
Appendix A

Derivation of a Fast Integer Square Root
Algorithm

by Christoph Kreitz

A.1 Deriving a Linear Algorithm

The standard approach to proving ∀n ∃r r2≤n ∧ n<(r+1)2 is induction on n, which will lead to the
following two proof goals
Base Case: prove ∃r r2≤0 ∧ 0<(r+1)2

Induction Step: prove ∃r r2≤n+1 ∧ n+1<(r+1)2 assuming ∃rn r2≤n ∧ n<(rn+1)2.
The base case can be solved by choosing r = 0 and using standard arithmetical reasoning to prove the

resulting proof obligation 02≤0 ∧ 0<(0+1)2.
In the induction step, one has to analyze the root rn. If (rn+1)2≤n+1, then choosing r = rn+1 will

solve the goal. Again, the proof obligation (rn+1)2≤n+1 ∧ n+1<((rn+1)+1)2 can be shown by stan-
dard arithmetical reasoning. (rn+1)2 > n+1, then one has to choose r = rn and prove r2

n≤n+1 ∧ n+1<(rn+1)2

using standard arithmetical reasoning.

Figure A.1 shows the trace of a formal proof in the Nuprl system [40, 10] that uses exactly this line of
argument. It initiates the induction by applying the library theorem
NatInd ∀P:N→P. (P(0) ∧ (∀i:N

+. P(i-1) ⇒ P(i))) ⇒ (∀i:N. P(i))

The base case is solved by assigning 0 to the existentially quantified variable and using Nuprl’s autotactic
(trivial standard reasoning) to deal with the remaining proof obligation. In the step case (from i−1 to i) it
analyzes the root r for i−1, introduces a case distinction on (r+1)2≤i and then assigns either r or r+1,
again using Nuprl’s autotactic on the rest of the proof.

Nuprl is capable of extracting an algorithm from the formal proof, which then may be run within Nuprl’s
computation environment or be exported to other programming systems. The algorithm is represented in
Nuprl’s extended lambda calculus.
Depending on the formalization of the existential quantifier there are two kinds of algorithms that may

be extracted. In the standard formalization, where ∃ is represented as a (dependent) product type, the
algorithm – shown on the left∗ – computes both the integer square root r of a given natural number n and a
proof term, which verifies that r is in fact the integer square root of n. If ∃ is represented as a set type, this
verification information is dropped during extraction and the algorithm – shown on the right – only performs
the computation of the integer square root.

∗The place holders pfk represent the actual proof terms that are irrelevant for the computation.

45

46 APPENDIX A. FAST INTEGER SQUARE ROOT ALGORITHM

∀n:N. ∃r:N. r2 ≤n<(r+1)2

BY allR

n:N

� ∃r:N. r2 ≤n<(r+1)2

BY NatInd 1

.....basecase.....
� ∃r:N. r2 ≤0<(r+1)2

√ BY existsR �0� THEN Auto

.....upcase.....
i:N

+, r:N, r2 ≤i-1<(r+1)2

� ∃r:N. r2 ≤i<(r+1)2

BY Decide �(r+1)2 ≤i� THEN Auto

.....Case 1.....
i:N

+, r:N, r2 ≤i-1<(r+1)2, (r+1)2 ≤i
� ∃r:N. r2 ≤i<(r+1)2

√ BY existsR �r+1� THEN Auto’

.....Case 2.....
i:N

+, r:N, r2 ≤i-1<(r+1)2, ¬((r+1)2 ≤i)
� ∃r:N. r2 ≤i<(r+1)2

√ BY existsR �r� THEN Auto

Figure A.1: Proof of the Specification Theorem using Standard Induction.

let rec sqrt i
= if i=0 then <0,pf 0>

else let <r,pfi−1> = sqrt (i-1)
in

if (r+1)2≤n then
<r+1,pf

i
>

else <r,pf
i
’>

let rec sqrt i
= if i=0 then 0

else let r = sqrt (i-1)
in

if (r+1)2≤n then r+1
else r

Using standard conversion mechanisms, Nuprl can then transform the algorithm into any programming
language that supports recursive definition and export it to the corresponding programming environment.
As this makes little sense for algorithms containing proof terms, we only convert the algorithm on the right.
A conversion into SML, for instance, yields the following program.

fun sqrt n = if n=0 then 0
else let val r = sqrt (n-1)

in
if n<(r+1)ˆ2 then r
else r+1

end

A.2 Deriving an Algorithm that runs in O(
√

n)

Due to the use of standard induction on the input variable, the algorithm derived in the previous section is
linear in the size of the input n, which is reduced by 1 in each step. Obviously, this is not the most efficient
way to compute an integer square root. In the following we will derive more efficient algorithms by proving
∀n ∃r r2≤n ∧ n<(r+1)2 in a different way. These proof, however, will have to rely on more complex
induction schemes to ensure a more efficient computation.

