Redoing the Foundations of Decision Theory

Joe Halpern Cornell University

Joint work with Larry Blume and David Easley, Economics, Cornell

Savage's Framework for Decision Theory

Savage assumes that a decision maker (DM) starts with

- a set S of states
- a set O of outcomes
- a preference order ≽ on (*Savage*) acts functions from states to outcomes satisfying certain postulates
 - E.g. transitivity: if $a_1 \succeq a_2$ and $a_2 \succeq a_3$, then $a_1 \succeq a_3$.

Savage proves that if a DM's preference order satisfies these postulates, then the DM is acting as if

- he has a probability Pr on states
- he has a utility function u on outcomes
- he is maximizing expected utility:

$$\begin{aligned} - a \succeq b \text{ iff } E_{\Pr}[u_a] \geq E_{\Pr}[u_b]. \\ - u_a(s) = u(a(s)): \text{ the utility of act } a \text{ in state } s \end{aligned}$$

Are Savage Acts Reasonable?

Many problems have been pointed out with Savage's framework. We focus on one:

- How reasonable is it that a DM can completely specify the state space or the outcome space?
 - What are the states/outcomes if we're trying to decide whether to attack Iraq?
- What are the acts if we can't specify the state/outcome space?

A related problem: even if we can specify the states/outcomes, there are probably a lot of them.

• How reasonable is it for a DM to have a preference order on $|O|^{|S|}$ acts?

Acts as Programs

Claim: people don't think of acts as functions:

- We don't think of the state space and the outcomes when we contemplate the act "Buy 100 shares of IBM"!
- We may think of a procedure:
 - Call the stock broker, place the order, ...

An alternative:

- Instead of taking acts to be functions from states to outcomes, acts are syntactic objects
 - essentially, acts are *programs* that the DM can run.

The Setting

Savage assumes that a DM is given a state space and an outcome space. We assume that the DM has

- a set A_0 of primitive programs
 - Buy 100 shares of IBM
 - Attack Iraq
- a set T_0 of primitive tests (i.e., formulas)
 - The price/earnings ratio is at least 7
 - The moon is in the seventh house
- a theory AX
 - Some axioms that describe relations between tests
 - E.g., $t_1 \Leftrightarrow t_2 \wedge t_3$

Two obvious questions (to a computer scientist!):

- What is the programming language?
- What is the semantics of a program?

The Programming Language

We focus on two programming constructs:

- if ... then ... else
 - If a_1 and a_2 are programs, and t is a test, then if t then a_1 else a_2 is a program
 - if moon in seventh house then buy 100 shares IBM
 - Once we allow tests, we need a language in which to express them
- randomization:
 - If a_1 and a_2 are programs and $r \in [0, 1]$, then $ra_1 + (1 r)a_2$ is a program
 - With probability r perform a_1 ; with probability 1 r, perform a_2
 - People probably don't use randomized acts
 - We use them only to compare our results to others in the literature

Programming Language: Syntax

We start with

- a set A_0 of primitive acts
 - Buy 100 shares of IBM
 - Attack Iraq
- A set T_0 of primitive tests (propositions)
 - The price/earnings ratio is at least 7
 - The moon is in the seventh house

Form more complicated propositions by closing off under conjunction and negation:

• If t_1 and t_2 are propositions, so are $t_1 \wedge t_2$ and $\neg t_1$

Form more complicated acts by closing off under if ... then

- ... else and (possibly) randomization.
 - Given \mathcal{A}_0 and T_0 ,
 - let \mathcal{A} consist of all acts that can be formed using only the **if** ... **then** ... **else** construct;
 - let A⁺ consist of all acts that can be formed using
 if ... then ... else and randomization

Programming Language: Semantics

Finding appropriate semantics for programming language is a major research topic:

• What should a program *mean*?

In this paper, we consider *input-output* semantics:

- A program defines a function from states to outcomes (or probability measures on outcomes if randomization is allowed)
 - a Savage act (Anscombe-Aumann horse lottery)
- The state and outcome spaces are now subjective.
 - Different agents can model them differently

Semantics: Formal Details

Given a state space S and an outcome space O, we want to view acts as function from S to O. We first need

• a program interpretation ρ_{SO} that associates with each primitive program in \mathcal{A}_0 a function from S to O

We want to extend ρ_{SO} to a function that associates with each program in \mathcal{A} a function from S to O:

• How do we deal with if t then a_1 else a_2 ?

– if t is true, it's the function $\rho_{SO}(a_1)$

– if t is false, it's the function $\rho_{SO}(a_2)$

But how do we determine if t is true?

We need a *test interpretation* π_S that associates with each primitive proposition in T_0 an event (a subset of S)

$$\pi_S: T_0 \to 2^S$$

- Then can extend π_S in the obvious way to all tests
 - $t_1 \wedge t_2$ is true iff both t_1 and t_2 are true
 - $\neg t$ is true if t isn't true

Given S, O, ρ_{SO} , π_S , we can extend ρ_{SO} (by the obvious induction) to if ... then ... else:

 $\rho_{SO}(\text{if } t \text{ then } a_1 \text{ else } a_2)(s) = \begin{cases} \rho_{SO}(a_1)(s) \text{ if } s \in \pi_S(t) \\ \rho_{SO}(a_2)(s) \text{ if } s \notin \pi_S(t) \end{cases}$

If we have randomization, then

$$\rho_{SO}^+:\mathcal{A}^+\to (S\to\Delta(O))$$

 $\bullet \ \Delta(O)$ consists of all distributions on O

Where We're Headed

We prove the following type of theorem:

If a DM has a preference order on programs satisfying appropriate postulates, then there exist

- a state space S,
- a probability \Pr on S,
- an outcome space *O*,
- a utility function u on O,
- a program interpretation ρ_{SO} ,
- a test interpretation π_S

such that $a \succeq b$ iff $E_{\Pr}[u_{\rho_{SO}(a)}] \geq E_{\Pr}[u_{\rho_{SO}(b)}].$

- This is a Savage-like result
 - The postulates are variants of standard postulates
 - The DM has to put a preference order only on "reasonable" acts

But now S and O are subjective, just like Pr and u!

The Benefits of the Approach

We have replaced Savage acts by programs and prove Savage-type theorems. So what have we gained?

- Acts are easier for a DM to contemplate
 - No need to construct a state space/outcome space
 - Just think about what you can do
- Different agents can have completely different conceptions of the world
 - We might agree on the primitive acts but have completely different state spaces
 - You might make decision on stock trading based on price/earnings ratio, while I use astrology (and might not even understand the notion of p/e ratio)
 - "Agreeing to disagree" results (which assume a common state space) disappear
 - (Un)awareness becomes particularly important
- Can deal with unanticipated events, novel concepts:
 - Updating \neq conditioning

- To get our "Savage-like" theorem, we have a postulate that guarantees that all programs that act the same as functions are equivalent
 - But what if the DM can't tell that two equivalent programs are equivalent?
 - For rich programming languages, equivalence is undecidable
 - Even for our propositional programming language, it's co-NP hard (must test equivalence of propositional formulas)
 - We do not have to identify programs that act the same as functions
- We don't have to use input-output semantics
 - E.g., we can take the semantics of a program to be a sequence of states, followed by an outcome
 the "path" followed to get to the outcome
 - Two programs might have the same input-output semantics, but different "path" semantics

Framing Effects

Example: [McNeill et al.] DMs are asked to choose between surgery or radiation therapy as a treatment for lung cancer. They are told that,

- Version 1: of 100 people having surgery, 90 alive after operation, 68 alive after 1 year, 34 alive after 5 years; with radiation, all live through the treatment, 77 alive after 1 year, 22 alive after 5 years
- Version 2: with surgery, 10 die after operation, 32 dead after one year, 66 dead after 5 years; with radiation, all live through the treatment, 23 dead after one year, 78 dead after 5 years.

Both versions equivalent, but

- In Version 1, 18% of DMs prefer radiation;
- in Version 2, 44% do

Framing in our Framework

Primitive propositions:

- *RT*: 100 people have radiation therapy;
- S: 100 people have surgery;
- $L_0(k)$: k/100 people live through operation (i = 0)
- $L_1(k)$: k/100 are alive after one year
- $L_5(k)$: k/100 are alive after five years
- $D_0(k)$, $D_1(k)$, $D_5(k)$ similar, with death

Primitive programs

- a_S : perform surgery (primitive program)
- a_R : perform radiation therapy

• Version 1: Which program does the DM prefer: $a_1 = \mathbf{if} t_1 \mathbf{then} a_S \mathbf{else} a$, or $a_2 = \mathbf{if} t_1 \mathbf{then} a_R \mathbf{else} a$,

where a is an arbitrary program and

$$t_1 = (S \Rightarrow L_0(90) \land L_1(68) \land L_5(34)) \land (RT \Rightarrow L_0(100) \land L_1(77) \land L_5(22))$$

- Can similarly capture Version 2, with analogous test t_2 and programs b_1 and b_2
- Perfectly consistent to have $a_1 \succ a_2$ and $b_2 \succ b_1$
- A DM does not have to identify t_1 and t_2
 - Preferences should change once $t_1 \Leftrightarrow t_2$ is added to theory

The Cancellation Postulate

Back to the Savage framework:

Cancellation Postulate: Given two sequences $\langle a_1, \ldots, a_n \rangle$ and $\langle b_1, \ldots, b_n \rangle$ of acts, suppose that for each state $s \in S$

$$\{\{a_1(s),\ldots,a_n(s)\}\} = \{\{b_1(s),\ldots,b_n(s)\}\}.$$

• $\{\{o, o, o, o', o'\}\}$ is a multiset

If $a_i \succeq b_i$ for $i = 1, \ldots, n-1$, then $b_n \succeq a_n$.

Cancellation is surprising powerful. It implies

- Reflexivity
- Transitivity:
 - Suppose $a \succeq b$ and $b \succeq c$. Take $\langle a_1, a_2, a_3 \rangle = \langle a, b, c \rangle$ and $\langle b_1, b_2, b_3 \rangle = \langle b, c, a \rangle$.
- Event independence:
 - Suppose that $T \subseteq S$ and $f_Tg \succeq f'_Tg$
 - $f_T g$ is the act that agrees with f on T and g on S T.
 - Take $\langle a_1, a_2 \rangle = \langle f_T g, f'_T g' \rangle$ and $\langle b_1, b_2 \rangle = \langle f'_T g, f_T g' \rangle$.
 - Conclusion: $f_Tg' \succeq f'_Tg'$

Cancellation in Our Framework

An act in our sense (i.e., a program) can be viewed as a function from truth assignments to primitive acts:

• E.g., consider if t then a_1 else (if t' then a_2 else a_3):

$$- t \wedge t' \rightarrow a_1$$

- $t \wedge \neg t' \rightarrow a_1$
- $\neg t \wedge t' \rightarrow a_2$
- $\neg t \wedge \neg t' \rightarrow a_3$

Similarly for every program.

Can rewrite the cancellation postulate using programs:

- replace "outcomes" by "primitive programs"
- replace "states" by "truth assignments"
 - i.e., replace $a_i(s)$ by $a_i(v)$, where v is a truth assignment (valuation of primitive tests)

Program Equivalence

When are two programs *equivalent*?

- That depends on the choice of semantics
- With input-output semantics (i.e., if programs represent functions from states to outcomes), two programs are equivalent if they determine the same functions *no matter what* S, O, π_S , and ρ_{SO} are.

Example 1: (if *t* then *a* else *b*) \equiv (if $\neg t$ then *b* else *a*).

• These programs determine the same functions, no matter how t, a, and b are interpreted.

Example 2: If $t \equiv t'$, then

(if t then a else b) \equiv (if t' then a else b).

• But testing equivalence of propositional formulas is hard ...

Lemma: Cancellation \Rightarrow if $a \equiv b$, then $a \sim b$.

The Main Result

Theorem: Given a partial order (reflexive and transitive) \succeq on acts satisfying Cancellation, there exist

- \bullet a set S of states,
- a set \mathcal{P} of probability measures on S,
- a set O of outcomes,
- a utility function u on O,
- a program interpretation ρ_{SO} ,
- a test interpretation π_S

such that

 $a \succeq b \text{ iff } E_{\Pr}[u_a] \ge E_{\Pr}[u_b] \text{ for all } \Pr \in \mathcal{P}$

• u_a is the random variable such that $u_a(s) = u(\rho_{SO}(a)(s))$

Moreover, if \succeq is totally ordered, then \mathcal{P} can be taken to be a singleton.

• We can replace the set of probabilities + utility function with a single probability and a set of utility functions.

Uniqueness

Savage gets uniqueness; we don't:

- S and O are not unique, but we can find a unique minimal S^* and O^*
- In the totally ordered case, S^* can be taken to be a subset of the set of truth assignments.
- Not in the partially ordered case:
 - Even with no primitive propositions, suppose two primitive programs *a* and *b* are incomparable.
 - Need two states, two outcomes, and two probability measures to represent this

– Define

$$a(s_1) = o_1, \ a(s_2) = o_2$$

 $b(s_1) = o_2, \ b(s_2) = o_1$
 $\Pr_1(s_1) = 1$
 $\Pr_2(s_2) = 1$

- Can't hope to have a unique probability measure on S^* , even in the totally ordered case:
 - there aren't enough acts to determine it
 - If we just have $a \succ \text{if } t \text{ then } a \text{ else } b \succ b$, then many different probabilities will work

Adding Randomization

If we allow randomization in programs, Cancellation gives us independence for rational coefficients:

Lemma: Cancellation implies $f \succeq g$ iff for all rational $\alpha \in [0, 1]$ and all $h, \alpha f + (1 - \alpha)h \succeq \alpha g + (1 - \alpha)h$.

Get independence for all coefficients by assuming an appropriate Archimedean axiom:

(a) If $f \succ g \succ h$ then there exist $0 < \alpha, \beta < 1$ such that

$$f \succ \alpha f + (1 - \alpha)h \succ g \succ \beta f + (1 - \beta)h \succ h.$$

(b) { $\alpha \in [0,1] : \alpha f + (1-\alpha)g \succeq \alpha f + (1-\alpha)h$ } is closed.

Get representation theorem for \mathcal{A}^+ assuming Cancellation and the Archimedean postulate. Moreover, if the order is total, then the expected utility of acts is unique up to affine transformations.

• For any two representations, the expected utility of acts agree up to an affine transformation

Fixing the Outcome Space

In some applications, it makes sense to assume a fixed, "objective" outcome space *O*.

• e.g., in financial applications, the outcome space can be \$

In this case, it seems reasonable to assume that, among the primitive acts, there are constant acts :

- For each $o \in O$, there is an act \overline{o}
 - Semantically, given S, \overline{o} will be interpreted as the constant function on S that always returns o

We need (again, standard) postulates to guarantee that constant acts are really constant. E.g.:

 $\overline{o}_1 \succeq \overline{o}_2$ implies if t then \overline{o}_1 else $a \succeq$ if t then \overline{o}_2 else a

Can again prove a representation theorem, if the language allows randomization. Moreover, we get uniqueness of the probability measure.

• Getting a representation theorem with a fixed outcome space and no randomization remains an open problem

Updating

In the representation, can always take the state space to have the form $AT_{AX} \times TOT(\succeq)$:

- AT_{AX} = all truth assignments to tests compatible with the axioms AX
- $TOT(\succeq)$ = total orders extending \succeq

Updating proceeds by conditioning:

- Learn $t \Rightarrow$ representation is $\mathcal{P} \mid t$
- Learn $a \succeq b$: representation is $\mathcal{P} \mid (\succeq \oplus (a, b))$

Non-classical DMs

We have assumed that DMs obey all the axioms of propositional logic

• $\pi_S(\neg t) = S - \pi_S(t)$ and $\pi_S(t_1 \land t_2) = \pi_S(t_1) \cap \pi_S(t_2)$.

But we don't have to assume this!

- Instead, write down explicitly what propositional properties hold
- We still get that Cancellation, and that $a \equiv b$ implies $a \sim b$
- But now this isn't so bad: intuitively, the logic is restricted so that if a ≡ b, then the DM can tell that a and b are equivalent, and so we should have a ~ b

Conclusions

The theorems we have proved show only that this approach generalizes the classic Savage approach.

- The really interesting steps are now to use the approach to deal with issues that the classical approach can't deal with
 - conditioning on unanticipated events
 - (un)awareness

— . . .