
Redoing the Foundations of Decision
Theory

Joe Halpern
Cornell University

Joint work with Larry Blume and David Easley, Eco-
nomics, Cornell

1

Savage’s Framework for Decision Theory

Savage assumes that a decision maker (DM) starts with

• a set S of states

• a set O of outcomes

• a preference order � on (Savage) acts – functions
from states to outcomes – satisfying certain postulates

– E.g. transitivity: if a1 � a2 and a2 � a3, then
a1 � a3.

Savage proves that if a DM’s preference order satisfies
these postulates, then the DM is acting as if

• he has a probability Pr on states

• he has a utility function u on outcomes

• he is maximizing expected utility:

– a � b iff EPr[ua] ≥ EPr[ub].
– ua(s) = u(a(s)): the utility of act a in state s

2

Are Savage Acts Reasonable?

Many problems have been pointed out with Savage’s frame-
work. We focus on one:

• How reasonable is it that a DM can completely spec-
ify the state space or the outcome space?

– What are the states/outcomes if we’re trying to de-
cide whether to attack Iraq?

• What are the acts if we can’t specify the state/outcome
space?

A related problem: even if we can specify the states/outcomes,
there are probably a lot of them.

• How reasonable is it for a DM to have a preference
order on |O||S| acts?

3

Acts as Programs

Claim: people don’t think of acts as functions:

• We don’t think of the state space and the outcomes
when we contemplate the act “Buy 100 shares of IBM”!

• We may think of a procedure:

– Call the stock broker, place the order, . . .

An alternative:

• Instead of taking acts to be functions from states to
outcomes, acts are syntactic objects

– essentially, acts are programs that the DM can run.

4

The Setting

Savage assumes that a DM is given a state space and an
outcome space. We assume that the DM has

• a set A0 of primitive programs

– Buy 100 shares of IBM
– Attack Iraq

• a set T0 of primitive tests (i.e., formulas)

– The price/earnings ratio is at least 7
– The moon is in the seventh house

• a theory AX

– Some axioms that describe relations between tests
– E.g., t1 ⇔ t2 ∧ t3

5

Two obvious questions (to a computer scientist!):

• What is the programming language?

• What is the semantics of a program?

6

The Programming Language

We focus on two programming constructs:

• if . . . then . . . else

– If a1 and a2 are programs, and t is a test, then
if t then a1 else a2 is a program

– if moon in seventh house then buy 100 shares IBM
– Once we allow tests, we need a language in which

to express them

• randomization:

– If a1 and a2 are programs and r ∈ [0, 1], then
ra1 + (1− r)a2 is a program
◦ With probability r perform a1; with probability

1− r, perform a2

– People probably don’t use randomized acts
◦ We use them only to compare our results to oth-

ers in the literature

7

Programming Language: Syntax

We start with

• a set A0 of primitive acts

– Buy 100 shares of IBM
– Attack Iraq

• A set T0 of primitive tests (propositions)

– The price/earnings ratio is at least 7
– The moon is in the seventh house

Form more complicated propositions by closing off un-
der conjunction and negation:

• If t1 and t2 are propositions, so are t1 ∧ t2 and ¬t1
Form more complicated acts by closing off under if . . . then
. . . else and (possibly) randomization.

• Given A0 and T0,

– let A consist of all acts that can be formed using
only the if . . . then . . . else construct;

– let A+ consist of all acts that can be formed using
if . . . then . . . else and randomization

8

Programming Language: Semantics

Finding appropriate semantics for programming language
is a major research topic:

• What should a program mean?

In this paper, we consider input-output semantics:

• A program defines a function from states to outcomes
(or probability measures on outcomes if randomiza-
tion is allowed)

– a Savage act (Anscombe-Aumann horse lottery)

• The state and outcome spaces are now subjective.

– Different agents can model them differently

9

Semantics: Formal Details

Given a state space S and an outcome space O, we want
to view acts as function from S to O. We first need

• a program interpretation ρSO that associates with each
primitive program in A0 a function from S to O

We want to extend ρSO to a function that associates with
each program in A a function from S to O:

• How do we deal with if t then a1 else a2?

– if t is true, it’s the function ρSO(a1)

– if t is false, it’s the function ρSO(a2)

But how do we determine if t is true?

We need a test interpretation πS that associates with each
primitive proposition in T0 an event (a subset of S)

πS : T0 → 2S

• Then can extend πS in the obvious way to all tests

– t1 ∧ t2 is true iff both t1 and t2 are true
– ¬t is true if t isn’t true

10

Given S, O, ρSO, πS, we can extend ρSO (by the obvious
induction) to if . . . then . . . else:

ρSO(if t then a1 else a2)(s) =


ρSO(a1)(s) if s ∈ πS(t)
ρSO(a2)(s) if s /∈ πS(t)

If we have randomization, then

ρ+SO : A+ → (S → ∆(O))

• ∆(O) consists of all distributions on O

11

Where We’re Headed

We prove the following type of theorem:

If a DM has a preference order on programs satisfying
appropriate postulates, then there exist

• a state space S,

• a probability Pr on S,

• an outcome space O,

• a utility function u on O,

• a program interpretation ρSO,

• a test interpretation πS

such that a � b iff EPr[uρSO(a)] ≥ EPr[uρSO(b)].

• This is a Savage-like result

– The postulates are variants of standard postulates
– The DM has to put a preference order only on

“reasonable” acts

But now S and O are subjective, just like Pr and u!

12

The Benefits of the Approach

We have replaced Savage acts by programs and prove
Savage-type theorems. So what have we gained?

• Acts are easier for a DM to contemplate

– No need to construct a state space/outcome space
– Just think about what you can do

• Different agents can have completely different con-
ceptions of the world

– We might agree on the primitive acts but have com-
pletely different state spaces
◦ You might make decision on stock trading based

on price/earnings ratio, while I use astrology
(and might not even understand the notion of
p/e ratio)
◦ “Agreeing to disagree” results (which assume a

common state space) disappear
◦ (Un)awareness becomes particularly important

• Can deal with unanticipated events, novel concepts:

– Updating 6= conditioning

13

• To get our “Savage-like” theorem, we have a postu-
late that guarantees that all programs that act the same
as functions are equivalent

– But what if the DM can’t tell that two equivalent
programs are equivalent?
◦ For rich programming languages, equivalence

is undecidable
◦ Even for our propositional programming lan-

guage, it’s co-NP hard (must test equivalence
of propositional formulas)

– We do not have to identify programs that act the
same as functions

• We don’t have to use input-output semantics

– E.g., we can take the semantics of a program to be
a sequence of states, followed by an outcome
◦ the “path” followed to get to the outcome

– Two programs might have the same input-output
semantics, but different “path” semantics

14

Framing Effects

Example: [McNeill et al.] DMs are asked to choose be-
tween surgery or radiation therapy as a treatment for lung
cancer. They are told that,

• Version 1: of 100 people having surgery, 90 alive af-
ter operation, 68 alive after 1 year, 34 alive after 5
years; with radiation, all live through the treatment,
77 alive after 1 year, 22 alive after 5 years

• Version 2: with surgery, 10 die after operation, 32
dead after one year, 66 dead after 5 years; with radia-
tion, all live through the treatment, 23 dead after one
year, 78 dead after 5 years.

Both versions equivalent, but

• In Version 1, 18% of DMs prefer radiation;

• in Version 2, 44% do

15

Framing in our Framework

Primitive propositions:

• RT : 100 people have radiation therapy;

• S: 100 people have surgery;

• L0(k): k/100 people live through operation (i = 0)

• L1(k): k/100 are alive after one year

• L5(k): k/100 are alive after five years

• D0(k), D1(k), D5(k) similar, with death

Primitive programs

• aS: perform surgery (primitive program)

• aR: perform radiation therapy

16

• Version 1: Which program does the DM prefer:
a1 = if t1 then aS else a, or
a2 = if t1 then aR else a,

where a is an arbitary program and

t1 = (S ⇒ L0(90) ∧ L1(68) ∧ L5(34))∧
(RT ⇒ L0(100) ∧ L1(77) ∧ L5(22))

• Can similarly capture Version 2, with analogous test
t2 and programs b1 and b2

• Perfectly consistent to have a1 � a2 and b2 � b1

• A DM does not have to identify t1 and t2

– Preferences should change once t1 ⇔ t2 is added
to theory

17

The Cancellation Postulate

Back to the Savage framework:

Cancellation Postulate: Given two sequences 〈a1, . . . , an〉
and 〈b1, . . . , bn〉 of acts, suppose that for each state s ∈ S

{{a1(s), . . . , an(s)}} = {{b1(s), . . . , bn(s)}}.
• {{o, o, o, o′, o′}} is a multiset

If ai � bi for i = 1, . . . , n− 1, then bn � an.

Cancellation is surprising powerful. It implies
• Reflexivity

• Transitivity:

– Suppose a � b and b � c. Take 〈a1, a2, a3〉 =
〈a, b, c〉 and 〈b1, b2, b3〉 = 〈b, c, a〉.

• Event independence:

– Suppose that T ⊆ S and fTg � f ′Tg

◦ fTg is the act that agrees with f on T and g on
S − T .

– Take 〈a1, a2〉 = 〈fTg, f ′Tg′〉 and 〈b1, b2〉 = 〈f ′Tg, fTg′〉.
– Conclusion: fTg′ � f ′Tg

′

18

Cancellation in Our Framework

An act in our sense (i.e., a program) can be viewed as a
function from truth assignments to primitive acts:

• E.g., consider if t then a1 else (if t′ then a2 else a3):

– t ∧ t′ → a1

– t ∧ ¬t′ → a1

– ¬t ∧ t′ → a2

– ¬t ∧ ¬t′ → a3

Similarly for every program.

Can rewrite the cancellation postulate using programs:

• replace “outcomes” by “primitive programs”

• replace “states” by “truth assignments”

– i.e., replace ai(s) by ai(v), where v is a truth as-
signment (valuation of primitive tests)

19

Program Equivalence

When are two programs equivalent?

• That depends on the choice of semantics

• With input-output semantics (i.e., if programs rep-
resent functions from states to outcomes), two pro-
grams are equivalent if they determine the same func-
tions no matter what S, O, πS, and ρSO are.

Example 1: (if t then a else b) ≡ (if ¬t then b else a).

• These programs determine the same functions, no mat-
ter how t, a, and b are interpreted.

Example 2: If t ≡ t′, then

(if t then a else b) ≡ (if t′ then a else b).

• But testing equivalence of propositional formulas is
hard . . .

Lemma: Cancellation⇒ if a ≡ b, then a ∼ b.

20

The Main Result

Theorem: Given a partial order (reflexive and transitive)
� on acts satisfying Cancellation, there exist

• a set S of states,

• a set P of probability measures on S,

• a set O of outcomes,

• a utility function u on O,

• a program interpretation ρSO,

• a test interpretation πS

such that

a � b iff EPr[ua] ≥ EPr[ub] for all Pr ∈ P

• ua is the random variable such that ua(s) = u(ρSO(a)(s))

Moreover, if � is totally ordered, then P can be taken to
be a singleton.

• We can replace the set of probabilities + utility func-
tion with a single probability and a set of utility func-
tions.

21

Uniqueness

Savage gets uniqueness; we don’t:
• S and O are not unique, but we can find a unique

minimal S∗ and O∗

• In the totally ordered case, S∗ can be taken to be a
subset of the set of truth assignments.

• Not in the partially ordered case:

– Even with no primitive propositions, suppose two
primitive programs a and b are incomparable.

– Need two states, two outcomes, and two probabil-
ity measures to represent this

– Define
a(s1) = o1, a(s2) = o2
b(s1) = o2, b(s2) = o1
Pr1(s1) = 1
Pr2(s2) = 1

• Can’t hope to have a unique probability measure on
S∗, even in the totally ordered case:

– there aren’t enough acts to determine it
– If we just have a � if t then a else b � b, then

many different probabilities will work
22

Adding Randomization

If we allow randomization in programs, Cancellation gives
us independence for rational coefficients:
Lemma: Cancellation implies f � g iff for all rational
α ∈ [0, 1] and all h, αf + (1− α)h � αg + (1− α)h.

Get independence for all coefficients by assuming an ap-
propriate Archimedean axiom:

(a) If f � g � h then there exist 0 < α, β < 1 such that

f � αf + (1− α)h � g � βf + (1− β)h � h.

(b) {α ∈ [0, 1] : αf + (1 − α)g � αf + (1 − α)h} is
closed.

Get representation theorem for A+ assuming Cancella-
tion and the Archimedean postulate. Moreover, if the or-
der is total, then the expected utility of acts is unique up
to affine transformations.

• For any two representations, the expected utility of
acts agree up to an affine transformation

23

Fixing the Outcome Space

In some applications, it makes sense to assume a fixed,
“objective” outcome space O.

• e.g., in financial applications, the outcome space can
be $

In this case, it seems reasonable to assume that, among
the primitive acts, there are constant acts :

• For each o ∈ O, there is an act o

– Semantically, given S, o will be interpreted as the
constant function on S that always returns o

We need (again, standard) postulates to guarantee that
constant acts are really constant. E.g.:

o1 � o2 implies if t then o1 else a � if t then o2 else a

Can again prove a representation theorem, if the language
allows randomization. Moreover, we get uniqueness of
the probability measure.

• Getting a representation theorem with a fixed out-
come space and no randomization remains an open
problem

24

Updating

In the representation, can always take the state space to
have the form ATAX × TOT (�):

• ATAX = all truth assignments to tests compatible with
the axioms AX

• TOT (�) = total orders extending �
Updating proceeds by conditioning:

• Learn t⇒ representation is P | t
• Learn a � b: representation is P | (� ⊕ (a, b))

25

Non-classical DMs

We have assumed that DMs obey all the axioms of propo-
sitional logic

• πS(¬t) = S−πS(t) and πS(t1∧ t2) = πS(t1)∩πS(t2).

But we don’t have to assume this!

• Instead, write down explicitly what propositional prop-
erties hold

• We still get that Cancellation, and that a ≡ b implies
a ∼ b

• But now this isn’t so bad: intuitively, the logic is re-
stricted so that if a ≡ b, then the DM can tell that a
and b are equivalent, and so we should have a ∼ b

26

Conclusions

The theorems we have proved show only that this ap-
proach generalizes the classic Savage approach.

• The really interesting steps are now to use the ap-
proach to deal with issues that the classical approach
can’t deal with

– conditioning on unanticipated events
– (un)awareness
– . . .

27

