
Introduction to EventML

Mark Bickford, Robert L. Constable, Richard Eaton,

David Guaspari, and Vincent Rahli

November 24, 2011

1

November 24, 2011

Contents

1 Introduction 3

1.1 Specification and Programming . 3
1.2 Interaction with theorem provers . 3

2 Event Logic 3

2.1 Events, event orderings, and event classes . 3
2.2 Inductive logical forms . 4

3 Examples 4

3.1 Ping-pong . 4
3.2 Ping-pong with memory . 10
3.3 Leader election in a ring . 13
3.4 Interlude: State machines . 16
3.5 Two-thirds consensus . 18

4 Definitions of combinators 25

5 Configuration files 26

2

November 24, 2011

1 Introduction

1.1 Specification and Programming

EventML is a functional programming language in the ML family, closely related to Classic ML [GMW79,
CHP84, KR11]. It is also a language for coding distributed protocols (such as Paxos [Ren11]) using high
level combinators from the Logic of Events (or Event Logic) [Bic09, BC08], hence the name ”EventML”.
The Event Logic combinators are high level specifications of distributed computations whose properties
can be naturally expressed in Event Logic. The combinators can be formally translated (compiled) into
the process model underlying Event Logic and thus converted to distributed programs. The interactions
of these high level distributed programs manifest the behavior described by the logic. EventML can thus
both specify and execute the processes that create the behaviors, called event structures, arising from
the interactions of the processes.

Since EventML can directly specify computing tasks using the event combinators it can carry out part
of the task normally assigned to a theorem prover, formal specification. EventML can also interact with
a theorem prover, presently Nuprl [CAB+86, Kre02, ABC+06] (a theorem prover based on a constructive
type theory called Computational Type Theory (CTT) [CAB+86] and on Classic ML), which can express
logical properties and constraints on the evolving computations as formulas of Event Logic and prove
them. From these proofs, a prover can create correct-by-construction process terms which EventML can
execute. Thus EventML and Nuprl can work together synergistically in creating a correct by construction
concurrent system. EventML could play the same role with respect to any theorem prover that implements
the Logic of Events. Thus EventML provides a new paradigm for creating correct distributed systems,
one in which a systems programmer can design and code a system using event combinators in such a way
that a theorem prover can easily express and prove logical properties of the resulting computations. To
EventML, the event combinators have a dual character. They have the logical character of specifications
and the computational character of producing event structures with formally guaranteed behaviors.

1.2 Interaction with theorem provers

EventML was created to work in cooperation with an interactive theorem prover and to be a key component
of a Logical Programming Environment (LPE) [ABC+06].

In one direction, EventML can import logical specifications from the prover as well as event class
specifications and the process code that realizes them. In the present mode of operation, EventML docks
with the Nuprl prover to obtain this information.

In the other direction, EventML can be used by programmers to specify protocols using event logic
combinators. Following the line of work in which Nuprl was used to reason about the Ensemble sys-
tem [Hay98, BCH+00, KHH98, LKvR+99] (coded in OCaml [Ler00]), EventML, by docking to Nuprl,
provides a way to reason about (and synthesize) many distributed protocols. Thanks to its construc-
tive logic, its expressiveness, and its large library, Nuprl is well suited to reason about distributed sys-
tems [BKR01]. But in principle EventML can connect to any prover that implements Event Logic and our
General Process Model [BCG10]. Given an EventML specification, the Nuprl prover can: (1) synthesize
process code, and (2) generate the inductive logical form of the specification which is used to structure
logical description of the protocols and the system.

2 Event Logic

2.1 Events, event orderings, and event classes

The Logic of Events [Bic09, BC08] is a logic inspired by the work of Winskel on event structures [Win88],
developed to deal with: (1) events; (2) their spatial locations; and (3) their temporal locations obtained
via a well-founded ordering of these events (i.e., a temporal ordering). An event is triggered by receipt of

3

November 24, 2011

a message; the data of the message body is called primitive information of the event. The Logic of Events
provides ways to describe events by, among other things giving access to their associated information.

An event ordering is a structure consisting of: (1) a set of events, (2) a location function loc that
associates a location with each event, (3) an information function info that associates primitive infor-
mation with each event, and (4) a well-founded causal ordering relation on events < [Lam78]. An event
ordering corresponds to a single run of a distributed system.

A basic concept in the Logic of Events is an event class [Bic09], which effectively partitions the events
of an event ordering into those it “recognizes” and those it does not, and associates values to the events
it recognizes. Different classes may recognize the same event and assign it different values. For example,
one class may recognize the arrival of a message and associate it with its primitive information, the
message data. Another class may recognize that, in the context of some protocol, the arrival of that
message signifies successful completion of the protocol and assign to it a value meaning “send the ‘success’
message.” We specify a concurrent system in EventML by defining event classes that appropriately classify
system events.

Event classes have two facets: a programming one and a logical one. On the logical side, event
classes specify information flow on a network of reactive agents by observing the information computed
by the agents when events occur, i.e., on receipt of messages. On the programming side, event classes
can be seen as processes that aggregate information in an internal state from input messages and past
observations, and compute appropriate values for them.

Formally, an event class X is a function whose inputs are event ordering and an event, and whose
output is a bag of values (observations). If the observations are of type T , then the class X is called an
event class of type T . The associated type constructor is Class(T) = EO → E → Bag(T), where EO is
the type of event orderings and E the type of events. We reason about observations in terms of the event
class relation: we say that v is observed by the class X at event e (in an event ordering eo), and write
v ∈ X (e), if v is a member of the bag (X eo e). In our discussions, the relevant eo will be clear from
context, so our notation omits it. If the bag is nonempty we say that event e is in the class X , and that
e is an X -event.

Event classes are ultimately defined from one kind of primitive event class (a base class) using six
primitive class combinators—though users can define new combinators, and we supply a useful library
of them. These primitives, and a variety of useful defined combinators are introduced in the examples
of section 3.

2.2 Inductive logical forms

The inductive logical form of a specification is a first order formula that characterizes completely the
observations (the responses) made by the main class of the specification in terms of the event class
relation. The formula is inductive because it typically characterizes the responses at event e in terms
of observations made by a sub-component at a prior event e ′ < e. Such inductive logical forms are
automatically generated in Nuprl from event class definitions, and simplified using various rewritings.
From an inductive logical form we can prove invariants of the specification by induction on causal order.

3 Examples

We guide the reader through the features of this new programming/specification language with a series
of examples.

3.1 Ping-pong

We consider the following setup: a client wants to run a protocol involving a certain collection of nodes,
but first wants to know which of them are still alive. To learn that, the client initiates the ping-pong

4

November 24, 2011

Figure 1 Ping-pong protocol

s p e c i f i c a t i o n ping pong

(∗ −−−−−− Imported Nuprl d e f i n i t i o n s −−−−−− ∗)
import bag−map ; ;

(∗ −−−−−− Protoco l parameters −−−−−− ∗)
parameter p : Loc ; ;
parameter l o c s : Loc Bag ; ;

(∗ −−−−−− Messages −−−−−− ∗)
MSGS

input (‘ ‘ s t a r t ‘ ‘ : Loc , base Star t)
i n t e r n a l (‘ ‘ ping ‘ ‘ : Loc , base Ping , send ping)
i n t e r n a l (‘ ‘ pong ‘ ‘ : Loc , base Pong , send pong)
output (‘ ‘ out ‘ ‘ : Loc , send out)

; ;

(∗ −−−−−− Clas s es −−−−−− ∗)
c l a s s ReplyToPong (c l i e n t , l o c) =

l e t F l = i f l = l o c then {out c l i e n t l o c } e l s e {} i n
Once(F o Pong) ; ;

c l a s s Ping (, l o c) = Output (\ l .{ ping l o c l }) ; ;
c l a s s Handler (c , l) = (SendPing (c , l) | | ReplyToPong (c , l)) ; ;

c l a s s P = ((\ .\ c l i e n t . bag−map (\ l . (c l i e n t , l)) l o c s) o Star t) >>= Handler ; ;

c l a s s ReplyToPing = (\ l o c .\ l .{ pong l l o c }) o Ping ; ;

(∗ −−−−−− Main c l a s s −−−−−− ∗)
main P @ {p} | | ReplyToPing @ l o c s ; ;

protocol, which will “ping” the nodes and tell the client which nodes respond to the ping. (This simple
protocol does not deal with the fact that nodes can fail after responding.)

Fig.1 presents the full EventML specification of the protocol.

Specification name
The keyword specification marks a specification’s name:

s p e c i f i c a t i o n p ing pong

Imports
EventML provides a library file that is a snapshot of Nuprl’s library. The types in EventML are a

subset of the types in Nuprl. Accordingly, any library function whose type is an EventML type can be
used in EventML program. A library function is made visible with an import declaration:

import bag−map ; ;

The bag−map function is the map function on bags:

bag−map(f ;{ a , b , . . . }) = {(f a) , (f b) , . . . }

Parameters
Next comes the list of the protocol’s parameters. To avoid hardwiring the locations of any participants

into the specification, we declare two parameters: p is the location to which clients send their requests;
locs is a (non-repeating) bag containing the locations of the nodes to be checked. To execute the protocol

5

November 24, 2011

we will instantiate those parameters as real physical machine addresses.1 A client will identify its location
by including that location in the request it sends.

paramete r p : Loc ; ;
pa ramete r l o c s : Loc Bag ; ;

Messages and directed messages
A message consists of a header, which is a list of tokens, and a body, which is a value of a specified

type.2 Our discussions will represent messages as ordered pairs.
A directed message is a pair consisting of a location (the addressee) and a message. Directed messages

have a special semantics. When amain class (see below) produces a bag of directed messages, a messaging
system attempts to deliver them—i.e., given the directed message (loc,msg), the messaging system
attempts to deliver msg to location loc. We reason about the effect of a protocol under assumptions
about message delivery. For present purposes, we assume that all messages are eventually delivered at
least once, but make no assumption about transit times or the order in which messages are delivered.

The ping-pong protocol uses four kinds of messages, which are declared in a MSGS declaration:

MSGS
i npu t (‘ ‘ s t a r t ‘ ‘ : Loc , base S t a r t)
i n t e r n a l (‘ ‘ p ing ‘ ‘ : Loc , base Ping , send p ing)
i n t e r n a l (‘ ‘ pong ‘ ‘ : Loc , base Pong , send pong)
output (‘ ‘ out ‘ ‘ : Loc , send out)

; ;

The declaration

i n p u t (‘ ‘ s t a r t ‘ ‘ : Loc , base S t a r t)

says that messages with header `̀ ping`̀ (a singleton list of tokens) have bodies of type Loc. It so happens
that in this protocol, the body of every kind of message is a location; messages used for different purposes
are distinguished by their headers. The keyword input means that `̀ start`̀ messages are generated by
sources outside the protocol; a client sends a `̀ start`̀ message containing its own location, which will
be the return address to which responses from the pinged nodes will eventually be sent. The phrase
“base Start” declares Start to be an event class that recognizes the arrival of a `̀ start`̀ message and
observes its body. Such a class is called a base class.3 More precisely, the arrival of a message
(`̀ start`̀ , s) at location l , causes an event e to happen at l . At event e, Start observes the content of
that message—which we may formally express in either of two ways:

• v ∈ Start(e) if and only if v = s

• At e, Start returns the singleton bag {s}

Note that Start cannot observe messages with headers other than `̀ start`̀ .
Ultimately, all EventML programs are defined by applying combinators to base classes, which are the

only primitive classes. We assume that any computing system on which we wish to implement EventML
provides the means to implement base classes.

In the declarations

1As a logical matter, an EventML program may have parameters of any type definable in EventML. To compile an
EventML specification, a developer must supply a configuration file that instantiates the parameters. See section 5.

2For technical reasons, the Nuprl model represents a message not as a pair but as a triple: the header, the body, and
the type.

3By convention, the names of event classes—or parameterized event classes—begin with upper case letters.

6

November 24, 2011

i n t e r n a l (‘ ‘ p ing ‘ ‘ : Loc , base Ping , send p ing)
i n t e r n a l (‘ ‘ pong ‘ ‘ : Loc , base Pong , send pong)

the keyword internal says that `̀ ping`̀ and `̀ pong`̀ messages can be sent and/or received only by
the ping-pong protocol. (We assume that internal messages cannot be forged.) These declarations
introduce the base classes, Ping and Pong, that recognize them. In addition, the keyword send is used to
declare functions ping and pong that construct directed messages. For example, if l and m are locations,
(ping l m) is the directed message for sending to l the message (`̀ ping`̀ ,m).

An output message is generated, but not received by the protocol. Accordingly, the declaration of
`̀ out`̀ messages provides a directed message constructor, but not a base class to recognize them.

The protocol
The ping-pong protocol proceeds as follows:

1. The protocol begins when a message of the form (`̀ start`̀ , client), arrives at location p; client is
the location that sent it.

2. A supervisory class, P, will then spawn several classes at p. For each l in locs , it spawns the class
Handler(client ,l), which will handle communications with node l .

3. Handler (client , l) sends a (`̀ ping`̀ ,p) message to the node at location l and waits for a response.
The message body, p, tells node l where to send its response.

4. On receipt of a (`̀ ping`̀ , p) message, the ReplyToPing class at node l sends a (`̀ pong`̀ , l) message
back to p.

5. On receipt of this (`̀ pong`̀ , l) message, Handler(client ,l) sends an (`̀ out`̀ , l) message to client .

As will be seen, we arrange that a handler class terminates after it has sent an `̀ out`̀ message.
Note: Nuprl allows subtype definitions, but EventML does not. If subtypes were available in EventML,

we could make the message declarations more precise. For example, the body of a `̀ ping`̀ or `̀ pong`̀
message cannot be an arbitrary location; it must be one of the locations in locs .

Class combinators
Our specification uses the following class combinators:

• Output(f): If f : Loc → Bag(T), Output(f) is the class that, in response to the first event it sees at
location l , returns the bag of values (f l); it then terminates.

• X || Y: This event class is the parallel composition of classes X and Y. It recognizes events in
either X or Y. The parallel combinator is a primitive.

• X >>= Y: This is the delegation combinator. If X is an event class and Y is a function that returns
event classes, X >>= Y is the event class that, whenever it recognizes an event, acts as follows:
For each v ∈ X(e), it spawns the class (Y v). (Events in this spawned class will occur causally after
e.) Delegation is primitive.

• f o X: If f is a function that maps values to bags then, very roughly, this class acts as follows:
When v ∈ X(e), f o X returns (f v). (As will be explained, the semantics of this operator are more
complex than that.) This simple composition combinator is “almost primitive.” It is defined in
terms of a primitive combinator that is somewhat more expressive but rarely, if ever, used.

• Once(X): This class responds only to the first X-event at any location—and, if e is such an event,
v ∈ (Once(X))(e) iff v ∈ X(e) and there was no X -event prior to e. Once is a defined combinator.

• X@b: This event class is the restriction of X to the locations in the bag b: v ∈ (X@b)(e) iff e occurs
at a location in b and v ∈ X(e). Operationally, it means “run the program for X at each location
in b.”

7

November 24, 2011

An EventML specification is typically presented in five parts: (1) its name, (2) a list of imported library
functions, (3) a parameter list, (4) a list of message declarations, and (5) a list of class declarations. We
consider these in turn.

The “main” class
The keyword main identifies the event class that compilation of an EventML specification will actually

implement (given appropriate instantiations of its parameters). No base class can be a main program.
Start , for example, recognizes the arrival of every `̀ start`̀ message at any node whatsoever; but there
is no way to implement that: we cannot install the necessary code on every node that exists (whatever
that may mean). On the other hand, Start@{p} can be a main program, since it acts only at location p.

Declaring a class as a main program incurs a proof obligation: one must show that it is, in a technical
sense, programmable. In particular, a programmable class acts only at some specific, finite collection of
nodes. If one defines a main program in an idiomatic way, the proof that it is programmable will be carried
out automatically. (The underlying theory: Any class C definable in EventML is locally programmable—
which means, essentially, that C@b is programmable for any bag b of locations. In addition, all primitive
combinators preserve the properties of being programmable and being locally programmable.)

The main program of the ping-pong protocol of the ping-pong program is the parallel composition of
the supervisory class P running at location p and ReplyToPing running at all the locations in locs :

main P @ {p} | | ReplyToPing @ l o c s ; ;

We will first describe the interactions betwen the Handler classes spawned by P and the nodes, which
carry out steps (3)–(5) of the protocol.

Handler
Intuitively, Handler is a parameterized class—but, because EventML is a higher-order language we

need no special generic or template construct in order to express that. A class parameterized by values
of type T is simply a function that inputs values of type T and outputs classes.

The input to Handler is a pair of locations: the client location and the location to ping. A handler
is the parallel composition of two other parameterized classes: SendPing, which executes step (3) of the
protocol, and ReplyToPong, which executes step (5).

c l a s s Hand l e r (c , l) = (SendPing (c , l) | | ReplyToPong (c , l)) ; ;

By the definition of the parallel combinator, Handler (c, l) computes everything that either SendPing (c, l)
or ReplyToPong (c, l) does.

SendPing (c, l) is in charge of only one task: send a `̀ ping`̀ message to l .

c l a s s SendPing (, l o c) = Output (\ l .{ p ing l o c l }) ; ;

The “ ” argument is used, as in ML, to make it obvious that the first component of the pair will be
ignored. By the definitions of Output and ping given above, an instance of Output(client, loc) running
at location l will respond to the first event it sees at l by generating a `̀ ping`̀ message with body l to
location loc; it will then terminate. The recipient will interpret l as a return address.

ReplyToPong (client , loc) waits for a `̀ pong`̀ message from the node at location loc and, on receiving
one, sends to location client an `̀ out`̀ message with body loc. It therefore responds to a subset of the
events recognized by the base class Pong—not every `̀ pong`̀ message, but only those sent from loc.
They are recognized by the fact that the message body consists of the value loc. For each v ∈ Pong(e),
we may describe the response of ReplyToPong by saying that it generates a corresponding output by
applying the following function to v :

\ l . i f l = l o c then { out c l i e n t l o c } e l s e {}

8

November 24, 2011

and then terminates. This function is almost, but not quite, the locally defined function F in the
declaration of ReplyToPong:

c l a s s ReplyToPong (c l i e n t , l o c) =
l e t F l = i f l = l o c then { out c l i e n t l o c } e l s e {} i n

Once (F o Pong) ; ;

The difference is that F takes one extra argument—its first, which, in this case, is ignored.
What is the point of the mysterious extra argument? We assume that any computation processing

an event can determine the location at which that event occurs. In general, therefore, a function that is
used to transform the value observed by an event class should be able to operate on two arguments—the
location of the event and its observed value—even if one or the other of them is ignored.

One can apply simple composition to any number of classes. Given n classes X1 , . . . , Xn , of types
T1 , . . . , Tn respectively, and given a function F of type Loc → T1 → · · · → Tn → Bag(T), one can
define a class C by C = F o (X1 , · · · ,Xn).

Intuitively, C processes an event e as follows. The first argument supplied to F is the location at
which e occurs; the successive arguments are, in order, the values observed by the classes Xi at e; and
C returns the bag that F computes from these inputs. This informal description leaves it unclear what
to do if, for some i, e is not an Xi -event, or what to do if for some i, Xi produces a bag with more than
one element.

Here is a precise formulation. C produces (observes) the element v of type T iff each class Xi observes
an element vi of type Ti at event e and v = f loc(e) v1 · · · vn . Therefore, a C -event must be a Xi -event
for all i ∈ {1, . . . , n}. If for some i ∈ {1, . . . , n}, Xi does not observe anything at event e, then neither
does C .

ReplyToPing
ReplyToPing defines a program that must run at each node that participates in the protocol.

c l a s s ReplyToPing = (\ l o c .\ l .{ pong l l o c }) o Ping ; ;

Once again, it is an instance of the simple composition combinator, and this time the transformation func-
tion makes use of the initial location argument (providing the location at which the corresponding pro-
gram is running). On receiving a (`̀ ping`̀ , l) message at location s , the class (\ loc .\ l .{pong l loc}) o Ping
sends (`̀ pong`̀ , s) to location l .

Spawning of handlers (delegation to sub-processes)
The supervisory class P uses the delegation combinator to spawn handlers for each request.

c l a s s P =
((\ .\ c l i e n t . bag−map (\ l . (c l i e n t , l)) l o c s) o S t a r t) >>= Hand le r ; ;

We sometimes refer to this combinator as the bind combinator because the class type forms a monad
and delegation is the bind operator of that monad.

Consider the left-hand side of “>>=”; for future reference, call it LHS:

(\ .\ c l i e n t . bag−map (\ l . (c l i e n t , l)) l o c s) o S t a r t

When it receives a message (`̀ start`̀ , client) it produces as output the bag {(client , l1), (client , l2 , . . .)},
where the li are the elements of locs . So the effect of LHS >>= Handler is to spawn a class (Handler (c, li))
for each i each time a (`̀ start`̀ , c) message arrives. Notice how the types match up: LHS is an event
class of type Loc ∗ Loc; the parameterized class Handler is a function mapping values of type Loc ∗ Loc
to event classes of type directed message; therefore LHS >>= Handler is an event class of type directed
message.

9

November 24, 2011

3.2 Ping-pong with memory

We now make our ping-pong protocol a bit more interesting by adding some memory to the main process.
We introduce a new integer parameter, threshold ; instead of sending an (`̀ out`̀ , l) message to the client
whenever node l responds to a pong, we wait until a total of threshold responses have been received,
and then notify the client by sending a message (`̀ out`̀ , [l1; l2; . . . ; lthreshold]), whose body is the list of
all responders. We modify the design of ping-pong by adding one more (parameterized) class, a memory
module: Instead of sending an `̀ out`̀ message directly to a client, ReplyToPong will send an `̀ alive`̀
alive to an appropriate memory module, which will accumulate responses and send an `̀ out`̀ message
to the client once it has received enough of them.

And we add one more twist. A client who sends multiple `̀ start`̀ messages will receive multiple
`̀ out`̀ messages in reply and may wish to know what request any `̀ out`̀ message is replying to. So the
client will attach an integer id (we will call it a request number) to its `̀ start`̀ messages, and will receive
that request number in the `̀ out`̀ message that replies. The request numbers need not be globally
unique identifiers, so we will also arrange for the supervisory class P to attach a global id (which we will
call a round) to each request that it receives. The protocol proceeds as follows:

1. P receives a (`̀ start`̀ ,(client ,req num)) message from the location client .

2. P generates a unique id, round , for the request and spawns the following:

• for each node l in locs , a class Handler(l , round)

• a memory module (Mem client req num round)

3. Handler(l ,round) sends a (`̀ ping`̀ ,(p,round)) message to the node at location l and waits for a
reply.

4. On receipt of (`̀ ping`̀ ,(p,round)), the ReplyToPing class at node l sends a (`̀ pong`̀ , (l , round))
message to p. Handler classes respond to `̀ pong`̀ messages.

5. On receipt of (`̀ pong`̀ , (l , round)), the class Handler(l , round) sends an (`̀ alive`̀ , (l , round)) mes-
sage to itself (location p). Mem classes respond to `̀ alive`̀ messages.

6. When (Mem client req num round) has seen `̀ alive`̀ messages from threshold distinct locations,
it sends to location client an appropriate `̀ out`̀ message tagged with req num.

Fig. 2 provides the full specification of this protocol. Most of it is a routine adaptation of the ping-pong
specification. The novelty lies in the introduction of the event classes PState and Mem that act like state
machines. We will describe these in detail.

Imported library functions
The specification imports two Nuprl functions.

• deq−member, which checks whether an element belongs to a list

To apply this to lists of type T we must supply an operation that decides equality for elements of
T . That operation is a parameter to the membership test; thus, we write (deq−member eq y lst)
to compute the value of the boolean “y is a member of list lst , based on the equality test eq.”

• length, which computes the length of a list

Class combinators
The specification uses the remaining three primitive combinators:

• Prior (X): Event e belongs to Prior (X) if some X-event has occurred at loc(e) strictly before event
e; if so, its value is the value returned by X for the most recent such X-event. Once an X-event has
occurred at location l , all subsequent events at l are Prior (X)-events.

10

November 24, 2011

Figure 2 Ping-pong protocol with memory

s p e c i f i c a t i o n m ping pong

(∗ −−−−−− Imported Nuprl d e c l a r a t i o n s −−−−−− ∗)
import bag−map deq−member l ength ; ;

(∗ −−−−−− Parameters −−−−−− ∗)
parameter p : Loc ; ;
parameter l o c s : Loc Bag ; ;
parameter thr esho ld : Int ; ;

(∗ −−−−−− Messages −−−−−− ∗)
MSGS

input (‘ ‘ s t a r t ‘ ‘ : Loc ∗ Int , base Star t)
i n t e r n a l (‘ ‘ ping ‘ ‘ : Loc ∗ Int , base Ping , send ping)
i n t e r n a l (‘ ‘ pong ‘ ‘ : Loc ∗ Int , base Pong , send pong)
i n t e r n a l (‘ ‘ a l i v e ‘ ‘ : Loc ∗ Int , base Alive , send a l i v e)
output (‘ ‘ out ‘ ‘ : Loc L i s t ∗ Int , send out)

; ;

(∗ −−−−−− Clas s es −−−−−− ∗)
c l a s s ReplyToPong p =

(\ s l f .\ q . i f p = q then { a l i v e s l f p} e l s e {}) o Pong ; ;

c l a s s SendPing (loc , round) = Output (\ l .{ ping l o c (l , round)}) ; ;
c l a s s Handler p = SendPing p | | ReplyToPong p ; ;

c l a s s MemState round =
l e t F (l o c : Loc , r : Int) L =

i f r = round & ! (deq−member (op =) l o c L) then { l o c . L} e l s e {L}
i n F o (Alive , Pr i o r (s e l f) ? { [] }) ; ;

c l a s s Mem c l i e n t req num round =
l e t F L = i f l ength L >= thresho ld then {out c l i e n t (L , req num)} e l s e {}
i n F o (MemState round) ; ;

c l a s s Round (c l i e n t , req num , round) =
(Output (\ . l o c s) >>= \ l . Handler (l , round))

| | Once(Mem c l i e n t req num round) ; ;

c l a s s PState =
l e t F @ (c l i e n t , req num) (, , n) = {(c l i e n t , req num , n + 1)}
i n F o (Start , Pr i o r (s e l f)? (\ l .{ (l , 0 , 0) })) ; ;

c l a s s P = PState >>= Round ; ;

c l a s s ReplyToPing = (\ l o c . \ (l , round) .{ pong l (loc , round)}) o Ping ; ;

(∗ −−−−−− Main c l a s s −−−−−− ∗)
main P @ {p} | | ReplyToPing @ l o c s

• X?f: For any class X of type T, and any function f : Loc → Bag(T), X?f has the following meaning:

v ∈ (X?f)(e) iff

{

v ∈ X(e) if e is a X-event

v ∈ f(loc(e)) otherwise

If (f l) is nonempty, then all events at location l are X?f-events.

• self : The underlying semantic model of EventML has powerful operators for defining event classes
by recursion, including mutual recursion. However, EventML itself currently provides only a simple
recursion scheme, one that has been adequate for all the practical examples we’ve considered. A
recursive definition looks like this:

11

November 24, 2011

c l a s s X = . . . P r i o r (s e l f)? f . . .

In context, the keyword self refers to the class being defined, in this case X. A definition of this
form specifies the value of X at any event e in terms of its value at prior events; and if there is no
prior event, in terms of f(loc(e)). Examples will make this clear.

P and PState
Class P uses PState to generate a unique round number for each request, and passes that to Round,

which in turn performs step 2 of the protocol. The definition of PState is recursive. Notational convention:
Following ML, we use “ ” to denote an argument whose value is ignored. In addition, we use “@” to
denote an ignored argument of type Loc.

c l a s s PState =
l e t F @ (c l i e n t , req num) (, , n) = {(c l i e n t , req num , n + 1)}
i n F o (S ta r t , P r i o r (s e l f) ? (\ l . { (l , 0 , 0) })) ; ;

This defines a state machine as follows:

• Start events trigger change of state.

• The state of PState has type (Loc ∗ int ∗ int). For any Start-event e, v ∈ PState(e) iff v is the
state of PState after the occurrence of event e.

The state components represent, respectively: the client whose request has caused the state change,
the request number assigned by the client, and the most recent round number generated by PState.

• The initial value of the state at location l is (l, 0, 0).

The first two components are dummy values.

• The transition function at location l is (F l).

If (`̀ start`̀ , (client , req num)) arrives in state (l, r, n), the new state is (client , req num, n+ 1).

Here are simple exercises in thinking about such definitions. By definition, PState satisfies the equation:

PState =
l e t F @ (c l i e n t , req num) (, , n) = {(c l i e n t , req num , n + 1)}
i n F o (S t a r t ; P r i o r (PState)? (\ l . { (l , 0 , 0) })) ; ;

Because the return value of

\ l . { (l , 0 , 0)}

is always nonempty, every event belongs to the class

P r i o r (PState)? (\ l . { (l , 0 , 0) })

It follows from this that the PState-events are precisely the Start-events. (The locally defined function
F always returns a nonempty result; therefore, for any A and B, the events in F o (A,B) will be those
events that are both A-events and B-events.)

Suppose that the arrival of the message (`̀ start`̀ , (c1 , r1)) e1 is the first PStart-event occurring at
location l . Call it event e1. At e1, PState returns

F l (c1, r1) (l, 0, 0) = {(c1, r1, 1)}

Suppose e2 is the next PStart-event occurring at location l , which is the arrival of the message (`̀ start`̀ , (c2 , r2)).
At e2, PState returns

F l (c2, r2) (cl, r1, 1) = {(c2, r2, 2)}

The key point is that the argument supplied to F by

12

November 24, 2011

P r i o r (PState)? (\ l . { (l , 0 , 0) })

is the value of the state when the incoming message arrives—which is the value returned as a result of
the previous `̀ start`̀ message (or, if there hasn’t been one, (l , 0, 0).

Mem and MemState
The state machine PState maintains an internal state and after an input event returns a singleton bag

containing its new state. A memory module will maintain an internal state (listing the nodes from which
`̀ alive`̀ messages have been received); it outputs not its state but an `̀ out`̀ message—and not every
change of state will cause an output. A simple way to achieve this is to define two classes: MemState,
like PState, simply accumulates a state and makes it visible; Mem observes MemState and generates an
output when appropriate.

The class (MemState round) accumulates and makes visible the internal state:

c l a s s MemState round =
l e t F (l o c : Loc , r : I n t) L =

i f r = round & ! (deq−member (op =) l o c L)
then { l o c . L}
e l s e {L}

i n F o (A l i v e , P r i o r (s e l f)?{\ l . [] }) ; ;

An input event to this state machine is the arrival of an `̀ alive`̀ message. The state is a list of locations,
initially empty; it contains the distinct locations from which `̀ alive`̀ messages have been received for
round number round. When a message arrives with body (loc, r) the new state is determined as follows:
if the message’s round number is round, and loc is not yet on the list, prepend loc to the state; otherwise,
no change. (Because round numbers are globally unique, this class can perform its function without
knowing either the client who initiated the request or the request number assigned.)

Notation: Some of the formal arguments to the function F are labeled with types: (loc :Loc,r : Int),
rather than (loc , r). It is always legal to label arguments in this way; and, in some situations, the type
inference algorithm needs the extra help.

Notation: Recall that the first argument to deq−member must be an equality operation. In the term
“deq−member (op =) loc L” the equality operation is denoted by “(op =)”—meaning that its name is
“=” and that, when applied, it will be written as a binary infix operator.

When (Mem client req num round) sees that the state of (MemState round) has grown to a list of
length threshold it signals the client.

c l a s s Mem c l i e n t req num round =
l e t F L = i f l e n g t h L >= th r e s h o l d

then { out c l i e n t (L , req num)}
e l s e {}

i n F o (MemState round) ; ;

3.3 Leader election in a ring

Many distributed protocols require that a group of nodes choose one of them, on the fly, as a leader.
Here is a simple strategy for doing that under the assumptions that:

• the nodes are arranged in a ring (each node knowing its immediate successor)

• each node has a unique integer id

Any node may start an election by sending its own id to its immediate successor (a proposal). With
one exception, a node that receives a proposal will forward to its successor the greater of the following

13

November 24, 2011

Figure 3 Leader election in a ring

s p e c i f i c a t i o n l e a d e r r i n g

(∗ −−−−−− Parameters −−−−−− ∗)
parameter nodes : Loc Bag ; ;
parameter c l i e n t : Loc ; ;
parameter uid : Loc → Int ; ;

(∗ −−−−−− Imported Nuprl d e c l a r a t i o n s −−−−−− ∗)
import imax ; ;

(∗ −−−−−− Type f unc t i on s −−−−−− ∗)
type Epoch = Int ; ;

(∗ −−−−−− Messages −−−−−− ∗)
MSGS (∗ To inform a node o f i t s Epoch and r i ng succ e s s o r ∗)

input (‘ ‘ c on f i g ‘ ‘ : Epoch ∗ Loc , base Conf ig)

(∗ Location o f the l e ade r ∗)
output (‘ ‘ l e ade r ‘ ‘ : Epoch ∗ Loc , send s end l eade r)

(∗ Star t the l e ade r e l e c t i o n ∗)
input (‘ ‘ choose ‘ ‘ : Epoch , base Choose)

(∗ Propose a node as the l e ade r o f the r i ng ∗)
i n t e r n a l (‘ ‘ propose ‘ ‘ : Epoch ∗ Int , base Propose , send send propose) ; ;

(∗ −−−−−− Clas s es −−−−−− ∗)
l e t dumEpoch = 0 ; ;

c l a s s Nbr =
l e t F (epoch , succ) (epoch ’ , succ ’) =

i f epoch > epoch ’
then {(epoch , succ)}
e l s e {(epoch ’ , succ ’)} i n

F o (Conf ig , Pr i o r (s e l f)? (\ l . { (dumEpoch , l)})) ; ;

c l a s s ProposeReply =
l e t F l o c (epoch , succ) (epoch ’ , l d r) =

i f epoch = epoch ’
then i f l d r = uid l o c

then { s end l eade r c l i e n t (epoch , l o c)}
e l s e { send propose succ (epoch , imax l d r (uid l o c))}

e l s e {}
i n F o (Pr i or (Nbr) , Propose) ; ;

c l a s s ChooseReply =
l e t F l o c (epoch , succ) epoch ’ =

i f epoch = epoch ’
then { send propose succ (epoch , uid l o c)}
e l s e {}

i n F o (Pr i or (Nbr) , Choose) ; ;

(∗ −−−−−− Main c l a s s −−−−−− ∗)
main (ProposeReply | | ChooseReply) @ nodes

two values: the proposal it received, its own id. The exception occurs if (and only if) a node receives in
a proposal its own id. In that case, the node stops forwarding messages and declares itself elected. If
messages are delivered reliably and no nodes fail, this protocol will always succeed in electing the node
with the greatest id.

14

November 24, 2011

Fig. 3 presents our specification of a slightly more sophisticated protocol. We add an interface that
makes it possible for some external party to reconfigure the ring—e.g., if it believes that some nodes have
failed. Informally, we call the intervals between reconfigurations epochs (setting aside the vagueness of
“between” in a distributed setting). We number the epochs with positive integers—using 0 to mean “no
epoch has started at this node.”

The inputs to the protocol are of two kinds:

• a `̀ config`̀ message tells a node to begin a new epoch and stipulates which node is, in the new
epoch, its immediate successor in the ring, or

• a `̀ choose`̀ message contains the number of an epoch, and asks for an election in that epoch.

The outputs of the protocol are `̀ leader`̀ messages sent to some designated client. The body of a
`̀ leader`̀ message contains an epoch number and the id of the leader elected in that epoch.

Parameters to the protocol are

• nodes : Loc Bag – the nodes from which a leader must be chosen

• client : Loc – the node to be informed of the election results

• uid : Loc → Int – a function assigning a unique id to each member of nodes

Our slightly generalized protocol is still quite simple to describe. A node keeps track of the epoch
in which it is currently participating and ignores all `̀ propose`̀ or `̀ choose`̀ messages labeled with
other epochs. If it receives a `̀ config`̀ message for an epoch numbered higher than its current epoch, it
switches to the new epoch, and otherwise ignores it. A node reacts to all non-ignored `̀ propose`̀ and
`̀ choose`̀ messages as in the original protocol.

The delicate part lies in formulating the invariants preserved by the protocol and the conditions
under which it succeeds. What if reconfiguration occurs while an election is going on? What if `̀ config`̀
messages arrive out of order—requesting epoch 4 and later requesting epoch 3? What if `̀ config`̀
messages partition the nodes into two disjoint rings? Those questions are not the subject of this note.

Nbr, the state of a node
Informally, the state of any node is a pair (epoch, succ) : Int ∗ Loc, where epoch is the number of its

current epoch and succ is the location of its current successor. This state changes only in response to
`̀ config`̀ messages. We capture this behavior in the class Nbr, which defines a state machine as follows:

• At location l , its initial state is (0, l); essentially, these are both dummy values.

• Input events are the arrivals of `̀ config`̀ events, which are recognized by the base class Config.

• The state transition in response to the input (epoch′, succ′) is: if epoch′ > epoch, then change to
(epoch′, succ′); otherwise, no change.

We use the state machine idiom described in section 3.2.

l e t dumEpoch = 0 ; ;

c l a s s Nbr =
l e t F (epoch , succ) (epoch ’ , succ ’) =

i f epoch > epoch ’
then {(epoch , succ)}
e l s e {(epoch ’ , succ ’) } i n

F o (Conf ig , P r i o r (s e l f) ? (\ l . { (dumEpoch , l)})) ; ;

15

November 24, 2011

Factoring the main program.
We factor the behavior of the protocol into two classes, one triggered by `̀ propose`̀ messages and

one triggered by `̀ choose`̀ messages. We define

main (ProposeRep ly | | ChooseReply) @ nodes

and will define ProposeReply and ChooseReply in terms of Nbr.

ProposeReply.
The response to a proposal is as described informally: send a `̀ leader`̀ message if you receive your

own id; otherwise, propose the max of the proposal received and your own id.

c l a s s ProposeRep ly =
l e t F l o c (epoch , succ) (epoch ’ , l d r) =

i f epoch = epoch ’
then i f l d r = u id l o c

then { s e n d l e a d e r c l i e n t (epoch , l o c)}
e l s e { s end p ropo s e succ (epoch , imax l d r (u i d l o c))}

e l s e {}
i n F o (P r i o r (Nbr) , Propose) ; ;

The functions send leader and send propose are the directed message constructors introduced in the
declarations of `̀ leader`̀ and `̀ propose`̀ messages.

Since Nbr changes only in response to `̀ config`̀ messages, the state of Nbr is the same both before
and after a `̀ propose`̀ message arrives. So why couldn’t we simplify this definition by replacing the
expression “F o (Prior (Nbr),Propose)” with “F o (Nbr,Propose)”?

The reason is that Nbr can only observe Config events, whereas Prior (Nbr) can observe any event e
such that an Config event has previously occurred at loc(e). This use of Prior (...) is a basic idiom of
EventML programming.

Note: If e is a Propose event at location loc, and no Config event has yet occurred at loc, then e is
not a Prior (Nbr) event, and therefore is not a ProposeReply event.

ChooseReply
When ChooseReply receives a `̀ choose`̀ instruction for the epoch on which it is currently working,

it initiates an election by sending an appropriate `̀ propose`̀ message.

c l a s s ChooseReply =
l e t F l o c (epoch , succ) epoch ’ =

i f epoch = epoch ’
then { s end p ropo s e succ (epoch , u i d l o c)}
e l s e {}

i n F o (P r i o r (Nbr) , Choose) ; ;

This applies the same “Prior (...) ” idiom used in the definition of ProposeReply.

3.4 Interlude: State machines

The Nuprl library defines combinators that package up idioms for defining various kinds of state machines.

Accum−class
The simplest state machine combinator is Accum−class. If

• A is a type – representing input values

16

November 24, 2011

• B is a type – representing values of the class’s internal state

• X is an event class of type A – recognizing input events

• init state : Loc → B Bag – assigning initial states to locations

• f : A → B → B – the transition function

then we may interpret (Accum−class f init state X) as a class of type B that acts like a state machine
with the given initial values and transition function. More precisely, if init state assigns a singleton bag
to every location, then

• The events this class recognizes are the X-events.

• To every X-event e it assigns a singleton bag; the element of that bag is the state of that state
machine after responding to e.

Note that the Prior combinator will allow us to observe the state when the input arrives and before it is
processed.

The Accum−class combinator is defined as follows:

c l a s s Accum−class f i n i t s t a t e X =
(\ . f) o (X, P r i o r (s e l f)? i n i t s t a t e) ; ;

Thus, if we declare

C l a s s Y = Accum−class f i n i t s t a t e X ; ;

we know that Y satisfies the equation

Y = (\ . f) o (X, P r i o r (Y)? i n i t s t a t e)

Threshold−Combinator.
Accum−class defines a state machine that maintains an internal state and allows us to observe the

state (by making appropriate use of Prior () and ?) but does not, in response to state changes, issue
any other outputs.

Threshold−Combinator provides a useful way to define a state machine that issues outputs in response
to inputs. The setting: we’re given an event class X of type A that recognizes input events and want to
define a state machine that maintains an internal state of some type S and, computes outputs of type B
based on the inputs and its current state.

So we will have to supply an output function in addition to a state transition function. We do not
supply them directly as inputs to Threshold−Combinator; rather, we supply inputs from which they can
be determined in a slightly indirect way:

c l a s s Thresho ld−Combinator R X i n i t s t a t e accum f =
l e t s t a t e f u n c t i o n v s t a t e =

i f R v s t a t e then accum v s t a t e e l s e s t a t e i n
l e t o u t p u t f u n c t i o n l o c v s t a t e =

i f R v s t a t e then f l o c v s t a t e e l s e {} i n
l e t Cu r r e n tS t a t e = Accum−class s t a t e f u n c t i o n i n i t s t a t e X i n
l e t P r i o r S t a t e = P r i o r (Cu r r e n tS t a t e)? i n i t s t a t e i n

o u t p u t f u n c t i o n o (X , P r i o r S t a t e)

The locally defined operations have the following meanings:

17

November 24, 2011

Figure 4 Simple 2/3 consensus - header

s p e c i f i c a t i o n RSC

(∗ −−−−−− Parameters −−−−−− ∗)
(∗ consensus on commands o f a r i b t r a r y type Cmd with equa l i t y dec i d e r ∗)
parameter Cmd, cmdeq : Type ∗ Cmd Deq ; ;
parameter f l r s : Int ; ; (∗ max number o f f a i l u r e s ∗)
parameter l o c s : Loc Bag ; ; (∗ l o c a t i o n s o f (3 ∗ f l r s + 1) r e p l i c a s ∗)
parameter c l i e n t s : Loc Bag ; ; (∗ l o c a t i o n s o f the c l i e n t s to be n o t i f i e d ∗)

(∗ −−−−−− Imported Nuprl d e c l a r a t i o n s −−−−−− ∗)
import l ength poss−maj l i s t− d i f f deq−member from−upto Threshold−Combinator ; ;

(∗ −−−−−− Type d e f i n i t i o n s −−−−−− ∗)
type Inning = Int ; ;
type CmdNum = Int ; ;
type RoundNum = CmdNum ∗ Inning ; ;
type Proposal = CmdNum ∗ Cmd ; ;
type Vote = (RoundNum ∗ Cmd) ∗ Loc ; ;

(∗ −−−−−− Messages −−−−−− ∗)
MSGS

i n t e r n a l (‘ ‘ sc vote ‘ ‘ : Vote , base Vote , broadcast voteMSGSto)
i n t e r n a l (‘ ‘ sc r e t r y ‘ ‘ : RoundNum ∗ Cmd, base Retry , send retryMSGto)
i n t e r n a l (‘ ‘ sc decided ‘ ‘ : Proposal , base Decided , send dcdMSGto)
output (‘ ‘ sc n o t i f y ‘ ‘ : Proposal , broadcast notifyMSGS)
input (‘ ‘ sc propose ‘ ‘ : Proposal , base Propose) ; ;

• CurrentState is a state machine that accumulates, and allows us to observe, its state: X recognizes
inputs; init state defines initial states; and the transition function state function is a variant of
the parameter accum.

• PriorState , according to our standard idiom, remembers the most recent value of CurrentState.

• output function , a variant of the parameter f, computes an output from the input and the value
of PriorState .

To understand the meanings of state function and output function , note the expected types of the
parameters:

• R : A → S → Bool

• accum: A →S → S

• f : Id → A → S → B Bag

R is a decidable relation between input values and values of the state used to filter inputs. When
input v arrives in state s, then: if R holds, the state transition and output are given by accum and f;
otherwise, there is no state change and no output.

3.5 Two-thirds consensus

Consider the following problem: A system has been replicated for fault tolerance. It responds to com-
mands issued to any of the replicas, which must come to consensus on the order in which those commands
are to be performed, so that all copies process commands in the same order. Replicas may fail. We assume
that all failures are crash failures: that is, a failed replica ceases all communication with its surround-
ings. The two-thirds consensus protocol is a simple protocol for coming to consensus, in a manner that

18

November 24, 2011

Figure 5 Simple 2/3 consensus - body

(∗ −−−−−− 2/3 major i ty consensus , aka ” s imple consensus ” −−−−−− ∗)
l e t roundout l o c (((n , i) , c) , : Loc) (cmds , : Loc L i s t) =

i f l ength cmds = 2 ∗ f l r s
then l e t (k , x) = poss−maj cmdeq (c . cmds) c in

i f k = 2 ∗ f l r s + 1
then { dcdMSGto l o c (n , x) }
e l s e { retryMSGto l o c ((n , i +1) , x) }

e l s e {} ; ;

l e t i n i t x @ = {x} ; ;
l e t thr out @ x = {x } ; ;

l e t newvote (n i :RoundNum) ((ni ’ , c) , sender : Loc) (:Cmd List , l o c s) =
ni = ni ’ & ! (deq−member (op =) sender l o c s) ; ;

l e t addvote ((:RoundNum, c) , sender) (cmds , l o c s) = (c . cmds , sender . l o c s) ; ;
c l a s s Quorum ni =

Threshold−Combinator (newvote n i) Vote (i n i t (n i l , n i l)) addvote roundout ; ;

c l a s s Round (ni , c) = Output (\ l o c . voteMSGSto l o c s ((ni , c) , l o c))
| | Once(Quorum ni) ; ;

l e t vo t e2 r e t r y @ (x , l o c) = {x } ; ;
c l a s s RoundInfo = Retry | | (vo t e2 r e t r y o Vote) ; ;

l e t r ound i n c r ea s e (n :CmdNum) ((m, i) , c) round = n = m & round < i ; ;
l e t incround ((, i) ,) s = i ; ;
c l a s s NewRounds n =

Threshold−Combinator (r ound i n c r ea s e n) RoundInfo (i n i t 0) incround thr out ; ;

l e t d e c i s i o n n @ (m, c) = i f m = n then notifyMSGS c l i e n t s (m, c) e l s e { } ; ;
c l a s s Not i f y n = Once ((d e c i s i o n n) o Decided) ; ;

c l a s s Voter (n , c) = Round ((n , 0) , c)
| | (Not i f y n)
| | ((NewRounds n >>= Round) u n t i l (Not i f y n)) ; ;

l e t onnewpropose (n ,) (max , mi s s ing) =
i f n > max
then (n , mi s s ing ++ (from−upto (max + 1) n))
e l s e (max , l i s t− d i f f (op =) mi s s ing [n]) ; ;

l e t vote2prop @ (((n , i) , c) ,@) = {(n , c)} ; ;
c l a s s Proposal = Propose | | (vote2prop o Vote) ; ;

l e t new proposal (n , c) (max , mi s s ing) = n > max or deq−member (op =) n mi s s ing ; ;
c l a s s NewVoters =

Threshold−Combinator new proposal Proposal (i n i t (0 , n i l)) onnewpropose thr out ; ;

c l a s s Rep l i ca = NewVoters >>= Voter ; ;

main Rep l i ca @ l o c s ; ;

tolerates n failures, by using 3n+1 replicas. We will describe how the protocol works, without explaining
why it works.

Input events communicate proposals, which consist of (integer,command) pairs: (n, c) proposes that
command c be the nth one performed. The arrival of a proposal is an event recognized by the base class
Propose. The header of such a message is `̀ propose`̀ . The protocol is intended to obtain consensus, for
each n, on which command will be the nth to be performed, and to broadcast those decisions (which are
also integer/command pairs) to a list of clients. Decision messages will have the header `̀ notify`̀ .

19

November 24, 2011

Figures 4 and 5 present the full specification.

Comments on figure 4
The parameters are

• Cmd: the type of commands.

• flrs : the max number of failures to be tolerated

• locs : the locations of the 3 ∗ flrs + 1 replicated deciders

• clients : the locations of the clients to be notified of decisions

We make no assumptions about or constraints on who submits inputs.
The declaration of the Cmd parameter also introduces a parameter that for an equality operator:

paramete r Cmd, cmdeq : Type ∗ Cmd Deq ; ;

When we instantiate the type Cmd, we must also instantiate cmdeq with an operation that decides
equality for members of that type. The keyword Deq denotes a type constructor: (Cmd Deq) is the type
of all equality deciders for Cmd. We need cmdeq because the operation deq−member, which decides
membership in a list, requires as one of its arguments an operation that decides equality for members of
the list (section 3.2).

Officially, the message headers are the token lists `̀ sc vote`̀ , `̀ sc retry`̀ , etc. Informally, we will
denote these by `̀ vote`̀ , `̀ retry`̀ , etc.

The declarations of `̀ vote`̀ and `̀ notify`̀ messages introduce constructors for broadcasting directed
messages, via the keyword broadcast:

i n t e r n a l (‘ ‘ s c vo t e ‘ ‘ : Vote , base Vote , b roadca s t voteMSGSto)

If v is a Vote and the li are locations,

voteMSGSto [l1, . . . , ln] v = {(l1, (`̀ vote`̀ , v)), . . . , (ln(`̀ vote`̀ , v))}

That is, it constructs a bag of directed messages that send a (`̀ vote`̀ , c) message to each location li .

Class combinators
The specification uses one new defined combinator:

• X until Y: v ∈ (X until Y)(e) iff v ∈ X(e) and no Y-event has previously occurred at loc(e). That
is, at any location l , the class (X until Y) acts exactly like X until a Y-event occurs at l , after which
it falls silent.

The top level
Replica is the event class characterizing the actions of a decider. The main program

main Rep l i c a @ l o c s

installs a decider at each location in locs .

c l a s s R ep l i c a = NewVoters >>= Voter ; ;

20

November 24, 2011

NewVoters will respond (only) to the first proposal (n, c) it sees for command n; and it responds by
spawning (Voter (n, c)), which will negotiate with voters spawned by other Replicas about which proposal
for command n to accept.

We define consensus on proposal (n, c) to mean that 2/3 (plus one) of the replicas vote for it. On
any particular vote, that degree of consensus cannot always be guaranteed—so we allow do-over votes,
for which we adopt the following terminology. Successive votes for each command number are assigned
consecutive integers, starting with 0, called innings ; the pair (command number, inning) is called the
voting round.

Votes are of type Vote, and each contains:

• the round in which the vote is cast

• a command being voted for in that round

• the voter’s location (to ensure that no replica gets more than one vote)

So a Voter is a parallel composition of three classes:

c l a s s Voter (n , c) = Round ((n , 0) , c)
| | (No t i f y n)
| | ((NewRounds n >>= Round) u n t i l (No t i f y n)) ; ;

where:

• Round((n, 0), c) will, at any location, conduct the voting for round (n, 0), and will cast its vote in
that round for command c.

• Notify n will recognize when agreement has been reached as to what should be the nth command
and broadcast the result.

• NewRounds n >>= Round will determine when it is time to begin a new inning of voting for the
nth command and spawn a class to conduct the voting; because of the “ until (Notify n)” this third
component will terminate at any location once a (Notify n)-event occurs there.

Specifying state machines
We introduce some convenient notation for specifying the init state and f parameters of Threshold−Combinator

(section 3.4):

l e t i n i t x @ = {x} ; ; (∗ −− f o r s p e c i f y i n g ” i n i t s t a t e ” ∗)
l e t t h r o u t @ x = {x} ; ; (∗ −− f o r s p e c i f y i n g ” f ” ∗)

Instantiating init state with (init v) assigns the initial state v to every location. Instantiating f
with thr out defines a state machine that acts purely as a filter: the value of an output is the value of
the input that caused it.

NewVoters
As noted, NewVoters is a filter: Its internal state keeps track of the proposals received at each location;

for each n, it recognizes the first proposal of form (n, c) that it sees, and transmits that proposal as its
output. The proposals it considers may come from an external input or from a vote. The class Proposal
recognizes these input events:

l e t vo te2prop @ (((n , i) , c) ,@) = {(n , c)} ; ;
c l a s s P ropo sa l = Propose | | (vo te2prop o Vote) ; ;

21

November 24, 2011

Propose is the base class that recognizes input events (header `̀ propose`̀); Vote is the base class that
recognizes the arrival of votes (header `̀ vote`̀).

c l a s s NewVoters =
Thresho ld−Combinator new p ropo sa l

P ropo sa l
(i n i t (0 , n i l))
onnewpropose
t h r o u t ; ;

Here is the correspondence between (some of) the actual formal parameters parameters and types of
the definition:

• X ∼ Proposal, which recognizes inputs

• A ∼ the input type: votes

• B ∼ the output type: votes

• f ∼ thr out , because this class is a filter

• S ∼ the type of the internal state: Int ∗ (Int List), initial value (0 , nil)

Intuitively, the internal state of NewVoters is a pair (max ,missing) : Int ∗ (Int List), where: max is the
greatest natural number for which a proposal has thus far been seen (at a particular location); missing
is the list of of all integers less than max for which no proposal has been received.

The remaining parameters:

• R ∼ new proposal, which recognizes the proposals that should cause outputs

• accum ∼ onnewpropose

NewVoter can change state and generate an output on input (n, c) if it has never before seen a proposal
for the nth command. Accordingly,

l e t n ew p ropo sa l (n , c) (max , m i s s i n g) =
n > max or deq−member (op =) n m i s s i n g ; ;

When it sees a new proposal NewVoters updates (max ,missing) so as to maintain the invariant that
the state keeps track of the highest number it has seen and the list of all the lower numbers it has not:

l e t onnewpropose (n ,) (max , m i s s i n g) =
i f n > max
then (n , m i s s i n g ++ (from−upto (max + 1) n))
e l s e (max , l i s t− d i f f (op =) m i s s i n g [n]) ; ;

where ++ is the append operator and the imported Nuprl operations from−upto and list−diff have the
following meanings:

from−upto i j = [i ; i +1; i +2; . . . ; j−1]

l i s t− d i f f (op =) [a ; b ; . . .] [n] =
the r e s u l t o f d e l e t i n g any o c c u r r e n c e s o f n from [a ; b ; . . .]

22

November 24, 2011

Notify n
A `̀ decided`̀ message signals that a consensus has been reached; its data is the proposal agreed

on. It is an internal message. (Notify n) waits for a `̀ decided`̀ message about the nth command and
responds by broadcasting that decision to all clients. It terminates after it has seen one such message.
(The base class Decided recognizes `̀ decided`̀ messages.)

l e t d e c i s i o n n @ (m, c) = i f m = n
then notifyMSGS c l i e n t s (m, c)
e l s e { } ; ;

c l a s s No t i f y n = Once ((d e c i s i o n n) o Dec ided) ; ;

Round ((n, i), c)
Round ((n, i), c), running at location loc, does three things: When launched, it broadcasts a vote

from loc for command c in round (n, i); in addition, it keeps a tally of votes received at l ; it uses that
tally to determine either that consensus has been reached (in which case it sends to itself a `̀ decided`̀
message) or that consensus might not be possible in inning i (in which case it sends to itself a suitable
`̀ retry`̀ message).

c l a s s Round (n i , c) = Output (\ l o c . voteMSGSto l o c s ((n i , c) , l o c))
| | Once (Quorum n i) ; ;

The class (Quorum ni) defines the state machine that keeps a tally for round ni , and sends an
appropriate message when a quorum is reached (or judged possibly unattainable):

c l a s s Quorum n i =
Thresho ld−Combinator (newvote n i)

Vote
(i n i t (n i l , n i l))
addvote
roundout ; ;

Again we note the correspondence between the formal and actual parameters to Threshold−Combinator:

• X ∼ Vote, which recognizes inputs

• A ∼ the input type: votes

• B ∼ the output type: directed messages

• S ∼ the the type of the internal state: (Cmd List) ∗ (Loc List), initial value (nil , nil)

Intuitively, the state consists of a pair (cmds , locs), where: cmds is the list of commands that have been
proposed in inning i as the nth command; locs is the (non-repeating) list of the locations that sent those
commands. We keep a list of senders so that, if a vote from any sender is delivered multiple times, it
will only be counted once.

• R ∼ newvote

State transitions occur, and outputs may be generated, when a new vote arrives—i.e., a vote in round
ni , sent from a location not previously heard from:

23

November 24, 2011

l e t newvote (n i : RoundNum) ((n i ’ , c) , s ende r : Loc) (:Cmd L i s t , l o c s) =
n i = ni ’ & ! (deq−member (op =) s ende r l o c s) ; ;

• accum ∼ addvote

When a new vote arrives, we update the state by prepending to its components the command it votes
for and the location of its sender:

l e t addvote ((: RoundNum , c) , s ende r) (cmds , l o c s) =
(c . cmds , s ende r . l o c s) ; ;

• f ∼ roundout

Each new vote causes a state transition, but need not cause an output. Round ((n, i), c) sends an output
message once it has received votes from 2 flrs +1 distinct locations. If all of them are votes for the same
command d , it sends itself the `̀ decided`̀ message with the proposal (n, d). If not, then it is possible
that on this round no proposal will ever receive 2 flrs + 1 votes; so it sends itself a `̀ retry`̀ message
to trigger initiation of inning i + 1 . (Once it has sent the `̀ retry`̀ message it will ignore any votes it
subsequently receives in round (n, i), even if they would result in some proposal’s receiving 2 flrs + 1.)
The data of a `̀ retry`̀ message consists of the new round to be initiated and, in addition, the name of
a command (which will be proposed in this new inning). The definition of roundout attempts to choose
that command in a reasonable way: poss−maj implements the Boyer-Moore majority algorithm. So, if
the votes are not unanimous, but some command receives a majority, that majority-receiving command
will be proposed in the `̀ retry`̀ message.

l e t roundout l o c (((n , i) , c) , : Loc) (cmds , : Loc L i s t) =
i f l e n g t h cmds = 2 ∗ f l r s
then l e t (k , x) = poss−maj cmdeq (c . cmds) c i n

i f k = 2 ∗ f l r s + 1
then { dcdMSGto l o c (n , x) }
e l s e { retryMSGto l o c ((n , i +1) , x) }

e l s e {} ; ;

NewRounds n
(NewRounds n) is a filter. It keeps track, at any location, of the greatest i for which it has partic-

ipated in a round of the form (n, i); if it receives a `̀ retry`̀ message with data ((n, j), c), or a vote
(((n, j), c), loc), and j > i , it remembers j and outputs the data ((n, j), c).

c l a s s NewRounds n =
Thresho ld−Combinator (r o u n d i n c r e a s e n)

RoundInfo
(i n i t 0)
i n c round
t h r o u t ; ;

So, we have:

• X ∼ RoundInfo, which recognizes inputs (which may be votes or retries)

• A ∼ the input type: Round ∗ Cmd

24

November 24, 2011

• B ∼ the output type: Round ∗ Cmd

• S ∼ the internal state: Int , initial value 0

• f ∼ thr out

l e t v o t e 2 r e t r y @ (x , l o c) = {x } ; ;
c l a s s RoundInfo = Ret ry | | (v o t e 2 r e t r y o Vote) ; ;

• R ∼ round increase

As noted, round increase n identifies a retry or vote for command n that applies to an inning greater
than the current one.

l e t r o u n d i n c r e a s e (n :CmdNum) ((m, i) , c) round =
(n = m & round < i) ; ;

• accum ∼ incround

When a new, higher inning, is initiated, the state is reset to that inning number:

l e t i n c round ((, i) ,) s = i ; ;

4 Definitions of combinators

General simple composition
Section 3.1 introduces the simple composition combinator. Given n classes X1 , . . . , Xn , of types T1 ,

. . . , Tn respectively, and given a function F of type Loc → T1 → · · · → Tn → Bag(T), one can define
the class F o (X1 , · · · ,Xn). This combinator is defined in terms of one of the Logic of Events’ primitive
combinators. Given n classes X1 , . . . , Xn , of types T1 , . . . , Tn respectively, and given a function F of
type Loc → Bag(T1) → · · · → Bag(Tn) → Bag(T), the class F O (X1 ; · · · ;Xn) is one of the Logic of
Events’ primitive combinator. The class F o (X1 , · · · ,Xn) is defined as:

(λloc. λb1 λbn .
⋃

x1∈b1

· · ·
⋃

xn∈bn

F loc x1 · · · xn) O (X1 ; · · · ;Xn)

Until
The binary infix operator until can then be defined in terms of this more general simple composition

combinator as follows:

import bag−nul l ; ;

c l a s s u n t i l X Y =
l e t F l o c b1 b2 = i f bag−nul l b2 then b1 e l s e {}
i n F O (X, P r i o r (Y)) ; ;

i n f i x u n t i l ; ;

25

November 24, 2011

The bag−null function is a function that returns true iff its argument is the empty bag. Note that using
a infix declaration, one can declare infix operator in EventML.

Once
The Once operator can be defined in terms of the until operator as follows:

c l a s s Once X = (X u n t i l X) ; ;

Output
The Output operator can be defined in terms of the Once operator as follows:

c l a s s Output b = Once (b o ()) ; ;

The “at” combinator
The binary infix operator @ can be defined in terms of the more general simple combinator as follows:

import bag−deq−member ; ;
c l a s s @ X l o c s =

l e t F l o c x = i f bag−deq−member (op =) l o c l o c s then {x} e l s e {}
i n F o X ; ;

i n f i x @ ; ;

(Note that this code is not valid EventML code because @ is not a valid identifier.)

Parallel combination
The parallel combinator can be defined in terms of the more general simple combinator as follows:

c l a s s | | X Y = (\ l o c .\ b1 .\ b2 . b1++b2) o (X,Y) ; ;
i n f i x | | ; ;

(Note that this code is not valid EventML code because || is not a valid identifier.)

Accum-class Threshold-Combinator
The two combinators Accum−class and Threshold−Combinator are defined in section 3.4.

5 Configuration files

Parameters to our specifications are of two kinds. Some are “abstract”—e.g., the integer parameters
threshold (see section 3.2) and flrs (see section 3.5). We can instantiate these by providing a Nuprl term
of type integer. Others are “real world”—e.g., the parameter client of type location. Their meanings are
specific to a particular installation of EventML: the messaging system determines what must be supplied
to instantiate a location parameter. Our prototype assumes that messaging is by TCP/IP, and a location
is a pair consisting of an IP address and a port.4

The parameter declarations

paramete r nodes : Loc Bag ; ;
pa ramete r c l i e n t : Loc ; ;
pa ramete r u i d : Loc → I n t ; ;

4Note that TCP/IP provides stronger guarantees—namely, FIFO delivery—than our examples have assumed.

26

November 24, 2011

illustrate the open-ended nature of real world parameters.
Suppose that we supply an (IP address, port) pair for client and a list of such pairs for nodes.5 How

do we instantiate uid? Knowing the locations, we could simply define a function that assigns integers to
them. If we wanted a more flexible implementation, we might want to base uid on the MAC address of a
node’s network card; in that case the configuration file would provide some reference to a piece of code
that does the computation. For now, the only primitive real-world type that we allow is Loc. All other
parameter types must be intepretable from Loc and abstract types.

Here is what a configuration file looks like:

%l o c a t i o n s
n1 : 1 9 2 . 1 6 8 . 0 . 1 2 19777
n2 : 1 9 2 . 1 6 8 . 0 . 1 3 19778
n3 : 1 9 2 . 1 6 8 . 0 . 1 4 19779

%pa ramete r s
nodes : {LOC(n1) ; LOC(n2) ; LOC(n3)}
c l i e n t : LOC(c l i e n t)
u i d : \ l . i f l = LOC(n1) then 1 e l s e i f l = LOC(n2) then 2 e l s e 3

%messages
n1 : (‘ ‘ c o n f i g ‘ ‘ , I n t ∗ Loc , (1 , LOC(n2)))
n2 : (‘ ‘ c o n f i g ‘ ‘ , I n t ∗ Loc , (1 , LOC(n3)))
n3 : (‘ ‘ c o n f i g ‘ ‘ , I n t ∗ Loc , (1 , LOC(n1)))
n2 : (‘ ‘ choose ‘ ‘ , I n t , 1)

This is an example of a configuration file for the leader election in a ring protocol presented in section 3.3.
A configuration file is divided into three parts: the locations part declares the machines on which one
wishes to install the specified protocol (n1 is a location name which is specified by the IP address
192.168.0.12 and the port number 1977); the parameters part instantiates the parameters declared in
the given specification (the leader election in a ring specification presented in section 3.3 declares three
parameters: nodes, client , and uid); the messages part declares a bag of messages initially in transit.
One has to declare at least one message in transit because EventML allows on to define reactive agents
that can only react on receipt of messages. Therefore nothing happens as long as no message is received.

References

[ABC+06] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori
Lorigo, and E. Moran. Innovations in computational type theory using nuprl. J. Applied
Logic, 4(4):428–469, 2006.

[BC08] Mark Bickford and Robert L. Constable. Formal foundations of computer security. In
NATO Science for Peace and Security Series, D: Information and Communication Security,
volume 14, pages 29–52. 2008.

[BCG10] Mark Bickford, Robert Constable, and David Guaspari. Generating event logics with higher-
order processes as realizers. Technical report, Cornell University, 2010.

[BCH+00] Ken Birman, Robert Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Robbert van
Renesse, Ohad Rodeh, and Werner Vogels. The Horus and Ensemble projects: Accomplish-
ments and limitations. In In DARPA Information Survivability Conference and Exposition
(DISCEX 2000), pages 149–160. IEEE Computer Society Press, 2000.

5Computationally, a bag is just a list in which we ignore the order.

27

November 24, 2011

[Bic09] Mark Bickford. Component specification using event classes. In Component-Based Software
Engineering, 12th Int’l Symp., volume 5582 of LNCS, pages 140–155. Springer, 2009.

[BKR01] Mark Bickford, Christoph Kreitz, and Robbert Van Renesse. Formally verifying hybrid pro-
tocols with the nuprl logical programming environment. Technical report, Cornell University,
2001.

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper,
D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing mathematics with the Nuprl proof development system. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1986.

[CHP84] Guy Cousineau, Gérard Huet, and Larry Paulson. The ML handbook, 1984.

[GMW79] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation., volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[Hay98] Mark Hayden. The Ensemble System. PhD thesis, Cornell University, Department of Com-
puter Science, 1998. Technical Report TR98-1662.

[KHH98] Christoph Kreitz, Mark Hayden, and Jason Hickey. A proof environment for the development
of group communication systems. In Automated Deduction - CADE-15, 15th Int’l Conf. on
Automated Deduction, volume 1421 of Lecture Notes in Computer Science, pages 317–332.
Springer, 1998.

[KR11] Christoph Kreitz and Vincent Rahli. Introduction to Classic ML, 2011.

[Kre02] Christoph Kreitz. The Nuprl Proof Development System, Version 5, Reference Manual
and User’s Guide. Cornell University, Ithaca, NY, 2002. http://www.nuprl.org/html/

02cucs-NuprlManual.pdf.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978.

[Ler00] Xavier Leroy. The Objective Caml system release 3.00. Institut National de Recherche en
Informatique et en Automatique, 2000.

[LKvR+99] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey, Mark Hayden, Ken-
neth P. Birman, and Robert L. Constable. Building reliable, high-performance communica-
tion systems from components. In SOSP, pages 80–92, 1999.

[Ren11] Robbert Van Renesse. Paxos made moderately complex. 2011.

[Win88] Glynn Winskel. An introduction to event structures. In Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency, School/Workshop, volume 354 of
LNCS, pages 364–397. Springer, 1988.

28

Index

class combinators
? combinator, 11
“at” combinator, 7
delegation, 7, 9
Once combinator, 7
Output combinator, 7, 8
parallel combinator, 7
Prior combinator, 10
recursive composition combinator, 11
simple composition combinator, 7, 9
Threshold combinator, 17
until combinator, 20, 21

classes
base class, 6
main, 8
parameterized class, 8

event class relation, 4

message, 6
body, 6
directed, 6
header, 6

29

