-
guishable.

A precise way to impose indistinguishability is to stipulate a permutation rule for all
judgements, J(a,b,...) of CTT logic. Any such judgement is a finite expression which
can thus contain only a finite number of atoms, say a, b, The permutation rule asserts
that if J(a, b, ...) is true, then sois J(a',V',...) where a’, b’ ... are a permutation of the
atoms. Moreover, the evaluation rules for expressions containing atoms can only involve
comparing them for equality and must reduce to the same result under permutation.

It is important to realize that any finite set of atoms, A, say a1, ..., an can be enu-
merated by a function f from {1,...,n} onto A. However, any such function is essen-
tially a table of values, e.g. if * = 1 then a, else if x = 2 then az Thus the func-
tion f will explicitly mention the atoms a1, ..., an. Thus if we stipulate that a process
does not mention an atom a;, then there is no way it can compute it.

The type of all atoms, Atom, is not enumerable because it is unbounded, so any
enumerating function expression would be an infinite table which is not expressible in
any type theory. On the other hand, Atom is not finite either because for any enumeration

Ay C D(x,...,z). If ¢ is also known to be realizable with realizer A, then the system
produces the subgoal A, C D(x,..., z), and if not, the user uses other lemmas about
event structures to refine this goal further.

Whenever the proof reaches a point where the only remaining subgoals are that

D(z,...,z) is feasible or have the form A; C D(z,...,z), then it can be completed
automatically by defining D(z, ..., z) to be the join of all the A;. In this case, all the
subgoals of the form A; C D(z, ..., z) are automatically proved, and only the feasibility

proof remains. Since each of the realizers A; is feasible, the feasibility of their join
follows automatically from the pairwise compatibility of the A; and the system will prove
the compatibility of the realizers A; automatically if they are indeed compatible.

Compatible realizers Incompatibilities can arise when names for variables, local ac-
tions, links, locations, or message tags that may be chosen arbitrarily and independently,
happen to clash. Managing all of these names is tedious and error prone, so we have
added automatic support for managing them. We are able to ensure that the names inher-
ent in any term are always visible as explicit parameters. The logic provides a permu-

tation rule mentioned in Section 2.1 that says that if proposition ¢(z,y,...,z2) is true,
where z,v, . .., z are the names mentioned in ¢, then
proposition ¢(2’,y’, ..., 2’) is true, where 2,3/, ..., 2’ is the image of z,y, ...,z

under a permutation of all names. Using the permutation rule, our automated proof as-
sistant will always permute any names that occur in realizers brought in automatically as
described above.

Acknowledgements: We would like to thank Melissa Totman for helping prepare
the manuscript and Stuart Allen for prior discussions about the use of atoms as nonces.2

References

[1] Y. G. A.Blass and S. Shelah. Choiceless polynomial time. Annals of Pure and Applied Logic, 100:1-3,
1999.

[2] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749-786, September
1999.

[3] M. Abadi, R. Corin, and C. Fournet. Computational secrecy by typing for the pi calculus. In Proceedings
of the Fourth ASIAN Symposium on Programming Languages and Systems (APLAS 2006). Springer-
Verlag Heidelberg, 2006.

[4] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of
formal encryption). Journal of Cryptology, 15(2):103-127, 2002.

[5] S. Abramsky. Proofs as processes. Journal of Theoretical Computer Science, 135(1):5-9, 1994.

[6] S. Allen. An abstract semantics for atoms in nuprl. Technical report, 2006.

[71 S.F Allen, M. Bickford, R. Constable, R. Eaton, C. Kreitz, L. Lorigo, and E. Moran. Innovations in
computational type theory using Nuprl. To appear in 2006, 2006.

[8] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and Advanced Topics.
Wiley Interscience, New York, 2nd edition, 2004.

[9]1 J. L. Bates and R. L. Constable. Proofs as programs. ACM Transactions of Programming Language
Systems, 7(1):53-71, 1985.

[10] M. Bickford. Unguessable atoms: A logical foundation for security. Technical report, Cornell University,
Ithaca, NY, 2007.

[11] M. Bickford and R. L. Constable. A logic of events. Technical Report TR2003-1893, Cornell University,
2003.

2We would like to thank the National Science Foundation for their support on CNS #0614790.

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

M. Bickford and R. L. Constable. A causal logic of events in formalized computational type theory. In
Logical Aspects of Secure Computer Systems, Proceedings of International Summer School Marktober-
dorf 2005, to Appear 2007. Earlier version available as Cornell University Technical Report TR2005-
2010, 2005.

M. Bickford and D. Guaspari. A programming logic for distributed systems. Technical report, ATC-NY,
2005.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe,
T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Mathematics
with the Nuprl Proof Development System. Prentice-Hall, NJ, 1986.

T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76:95-120,
1988.

N. S. Dan Rosenzweig, Davor Runje. Privacy, abstract encryption and protocols: an asm model - part i.
In Abstract State Machines - Advances in Theory and Applications: 10th International Workshop, ASM,
volume 2589. Springer-Verlag, 2003.

C. P. Gomes, D. R. Smith, and S. J. Westfold. Synthesis of schedulers for planned shutdowns of power
plants. In Proceedings of the Eleventh Knowledge-Based Software Engineering Conference, pages 12—
20. IEEE Computer Society Press, 1996.

C. Green, D. Pavlovic, and D. R. Smith. Software productivity through automation and design knowl-
edge. In Software Design and Productivity Workshop, 2001.

G. Lowe. An attack on the needham-schroeder public key encryption protocol. 56(3):131-136, 1995.
N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA, 1996.

N. Lynch and M. Tuttle. An introduction to Input/Output automata. Centrum voor Wiskunde en Infor-
matica, 2(3):219-246, Sept. 1989.

P. Martin-Lo6f. Constructive mathematics and computer programming. In Proceedings of the Sixth
International Congress for Logic, Methodology, and Philosophy of Science, pages 153175, Amsterdam,
1982. North Holland.

J. Millen and H. Rue. Protocol-independent secrecy. In 2000 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2000.

R. Milner. Action structures and the 7-calculus. In H. Schwichtenberg, editor, Proof and Computation,
volume 139 of NATO Advanced Study Institute, International Summer School held in Marktoberdorf,
Germany, July 20-August 1, 1993, NATO Series F, pages 219-280. Springer, Berlin, 1994.

R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers.
Communications of the ACM, 21(12):993-998, 1978.

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-Lof’s Type Theory. Oxford
Sciences Publication, Oxford, 1990.

L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer Security,
6(1):85-128, 1998.

D. Pavlovic and D. R. Smith. Software development by refinement. In B. K. Aichernig and T. S. E.
Maibaum, editors, UNU/IIST 10th Anniversary Colloquium, Formal Methods at the Crossroads: From
Panaea to Foundational Support, volume 2757 of Lecture Notes in Computer Science, pages 267-286.
Springer, 2003.

A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P. Seifert. Secrecy analysis in protocol composition
logic. 2007. Draft Report.

