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Abstract: In most contemporary approaches to decision making under uncertainty,
a decision problem is described by a set of states and set of outcomes, and a rich set
of acts, which are functions from states to outcomes over which the decision maker
(DM) has preferences. Many interesting decision problems, however, do not come
with a state space and an outcome space. Indeed, in complex problems it is often far
from clear what the state and outcome spaces would be. We present an alternative
foundation for decision making, in which the primitive objects of choice are syntactic
programs. A representation theorem is proved in the spirit of standard representation
theorems, showing that if the DM’s preference relation on objects of choice satisfies
appropriate axioms, then there exist a set S of states, a set O of outcomes, a way of
interpreting the objects of choice as functions from S to O, a probability on S, and a
utility function on O, such that the DM prefers choice a to choice b if and only if the
expected utility of a is higher than that of b. Thus, the state space and outcome space
are subjective, just like the probability and utility; they are not part of the description
of the problem. In principle, a modeler can test for SEU behavior without having
access to states or outcomes. We illustrate the power of our approach by showing
that it can capture decision makers who are subject to framing effects and those who
are subject to failures of extensionality.
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In memoriam Karl Vind.

1 Introduction

Models of decision making under uncertainty typically begin with states of the world,
outcomes, acts, which are functions mapping states to outcomes, and preferences
over acts. This Savage (1954) presentation is convenient for the analysis of choice
behavior, in particular for understanding how choices vary with those things the ana-
lyst interprets as variations in preferences such as tastes and beliefs. But this repre-
sentation is often not close to the way in which choice problems appear in the world,
and how decisionmakers (DMs) talk and reason about their decisions.

Decision problems are expressed not in the language of states, acts, and or-
ders, but instead in some natural language in which the basic objects are statements
such as ‘the broker recommends a purchase of IBM’ or ‘the broker recommends a
purchase of Alphabet’ and the objects of choice are ‘use my cash to buy IBM’, ‘use
my cash to buy Alphabet’, or ‘do nothing’. The correct mapping of these statements
into states and outcomes may seem obvious to the analyst, but what guarantees
that the decision maker acts as if he uses any such mapping? The move from the
language of decisions in the world to the language of decisions in theory is made
by the analyst; it is subjective, it usually proceeds without discussion, and yet it de-
termines the counterfactual claims that empirical economics uses to make causal
assertions. Furthermore, much of the thrust of behavioral decision theory alludes
to or even requires some unpacking of the DM’s reasoning. This is difficult to do
when the language of the model is so different from the language of the DM. In fact,
Grabiszewski (2016) shows that the existence of an SEU representation for prefer-
ences in a decision problem has little empirical content. If the preference relation
in a finite Savage presentation of a decision problem is complete, transitive, and
satisifies a monotonicity requirement, then there exists some Savage representation
into which the problem can be embedded in a preference-preserving way, and which
has an SEU representation. This is simply to say that the empirical content of SEU
preferences derives from the meaning of the states and outcomes. Starting with a
natural-language description of a decision problem, we derive states, outcomes, and
Savage acts in terms of the choices a DM can make and the things she can observe
about the world, so that the Savage presentation is in some sense close to the DM’s
understanding of the problem.
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Our approach is to model choice objects as syntactic statements of the form
‘if t1 then choose a1, else if t2 choose a2, . . . ’, which we view as programs in a pro-
gramming languge. The ai are actions (not ‘acts’) available to the DM. We call the
ti ‘tests’; they are propositions about the world. The programming language we fo-
cus on in this paper is very simple—we use it just to illustrate our ideas. Critically,
it includes tests (in the context of if . . . then . . . else statements). These tests in-
volve syntactic descriptions of the events in the world, and allow us to distinguish
events from (syntactic) descriptions of events. In particular, there can be two differ-
ent descriptions that, intuitively, describe the same event from the point of view of
the modeler but may describe different events from the point of view of the decision
maker. We assume that a DM has a preference order on these programs,1 and from
this derives a Savage representation: states, outcomes, acts, a corresponding pref-
erence relation on acts, and an expected utility representation for these preferences.

While bringing the description of choice problems closer to the way they ap-
pear in the world to DMs is a natural move in its own right, it also has several concrete
advantages. First, empirical decision theory provides joint tests of the expected utility
hypothesis and the analyst’s interpretation as a Savage model. It will become clear
that the Savage representation of any nontrivial decision problem is not unique, that
many different Savage representations could be deployed. Separating the DM’s un-
derstanding of the problem from the analyst’s interpretation has obvious advanges,
among them the ability to determine which properties of choice are common to all
Savage representations and which are representation-specific. This is particularly
important for research that proposes to ‘test rationality’. It would be unfortunate if
rationality meant ‘agreement with the experimenter’s view of the world’. We prefer to
create a more flexible framework for rational choice and then add rejectable axioms
to generate sharper predictions.

Second, in our approach, framing anomalies can often be understood as a
conflict between the modeler’s and the DM’s representations. Although we do not
pursue it here, our approach allows us to model the effects of changing the DM’s
view of the world by considering more (or a different set of) tests. Like Tversky and
Koehler (1994), but unlike Ahn and Ergin (2007), our approach to framing begins with
a natural-language description of the world. Unlike Tversky and Koehler, we construct
state spaces from the natural-language tests rather than taking it as externally given.

1Or, more precisely, as a referee pointed out, on the programs that these syntactic desciptions refer
to.
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Third, our approach provides a natural way to capture resource-bounded
reasoning—and even incorrect reasoning—about the world in an expected-utility frame-
work. Fourth, our framework can model the interaction of DMs who describe the
world in different ways. Finally, the modelling of many behavioral effects has often re-
quired the application of decision theories that are somewhat difficult to manipulate,
for instance, requiring non-additive beliefs, menu-choice constructions, and the like.
These models are often difficult to compare with each other, and they can be very dif-
ficult to implement. The basic expected utility framework is durable because although
it is not great, it is often not bad; and because additive separability makes for very
representations that are easy to implement empirically. Our approach extends the
domain of additive separability some way into regimes that have normatively been la-
belled irrational. The natural-language modeling approach provides additional hooks
for theorizing about anomalous behavior within an expected-utility framework.

We began this project because we believed that for many decision problems,
the assumption that there is a natural state space that would describe the uncertainty,
and that DMs could (implicity) articulate this in their reasoning, is ridiculous. Equally
absurd is the assumption that in such circumstances individuals could articulate a
complete preference order over all alternatives. We therefore choose to allow for
incomplete preferences. Of course, with incompleteness comes a loss of uniqueness
of the representation. This does not concern us because, as we have observed, the
the way the DM models the original natural-language problem in terms of states and
outcomes is not unique either. On the other hand, we show that there always is a
canonical representation.

Many papers in the literature raise issues with the state-space approach of
Savage, or derive a subjective state space. Machina (2006) surveys the standard
approach and illustrates many difficulties with the theory and with its uses. These
difficulties include the ubiquitous ambiguity over whether the theory is meant to be
descriptive or normative, whether states are exogenous or constructed by the DM,
whether states are external to the DM, and whether they are measurable or not.
Kreps (1992) and Dekel et al. (2001) use a menu choice model to deal with unfore-
seen contingencies—an inability of the DM to list all possible states of the world.
They derive a subjective state space that represents possible preference orders over
elements of the menu chosen by the DM. Ghirardato (2001) takes an alternative
approach to unforeseen contingencies and models acts as correspondences from
a state space to outcomes. Gilboa and Schmeidler (2004) and Karni (2006) raise
objections to the state space that are similar to ours, and develop decision theories
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without a state space. Both papers derive subjective probabilities directly on out-
comes. Ahn (2008) also develops a theory without a state space; in his theory, the
DM chooses over sets of lotteries over consequences. Ahn and Ergin (2007) allow
for the possibility that there may be different descriptions of a particular event, and
use this possibility to capture framing. For them, a ‘description’ is a partition of the
state space. They provide an axiomatic foundation for decision making in this frame-
work, built on Tversky and Koehler’s (1994) notion of support theory. (As we shall
see, our approach is also quite compatible with support theory.) Grabiszewski (2016)
asks whether a decision maker’s preferences over acts mapping a given state space
to a known outcome space can be SEU-rationalized with an alternative state space
even if the original preferences were inconsistent with SEU. His analysis is related to
our analysis in Section 4.3 with an objective outcome space. The primary difference
is that we do not begin with states and outcomes; rather our DM preferences over
objects of choice (programs) described in his own language. Billot and Vergopoulos
(2018) fix a state space and outcome space, but allow the DM to have a subjective
interpretation of what they call feasible acts, which can be viewed as syntactic ob-
jects; each feasible act is interpreted as a function from states to outcomes. Finally,
Lipman (1999) also considers language and uses a subjective state space that, intu-
itively, may include ‘impossible possible worlds’, where the standard axioms of logic
may not hold. He shows how his approach can capture framing problems, among
other things. Although there is clearly some overlap in intuitions, the technical details
of our approach are significantly different from those mentioned above. Perhaps the
closest is the work of Lipman; we discuss its relation to our work in Section 3.3.

The rest of this paper is organized as follows. In the next section, we intro-
duce the syntactic programs that we take as our objects of choice, discuss several
interpretations of the model, and show how syntactic programs can be interpreted as
Savage acts. This section also includes several examples illustrating the power of our
approach. In Section 3, we present our assumptions on preferences. Because set
of programs does not have a mixture-space structure, we replace independence as-
sumptions with Krantz et al.’s (1971) cancellation axiom. In Section 4 we present our
representation theorems for decision problems with subjective outcomes and those
with objective outcomes. Section 5 discusses how our framework can model bound-
edly rational reasoning. In Section 6 we discuss how updating works for new infor-
mation about the external world as well as for new information about preferences.
Our goal in this paper is to introduce our approach and to relate it to the classical
Savage approach. We conclude in Section 7 with a discussion of the benefits of the
approach and further suggestions for how it can be applied.
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2 Describing Decision Problems

As usual, we assume that the agent chooses among acts, but as we said in the
introduction, for us, the acts are programs in a simple programming language. So we
begin by describing the language of tests, and then use this language to construct
programs, our syntactic objects of choice. We then discuss how the language of tests
is used to describe the DMs theory of the world. We conclude the section by giving a
several examples where this approach can capture behavior that is difficult to explain
using more standard approaches.

2.1 Languages for tests and choices

A primitive test is a statement about the world that is either true or false, such as
‘the economy will be strong next year’ and ‘the moon is in the seventh house’. We
assume a finite set T0 of primitive tests. The set T of tests is constructed by closing
the set of primitive tests under conjunction and negation. That is, T is the smallest
set such that T0 ⊆ T , and if t1 and t2 are in T , so is t1 ∧ t2 and ¬t1. Thus, the
language of tests is just a propositional language whose atomic propositions are the
elements of T0.

We consider two languages for choices. In both cases, we begin with a finite
set A0 of primitive choices. These may be objects such as ‘buy 100 shares of IBM’
or ‘buy $10,000 worth of bonds’. The interpretation of these acts is tightly bound to
the decision problem being modeled. The first language simply closes off A0 under
if . . . then . . . else. By this we mean that if t is a test in T and a and b are choices
in A, then if t then a else b is also a choice in A. When we need to be clear about
which T0 and A0 were used to construct A, we will write AA0,T0 . Note that A allows
nesting, so that if t1 then a else (if t2 then b else c) is also a choice.

The second languages closes off A0 with if . . . then . . . else and randomiza-
tion. That is, we assume that objective probabilities are available, and require that
for any 0 ≤ r ≤ 1, if a and b are choices, so is ra + (1− r)b. Randomization and if
. . . then . . . else can be nested in arbitrary fashion. We call this languageA+ (A+

A0,T0

when necessary).
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Tests in T are elements of discourse about the world. They could be events
upon which choice is contingent: If the noon price of stock today is below $600,
then buy 100 shares, else buy none. More generally, tests in T are part of the
DM’s description of the decision problem, just as states are part of the description
of the decision problem in Savage’s framework. However, elements of T need not
be complete descriptions of the relevant world, and therefore may not correspond to
Savage’s states. When we construct state spaces, elements of T will clearly play a
role in defining states, but, for some of our representation theorems, states cannot
be constructed out of elements of T alone. Additional information in states is needed
for both incompleteness of preferences and when the outcome space is taken to be
objective or exogenously given.

The choices in A and A+ are syntactic objects; strings of symbols. They
can be given semantics—that is, they can be interpreted—in a number of ways. For
most of this paper we focus on one particular way of interpreting them that lets us
connect them to Savage acts, but we believe that other semantic approaches will
also prove useful (see Section 7). The first step in viewing choices as Savage acts is
to construct a state space S, and to interpret the tests as events (subsets of S). With
this semantics for tests, we can then construct, for the state space S and a given
outcome space O, a function ρSO that associates with each choice a a Savage act
ρSO(a), that is, a function from S to O. Given a state space S, these constructions
work as follows:

Definition 1. A test interpretation πS for the state space S is a function associating
with each test a subset of S. An interpretation is standard if it interprets ¬ and ∧ in
the usual way; that is

• πS(t1 ∧ t2) = πS(t1) ∩ πS(t2)

• πS(¬t) = S − πS(t).

Intuitively, πS(t) is the set of states where t is true. Up to Section 5, we assume
that all interpretations are standard, that is, the obey the rules of classical logic. In
particular, this means that in all states, exactly one of t or ¬t is true. A standard
interpretation is completely determined by its behavior on primitive tests.

Definition 2. A choice interpretation ρSO for the state space S and outcome space
O assigns to each choice a ∈ A a (Savage) act, that is, a function ρSO(a) : S → O.



7

Given a test interpretation πS and a choice interpretation ρ0
SO : A0 → OS for primitive

choices, which assigns to each ao ∈ A0 a function from S → O, we can construct a
choice interpretation by extending ρ0

SO inductively as follows:

ρSO(if t then a1 else a2)(s) =

{
ρSO(a1)(s) if s ∈ πS(t)
ρSO(a2)(s) if s /∈ πS(t).

(1)

A choice interpretation ρSO constructed in this way is said to be compatible with πS
(and ρ0

SO). This semantics captures the idea of contingent choices; that, in the choice
if t then a1 else a2, the realization of a1 is contingent upon t, while a2 is contingent
upon ‘not t’. Of course, a1 and a2 could themselves be non-primitive programs, with
nested if . . . then . . . else statements.

Extending the semantics to the language A+, given S, O, and πS , requires
us to associate with each choice a an Anscombe-Aumann (AA) act (Anscombe and
Aumann, 1963), that is, a function from S to probability measures on O. Let ∆(O)
denote the set of probability measures on O and let ∆∗(O) be the subset of ∆(O)
consisting of the probability measures that put probability one on an outcome. Let
ρ0
SO : A0 → ∆∗(O)S be a choice interpretation for primitive choices that assigns to

each ao ∈ A0 a function from S → ∆∗(O). Now we can extend ρ0
SO by induction on

structure to all of A+ in the obvious way. For if . . . then . . . else choices we use (1);
to deal with randomization, define

ρSO(ra1 + (1− r)a2)(s) = rρSO(a1)(s) + (1− r)ρSO(a2)(s).

That is, the distribution ρSO(ra1 + (1 − r)a2)(s) is the obvious mixture of the dis-
tributions ρSO(a1)(s) and ρSO(a2)(s). Note that we require ρSO to associate with
each primitive choice in each state a single outcome (technically, a distribution that
assigns probability 1 to a single outcome), rather than an arbitrary distribution over
outcomes. So primitive choices are interpreted as Savage acts, and more general
choices, which are formed by taking objective mixtures of choices, are interpreted as
AA acts. This choice is largely a matter of taste. We would get similar representation
theorems even if we allowed ρ0

SO to be an arbitrary function from A to ∆(O)S . How-
ever, this choice does matter for our interpretation of the results; see Example 10 for
further discussion of this issue.
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2.2 The DM’s Theory of the World

The DM will typically have some knowledge about relationships between various
tests. For example, a DM that can do propositional reasoning will realize that t1 ∧ t2
is equivalent to t2 ∧ t1. A DM may also have domain-dependent knowledge. For
example, if the DM knows that interests will remain constaint between periods 2 and
3, and interest rates are either 4% or 5%, if Ri(j) says that the interest rate in period
i is j%, then the DM knows that

(R2(4) ∨R2(5)) ∧ (R2(4)⇔ R3(4)) ∧ (R2(5)⇔ R3(5)).

Formally, we add to the description of a decision problem a theory, that is, a
set T ⊆ T of tests.

Definition 3. A test interpretation πS for the state space S respects a theory T iff for
all t ∈ T , πS(t) = S.

A theory represents the DM’s view of the world. Different people may, however,
disagree about what they take to be obviously true of the world. Many people will as-
sume that the sun will rise tomorrow. Others, like Laplace, will consider the possibility
that it will not.

Choices a and b are equivalent with respect to a set Π of test interpretations
if, no matter what interpretation π ∈ Π is used, they are interpreted as the same
function. For example, in any standard interpretation, if t then a else b is equivalent
to if ¬¬t then a else b; no matter what the test t and choices a and b are, these two
choices have the same input-output semantics.

Definition 4. For a set Π of test interpretations, choices a and b are Π-equivalent,
denoted a ≡Π b, if for all test interpretations π ∈ Π, if π is a test interpretation
on a state space S, then for all outcome spaces O and choice interpretations ρSO
compatible with πS , we have ρSO(a) = ρSO(b).

Denote by ΠT the set of all standard interpretations that respect theory T . Then ΠT -
equivalent a programs and b are said to be T -equivalent, and we write a ≡T b. Note
that equivalence is defined relative to a given set Π of interpretations. Two choices
may be equivalent with respect to the set of all standard interpretations that hold a
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particular test t to be true, but not equivalent to the larger set of all standard test
interpretations.

In this section, we demonstrate the power of our approach by developing
some well-known examples of framing. Framing problems appear when a DM solves
inconsistently two decision problems that are designed by the modeler to be equiv-
alent or that are obviously similar after recognizing an equivalence. The fact that
choices are syntactic objects allows us to capture framing effects. This is an ex-
plicit virtue of providing a framework for decision theory that is closer to the natural
language DMs might use in considering their choices.

Example 1. Consider the following well-known example of the effects of framing, due
to McNeil et al. (1982). DMs are asked to choose between surgery or radiation
therapy as a treatment for lung cancer. The problem is framed in two ways. In the
survival frame, DMs are told that, of 100 people having surgery, 90 live through the
post-operative period, 68 are alive at the end of the first year, and 34 are alive at
the end of five years; and of 100 people have radiation therapy, all live through the
treatment, 77 are alive at the end of the first year, and 22 are alive at the end of
five years. In the mortality frame, DMs are told that of 100 people having surgery,
10 die during the post-operative period, 32 die by the end of the first year, and 66
die by the end of five years; and of 100 people having radiation therapy, none die
during the treatment, 23 die by the end of the first year, and 78 die by the end of five
years. Inspection shows that the outcomes are equivalent in the two frames—90 of
100 people living is the same as 10 out of 100 dying, and so on. Although one might
have expected the two groups to respond to the data in similar fashion, this was not
the case. While only 18% of DMs prefer radiation therapy in the survival frame, the
number goes up to 44% in the mortality frame.

We can represent this example in our framework as follows. We assume that
we have the following tests:

• RT , which intuitively represents ‘100 people have radiation therapy’;

• S, which intuitively represents ‘100 people have surgery’;

• Li(k), for i = 0, 1, 5 and k = 0, . . . , 100, which intuitively represents that k out
of 100 people live through the post-operative period (if i = 0), are alive after
the first year (if i = 1), and are alive after five years (if i = 5);
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• Di(k), for i = 0, 1, 5 and k = 0, . . . , 100, which is like Li(k), except ‘live/alive’
are replaced by ‘die/dead’.

In addition, we assume that we have primitive programs aS and aR that represent
‘perform surgery’ and ‘perform radiation theory’. With these tests, we can character-
ize the description of the survival frame by the following test t1:

(S ⇒ L0(90) ∧ L1(68) ∧ L5(34)) ∧ (RT ⇒ L0(100) ∧ L1(77) ∧ L5(22)),

(where, as usual, t ⇒ t′ is an abbreviation for ¬(t ∧ ¬t′)); similarly, the mortality
frame is characterized by the following test t2:

(S ⇒ D0(10) ∧D1(32) ∧D5(66)) ∧ (RT ⇒ D0(0) ∧D1(23) ∧D5(78)).

The choices offered in the McNeil et al. experiment can be viewed as condi-
tional choices: what would a DM do conditional on t1 (resp., t2) being true. Using
ideas from Savage, we can capture the survival frame as a decision problem with the
following two choices:

if t1 then aS else a, and
if t1 then aR else a,

where a is an arbitrary choice. Intuitively, comparing these choices forces the DM
to consider his preferences between aS and aR conditional on the test, since the
outcome in these two choices is the same if the test does not hold. Similarly, the
mortality frame amounts to a decision problem with the analogous choices with t1
replaced by t2.

There is nothing in our framework that forces a DM to identify the tests t1 and
t2; the tests Li(k) and Di(100 − k) a priori are completely independent, even if the
problem statement suggests that they should be equivalent. Hence there is no rea-
son for a DM to identify the choices if t1 then aS else a and if t2 then aS else a. As a
consequence, as we shall see, it is perfectly consistent with our axioms that a DM has
the preferences if t1 then aS else a � if t1 then aR else a and if t2 then aR else a �
if t2 then aS else a. a sophisticated DM might understand that Li(k)⇔ Di(100−k),
for i = 0, 1, 5 and k = 1, . . . , 100.

We view it as a feature of our framework that it can capture this framing ex-
ample for what we view as the right reason: the fact that DMs do not necessarily
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identify Li(k) and Di(100 − k). Of course, a sophisticated DM might understand
that Li(k) ⇔ Di(100 − k), for i = 0, 1, 5 and k = 1, . . . , 100. Such a DM would in-
clude these tests in her theory T . If these tests are in her theory, then she will make
the same decision in both frames. More precisely, we have if t1 then aS else a ≡T
if t2 then aS else a and if t1 then aR else a ≡T if t2 then aR else a. The results of
the McNeil et al. experiment can be interpreted in our language as a failure by some
DMs to have a theory that makes tests stated in terms of mortality data or survival
data semantically equivalent. A similar approach can be used to capture ‘nudges’ or
‘naive diversification’.

Example 2. As discussed at length by Thaler and Sunstein (2009), what the default
choice is can have a significant effect on the outcome of a decision problem. For ex-
ample, whether the default in a company’s 401K plan is that employees are enrolled
in the plan, with the possibility of opting out, or the default is that employees are not
enrolled in the plan, but have the option of opting in, can make a huge difference to
participation rates.

We model this in our framework using an approach similar to that used in
Example 1. There are two frames. In the first, the default is participation and the
active option is to opt out; in the second, the default is not participating, and the
active option is opting in. From the agent’s perspective, there are two basic actions:

• a1: do nothing (which means that the agent will get the default option);

• a2: choose the active option.

Let t1 be the formula that describes the first frame: if the agent does nothing then he
participates in the 401K; otherwise, he fills in paperwork and opts out. Let t2 be the
corresponding formula that describes the second frame. This means that the agent
is comparing if t1 then a1 else a and if t1 then a2 else a in the first frame, where a
is some default action, and comparing if t2 then a1 else a and if t2 then a2 else a.
As it happens, if t1 then a1 else a and if t2 then a2 else a (resp., if t1 then a2 else a
and if t2 then a1 else a) lead to the same outcome in the actual domain. A DM who
is resource-bounded, however, may not recognize this cross-frame equivalence and
chooses a1 in both frames.

Example 3. Benartzi and Thaler (2001) observed that if employees are offered n
choices in a defined contribution savings plan, many naively diversify, using the
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heuristic of putting 1/n of their allocation into each of the n options offered. This,
to us, shows the effect of language on choices.

The survey that Benartzi and Thaler use to illustrate this point asks employees
to allocate their retirement savings between two funds: A and B. In one instance, fund
A is a stock fund and fund B is a bond fund. In the second instance, fund A is a stock
fund and fund B is a balanced fund putting one-half of its money in stocks and one-
half in bonds. Benartzi and Thaler find that a large portion of participants split their
retirement savings equally between A and B in both instances. To test whether this
results from a misunderstanding of stocks and bonds, Benartzi and Thaler run the
same survey with the terms stock and bond replaced by the distribution on returns
that would result from each choice. They get the same answer.

In our framework a simplified version of this survey can be captured by a
decision problem with two primitive actions:

• a1: put 1/2 of the money in fund A and 1/2 in fund B;

• a2: put all of the money in fund B;

and two tests that describe the contents of the funds:

• t1: the formula describing the first frame in which fund A is all stock and fund B
is all bonds;

• t2: the formula describing the second frame in which fund A is all stock and
fund B is one-half stock and one-half bonds.

The decision maker compares if t1 then a1 else a and if t1 then a2 else a where a
is some default action, and compares if t2 then a1 else a and if t2 then a2 else a.
In this setting if t1 then a1 else a and if t2 then a2 else a lead to the same outcome.
Not having thought about it, a DM may not realize if t1 then a1 else a and if t2 then a2 else a
lead to the same outcome; indeed, may even believe that if t1 then a1 else a and
if t2 then a1 else a lead to the same outcome.

Our approach restricts a theory to being a set of tests (although we con-
sider a generalization of this in Section 5. The programs if t1 then a1 else a and
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if t1 then a1 else a may be equivalent in the mind of the experimenter, and perhaps
also in the mind of the subject. Our language of tests is not rich enough to capture
how the DM interprets programs, but this is captured by the DM’s preference relation.
If the DM views two programs as equivalent, then he will be indifferent between them.

Example 4. In a famous experiment, Johnson et al. (1993) have a dramatic find-
ing, tied to a decision problem: Subjects offered hypothetical health insurance were
willing to pay a higher premium for policies covering hospitalization for any disease
than they were for policies covering hospitalization for any reason at all, which would
include both disease and accidents. Tversky and Koehler (1994) understand this as
a failure of extensionality. They observe (p. 548) that ‘. . . probability judgments are
attached not to events but to descriptions of events’. Extensionality is the property
that different descriptions of the same event should be assigned the same probability.
It fails in the Johnson et al. experiment because the event ‘any disease or accident’
is a strict subset of ‘any reason at all’; extensionality would require the probability
of ‘any reason at all’ to be the sum of ‘any disease or accident’ and ‘a reason other
than disease of acccident’. Tversky and Koehler respond to this failure by introducing
support theory as a way of putting likelihoods not on events but on their descriptions.

In our framework, extensionality fails when two descriptions of the same event
are not perceived as such by the DM. Because for us states are subjective, repre-
senting the DM’s point of view, so even if tests t1 and t2 are equivalent from the
modeler’s point of view, we may have πS(t1) 6= πS(t2) for the DM’s state space S
and test interpretation πS . Thus, the DM may assign t1 and t2 different probabilities.

The DM’s theory captures equivalence among descriptions from the point
of view of the DM. For instance, suppose a DM is considering the purchase of an
home insurance policy. One alternative might offer coverage up to the value of the
home and its contents ‘in case of damage’. Another might offer the same coverage
for ‘storm damage’, ‘fire damage’, and ‘other damage’. The relevant tests are t1,
damage of any kind, and t2 through t4: storm, fire, and other damage, respectively. If
t1 ⇔ (t2 ∨ t3 ∨ t4) is not part of her theory T , then the DM’s decision problem might
be represented by a state space S and a test interpretation πS such that πS(t1) 6=
πS(t2) ∪ πS(t3) ∪ πS(t4). On the other hand, should t1 ⇔ (t2 ∨ t3 ∨ t3) be part of
her theory T , then for any state space S and test interpretation πS ∈ ΠT , πS(t1) =
πS(t2) ∪ πS(t3) ∪ πS(t4).
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Support theory develops this idea in a very specific way. Two events A and
B are exclusive (with respect to an interpretation πS) if, in our terminology, πS(A) ∩
πS(B) = ∅. Support theory distinguishes two kinds of disjunctions. If t1 and t2 are
exclusive, their explicit disjunction is t1 ∨ t2. So in the preceding paragraph, ‘t2 or t3
or t4’ , that is, ‘t2 ∨ t3 ∨ t4’, is an explicit disjunction. On the other hand, ‘t1’ is an
implicit disjunction; it is in fact the disjunction of t2 and t3 but it is not an ‘or’ statement.
Support theory assumes the existence of a ratio scale s that measures the degree
of support for an event. The key idea of support theory is expressed in Tversky and
Koehler’s (1994) equation 2:

s(t1) ≤ s(t2 ∨ t3 ∨ t4) = s(t2) + s(t3) + s(t4), (2)

that is, the scale s is additive over explicit disjunction, but subadditive over implicit
disjunction. Effectively, Tversky and Koehler are assuming that if t1 is an implicit
disjunction of t2 and t3, then the agent realizes that t2 ⇒ t1 and that t3 ⇒ t1, but not
that t1 ⇔ (t2 ∨ t3); that is, the first two formulas are in his theory, while the third is
not. Under these assumptions, (2) seems perfectly reasonable.

‘Implicit subadditivity’ can be captured in our framework simply by allowing
πS(t1) ⊇ πS(t2) ∪ πS(t3) ∪ πS(t4). Subsequent iterations of support theory propose
that subadditivity may also apply to explicit disjunctions, that is, s(t2∨t3∨t4) ≤ s(t2)+
s(t3)+s(t4). In our approach, this stronger form of subadditivity (and, more generally,
non-additivity) can be captured by considering nonstandard test interpretations; see
Section 5.

We are not taking a stand on the normative implications of extensionality fail-
ures. Our point is that extensionality and its failure is a product of the theory of the
world AX that a DM brings to the decision problem at hand (and how it compares
to the experimenter’s or modeler’s view of the world). One can extend conventional
expected utility to state spaces and act spaces that admit failures of extensionality.
A failure of extensionality is not inconsistent with the existence of an SEU represen-
tation on a suitably constructed state space. Moreover, if we modelers take t0 ⇔ t1
to be an axiom that describes the world, but our DM disagrees, then the probability
of the set (πS(t0)/πS(t1)) ∪ (πS(t1)/πS(t0)) measures the degree of framing bias
from the modeler’s point of view. Furthermore, our framework offers a natural way of
bringing support theory to decision problems; a DM’s degree of support for a formula
could be inferred from individuals’ willingness to accept certain bets.

In many experiments (e.g., that of Johnson et al. (1993)), some subjects
are exposed to a treatment where they see only implicit disjunctions, while others
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are exposed only to the basic events. Different subjects are exposed to different
frames, and different frames come with different languages, so there is no cause for
surprise that extensionality fails; options available in one treatment are not present
in the other treatment. It is also interesting to ask what happens when language
changes during the course of evaluation. We might imagine a sequential problem in
which subjects are first asked to make a broad assessment of why a car failed, and
then are asked for more explicit assessments about the source of the failure. The
second-stage questions add possibilities to the DM’s language. We could certainly
model this in a probabilistic way, which would show no subadditivity, but we can also
imagine alternatives that would be consistent with failures of extensionality. This,
however, is a topic for another paper.

3 The Axioms

This section lays out our basic assumptions on preferences. If we want to get an
SEU representation, then we must have an analogue of an independence axiom
or the sure-thing principle. However, in their usual form, these axioms require a
mixture space. The set of feasible programs is not a mixture space. A standard way
of dealing with this problem (see, e.g., (Krantz et al., 1971)) is to use cancellation
axioms. Since cancellation is not so well known among economists, we also illustrate
the relationship between cancellation and more familiar preference properties.

3.1 Preferences

We assume that the DM has a weak preference relation � on a subset C of the set
A (resp., A+) of non-randomized (resp., randomized) acts. This weak preference
relation has the usual interpretation of ‘at least as good as’. We take a � b to be an
abbreviation for a � b and b 6 � a, even if � is not complete. We prove various rep-
resentation theorems that depend upon the language, and upon whether outcomes
are taken to be given or not. The engines of our analysis are various cancellation
axioms, which are the subject of the next section. At some points in our analysis we
consider complete preferences:

A1. The preference relation � is complete.
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The completeness axiom has often been defended by the claim that ‘people, in the
end, make choices’. Nonetheless, from the outset of modern decision theory, com-
pleteness has been regarded as a problem. Savage (1954, Section 2.6) discusses
the difficulties involved in distinguishing between indifference and incompleteness.
He concludes by choosing to work with the relationship he describes with the sym-
bol 5 ·, later abbreviated as ≤, which he interprets as ‘is not preferred to’. The
justification of completeness for the ‘is not preferred to’ relationship is anti-symmetry
of strict preference. Savage, Aumann (1962), Bewley (2002) and Mandler (2001)
argue against completeness as a requirement of rationality. Eliaz and Ok (2006)
have argued that rational choice theory with incomplete preferences is consistent
with preference reversals. In our view, incompleteness is an important expression of
ambiguity in its plain meaning (rather than as a synonym for a non-additive represen-
tation of likelihood). There are many reasons why a comparison between two objects
of choice may fail to be resolved: obscurity or indistinctness of their properties, lack
of time for or excessive cost of computation, the incomplete enumeration of a choice
set, and so forth. We recognize indecisiveness in ourselves and others, so it would
seem strange not to allow for it in any theory of preferences that purports to describe
tastes (as opposed to a theory which purports to characterize consistent choice).

We will focus our analysis on preferences that may be incomplete. To us,
requiring completeness for preferences over the complex syntatic objects inA seems
unnaturally restrictive. Our axioms thus yield representation theorems for incomplete
preferences. Once we obtain states, outcomes, and acts, our theorems are similar to
other representation theorems for incomplete preferences (e.g., (Dubra et al., 2004,
Galaabaatar and Karni, 2013, Nau, 2006)), although our axioms differ as they are
placed on preferences over different objects. While representation theorems with
incomplete preferences are, by now, quite standard, we are able to use them ot give
some interesting insight into updating (see Section 6).

3.2 Cancellation

Although simple versions of the cancellation axiom have appeared in the literature
(e.g., Scott (1964) and Krantz et al. (1971)), it is nonetheless not well known, and so
before turning to our framework we briefly explore some of its implications in more
familiar settings. Nonetheless, some of the results here are new; in particular, the
results on cancellation for partial orders. These will be needed for proofs in the
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appendix.

Let C denote a set of choices and � a preference relation on C. We use the
following notation: Suppose 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are sequences of elements
of C. If for all c ∈ C, #{j : aj = c} = #{j : bj = c}, we write {{a1, . . . an}} =
{{b1, . . . , bn}}. That is, the multisets formed by the two sequences are identical.

Definition 5 (Cancellation). The preference relation � on C satisfies cancellation iff
for all pairs of sequences 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 of elements of C such that
{{a1, . . . , an}} = {{b1, . . . , bn}}, if ai � bi for i ≤ n− 1, then bn � an.

Roughly speaking, cancellation says that if two collections of choices are identical,
then it is impossible to order the choices so as to prefer each choice in the first collec-
tion to the corresponding choice in the second collection. The following proposition
shows that cancellation is equivalent to reflexivity and transitivity. Although Krantz
et al. (1971, p. 251) and Fishburn (1987, p. 743) have observed that cancellation
implies transitivity, this full characterization appears to be new.

Proposition 1. A preference relation � on a choice set C satisfies cancellation iff

(a) � is reflexive, and

(b) � is transitive.

All proofs are provided in the Appendix.

We use two strengthenings of cancellation in our representation theorems for
A and A+, respectively. The first, statewise cancellation, simply applies cancellation
to a setting where the objects of choice are functions; in that case, we apply cancel-
lation to each argument of the function. We first state the statewise cancellation to
Savage acts, which we view as functions from a finite set S of states to a finite set O
of outcomes. Let C denote a set of Savage acts and suppose that � is a preference
relation on C.

Definition 6 (Statewise Cancellation). The preference relation � on a set C of Sav-
age acts satisfies statewise cancellation iff for all pairs of sequences 〈a1, . . . , an〉 and
〈b1, . . . , bn〉 of elements of C, if {{a1(s), . . . , an(s)}} = {{b1(s), . . . , bn(s)}} for all
s ∈ S, and ai � bi for i ≤ n− 1, then bn � an.
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As written, statewise cancellation is really an infinite family of postulates, one
for each n. As we now show, we actually only need cancellation to hold for finitely
many values of n. Let SCn be the instance of cancellation that involves pairs of
sequences of length n.

Proposition 2. The preference relation� on C satisfies SCn, n = 1, 2, 3, . . . iff there
exists N such that � satisfies SCn for all n ≤ N .

The argument used to prove Proposition 2 applies with essentially no change to all
later variants of cancellation that we consider. We believe it should be possible to
obtain a bound on the number of instances of the cancellation postulate needed in
terms of the cardinality of the set C of Savage acts, although we have not proved
this.

Statewise cancellation is a powerful assumption because equality of the mul-
tisets is required only ‘pointwise’. Any pair of sequences that satisfy the conditions of
cancellation also satisfies the conditions of statewise cancellation, but the converse
is not true. For instance, suppose that S = {s1, s2}, and we use (o1, o2) to refer
to an act with outcome oi in state i, i = 1, 2. Consider the two sequences of acts
〈(o1, o1), (o2, o2)〉 and 〈(o1, o2), (o2, o1)〉. These two sequences satisfy the conditions
of statewise cancellation, but not that of cancellation.

In addition to the conditions in Proposition 1, statewise cancellation directly
implies event independence, a condition at the heart of SEU representation theorems
(and which can be used to derive the Sure Thing Principle). If T ⊆ S, let aT b be the
Savage act that agrees with a on T and with b on S − T ; that is aT b(s) = a(s) if
s ∈ T and aT b(s) = b(s) if s /∈ T . We say that � satisfies event independence iff
for all acts a, b, c, and c′ and subsets T of the state space S, if aT c � bT c, then
aT c

′ � bT c
′.

Proposition 3. If � satisfies statewise cancellation, then � satisfies event indepen-
dence.

Proposition 1 provides a characterization of cancellation for choices in terms of famil-
iar properties of preferences. We do not have a similarly simple characterization of
statewise cancellation. In particular, the following example shows that it is not equiv-
alent to the combination of reflexivity and transitivity of � and event independence.
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Example 5. Suppose that S = {s1, s2}, O = {o1, o2, o3}. There are nine possible
acts. Suppose that � is the smallest reflexive, transitive relation such that

(o1, o1) � (o1, o2) � (o2, o1) � (o2, o2) � (o3, o1) �
(o1, o3) � (o2, o3) � (o3, o2) � (o3, o3),

using the representation of acts described above. To see that � satisfies event inde-
pendence, note that

• (x, o1) � (x, o2) � (x, o3) for x ∈ {o1, o2, o3};

• (o1, y) � (o2, y) � (o3, y) for y ∈ {o1, o2, o3}.

However, statewise cancellation does not hold. Consider the sequences

〈(o1, o2), (o2, o3), (o3, o1)〉 and 〈(o2, o1), (o3, o2), (o1, o3)〉.

This pair of sequences clearly satisfies the hypothesis of statewise cancellation, that
(o1, o2) � (o2, o1) and (o2, o3) � (o3, o2), but (o1, o3)6 �(o3, o1).

For our representation theorems for complete orders, statewise cancellation
suffices. However, for partial orders, we need a version of cancellation that is equiv-
alent to statewise cancellation in the presence of A1, but is in general stronger.

Definition 7 (Extended Statewise Cancellation). The preference relation � on a set
C of Savage acts satisfies extended statewise cancellation if and only if for all pairs
of sequences 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 of elements of C such that
{{a1(s), . . . , an(s)}} = {{b1(s), . . . , bn(s)}} for all s ∈ S, if there exists some k < n
such that ai � bi for i ≤ k, ak+1 = · · · = an, and bk+1 = · · · = bn, then bn � an.

With extended statewise cancellation, we require that the last n− k elements
in each of the sequences are equal. The fact that bn � an thus means that bj � aj
for j = k+ 1, . . . , n. Note that statewise cancellation is the special case of extended
statewise calculation where k = n− 1.

Proposition 4. In the presence of A1, extended statewise cancellation and statewise
cancellation are equivalent.
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The extension of cancellation needed for A+ is based on the same idea
as extended statewise cancellation, but probabilities of objects rather than the in-
cidences of objects are added up. Let C denote a collection of elements from a
finite-dimensional mixture space. Thus, C can be viewed as a subspace of Rn for
some n, and each component of any c ∈ C is a probability. We can then formally
‘add’ elements of C, adding elements of Rn pointwise. (Note that the result of adding
two elements in C is no longer an element of C, and in fact is not even a mixture.)

Definition 8 (Extended Mixture Cancellation). The preference relation � on C sat-
isfies extended mixture cancellation iff for all pairs of sequences 〈a1, . . . , an〉 and
〈b1, . . . , bn〉 of elements of C, such that

∑n
i=1 ai =

∑n
i=1 bi, if there exists some

k < n such that ai � bi for i ≤ k, ak+1 = · · · = an, and bk+1 = · · · = bn, then
bn � an.

We can extend Proposition 1 to get a characterization theorem for preferences on
mixture spaces by using an independence postulate. The preference order � sat-
isfies mixture independence if for all a, b, and c in C, and all r ∈ (0, 1], a � b iff
ra + (1 − r)c � rb + (1 − r)c. The preference relation � satisfies rational mixture
independence if it satisfies mixture independence for all rational r ∈ (0, 1].

Theorem 1. A preference relation � on a finite-dimensional mixture space C satis-
fies extended mixture cancellation iff � is reflexive, transitive, and satisfies rational
mixture independence.

3.3 The cancellation postulate for choices

We use cancellation to get a representation theorem for preference relations on
choices. However, the definition of the cancellation postulates for Savage acts and
mixtures rely on (Savage) states. We now develop an analogue of this postulate for
our syntactic notion of choice.

Definition 9. Given a set T0 = {t1, . . . , tn} of primitive tests, an atom over T0 is a
test of the form t′1 ∧ . . . ∧ t′n, where t′i is either ti or ¬ti.

An atom is a possible complete description of the truth value of tests accord-
ing to the DM. If there are n primitive tests in T0, there are 2n atoms. Let At(T0)
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denote the set of atoms over T0. It is easy to see that, for all tests t ∈ T and atoms
δ ∈ At(T0), and for all state spaces S and standard test interpretations πS , either
πS(δ) ⊆ πS(t) or πS(δ)∩πS(t) = ∅. (The formal proof is by induction on the structure
of t.) We write δ ⇒ t if the former is the case. We remark for future reference that a
standard test interpretation is determined by its behavior on atoms. (It is, of course,
also determined completely by its behavior on primitive tests).

Definition 10. An atom δ (resp., test t) is consistent with a theory T if there exists
a state space S and a test interpretation πS ∈ ΠT such that πS(δ) 6= ∅ (resp.,
πS(t) 6= ∅). Let AtT (T0) denote the set of atoms over T0 consistent with T .

Intuitively, an atom δ is consistent with T if there is some state in some state space
where δ might hold, and similarly for a test t. The problem of checking whether an
atom or a test is consistent with a theory T is NP-complete (it is basically the problem
of testing whether a formula is satisfiable), that is, it is hard for the DM to do.2

A choice inA can be identified with a function from atoms to primitive choices
in an obvious way. For example, if a1, a2, and a3 are primitive choices and T0 =
{t1, t2}, then the choice a = if t1 then a1 else (if t2 then a2 else a3) can be identi-
fied with the function fa such that

• fa(t1 ∧ t2) = fa(t1 ∧ ¬t2) = a1;

• fa(¬t1 ∧ t2) = a2; and

• fa(¬t1 ∧ ¬t2) = a3.

Formally, we define fa by induction on the structure of choices. If a ∈ A0, then fa is
the constant function a, and

fif t then a else b(δ) =

{
fa(δ) if δ ⇒ t

fb(δ) otherwise.

We consider a family of cancellation postulates, relativized to the axiom sys-
tem T . The cancellation postulate for T (given the language A0) is simply statewise
cancellation for Savage acts, with atoms consistent with T playing the role of states.

2Satisfiability may or may not be relevant for the DM, depending on the task at hand.
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A2′. If 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are two sequences of choices in AA0,T0 such
that for each atom δ ∈ AtT (T0), {{fa1(δ), . . . , fan(δ)}} = {{fb1(δ), . . . , fbn(δ)}},
and there exists some k < n such that ai � bi for all i ≤ k, ak+1 = · · · = an, and
bk+1 = · · · = bn, then bn � an.

We drop the prime and refer to A2 when k = n− 1.

Axiom A2 implies the simple cancellation of the last section, and so the con-
clusions of Proposition 1 hold: � onA will be transitive and reflexive. A2 has another
consequence: a DM must be indifferent between T -equivalent choices.

Proposition 5. Suppose that � satisfies A2. Then a ≡T b implies a ∼ b.

Proposition 5 implies that the behavior of a and b on atoms not in AtT (T0) is
irrelevant; that is, they are null in Savage’s sense. We define this formally:

Definition 11. A test t is null if, for all acts a, b and c, if t then a else c ∼ if t then b
else c.

An atom (or test) inconsistent with the theory T must be null (so we can test if the DM
holds the theory T by checking whether, for all ¬t ∈ T , t is null), but consistent tests
may be null as well. If we add as an axiom that no test consistent with the theory can
be null, then (at least in principle) a DM’s theory is testable.

The notion of a null test is suggestive of, more generally, test-contingent pref-
erences.

Definition 12. If t is a test in T , then for any acts a and b, a �t b iff for some c,
if t then a else c � if t then b else c.

Proposition 3 shows that statewise cancellation implies that the choice of c is irrel-
evant, and so test-contingent preferences are well-defined. Before giving our rep-
resentation theorems, we compare our framework to that of Lipman (1999). Lipman
starts with a collection of preference relations�I indexed by what he calls information
sets I . For Lipman, an information set is a possible piece of information that a DM
might receive. An information set can be identified with a test in our framework (ex-
cept that information sets do not have the syntactic structure of tests). Lipman takes
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a possible world to be a maximal piece of information; Lipman’s possible worlds are
essentially our atoms. Lipman takes the DM’s subjective state space to be the set
of possible worlds. As we show (Theorem 2), if we assume A1 (as Lipman does),
then we can also take the DM’s subjective state space in our representation to be the
set of atoms consistent with the DM’s theory T . Otherwise, without A1, if we want a
representation with a single utility function, we cannot in general take the state space
to be just the set of atoms consistent with the DM’s theory T .

To get a representation theorem for A+, we use a mixture cancellation pos-
tulate, again replacing states by atoms. The idea now is that we can identify each
choice a with a function fa mapping atoms consistent with T into distributions over
primitive choices. For example, if t is the only test in T0 and T = ∅, then the choice
a = 1

2
a1 + 1

2
(if t then a2 else a3) can be identified with the function fa such that

• fa(t)(a1) = 1/2; fa(t)(a2) = 1/2

• fa(¬t)(a1) = 1/2; fa(¬t)(a3) = 1/2.

Formally, we just extend the definition of fa given in the previous section by defining

fra1+(1−r)a2(δ) = rfa1(δ) + (1− r)fa2(δ).

Consider the following cancellation postulate:

A2†. If 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are two sequences of acts in A+
A0,T0

such that

fa1(δ) + · · ·+ fan(δ) = fb1(δ) + · · ·+ fbn(δ)

for all atoms δ consistent with T , and there exists k < n such that ai � bi for i ≤ k,
ak+1 = . . . = an, and bk+1 = . . . = bn, then bn � an.

Again, A2† can be viewed as a generalization of A2′.3

3A2† is analogous to extended statewise mixture cancellation. It may seem strange that we need
the cancellation to be statewise, since extended statewise mixture cancellation is equivalent to ex-
tended mixture cancellation. This suggests that we might be able to use a simpler non-statewise
axiom. However, the obvious non-statewise version of the axiom and its statewise version are equiv-
alent only if we assume that all that matters about a choice is how it acts as a function from atoms to
primitive choices: If fa = fb, then a ∼ b. Rather than add this axiom, we use A2†.
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We use A2† or A2′ in our representations theorems. Since we consider DMs
who may be subject who have some obvious logical blindspots (and in Section 5
even conider DMs who may not satisfy the basic axioms of propositional logic), it
may seem unreasonable to expect an agent to satisfy these postulates. We do not
think it is always so unreasonable. For example, as we show in the proof of Theo-
rem 5, if we assume completeness, in the Anscombe-Aumann setting, cancellation is
equivalent to a number of other standard assumptions in the literature. Moreover, the
preferences of a DM who is maximizing expected utility with respect to her subjective
representation of the world will satisfy cancellation, even if the DM is not aware of the
property and is not actively trying to ensure that her preferences are consistent with
it. In any case, as we show, cancellation (or properties equivalent to it) is needed to
get an SEU-like representation. So agents that do not satisfy it will simply not act as
utility maximizers (even with respect to their subjective representation of the world).

4 Representation Theorems

Having discussed our framework, we now turn to the representation theorems. Our
goal is to be as constructive as possible. In this spirit we want to require that pref-
erences exist not for all possible acts that can be described in a given language, but
only for those in a given subset, henceforth designated C. We are agnostic about the
source of C. It could be the set of choices in one particular decision problem, or it
could be the set of choices that form a universe for a collection of decision problems.
One cost of our finite framework is that we will have no uniqueness results. In our
framework the preference representation can fail to be unique because of our free-
dom to choose different state and outcome spaces, but even given these choices, the
lack of richness of C may allow multiple representations of the same (partial) order.

4.1 A Representation Theorem for A

By a representation for a preference order on A we mean the following:

Definition 13. A preference relation on a set C ⊆ AA0,T0 has a constructive T -
consistent SEU representation iff there is a finite set of states S, a finite set O of
outcomes, a set U of utility functions u : O → R, a set P of probability distributions
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on S, a subset V ⊆ U × P , a test interpretation πS consistent with T , and a choice
interpretation ρSO such that a � b iff∑

s∈S

u
(
ρSO(a)(s)

)
p(s) ≥

∑
s∈S

u
(
ρSO(b)(s)

)
p(s) for all (u, p) ∈ V .

We are about to claim that � satisfies A2′ if and only if it has a constructive
T -consistent representation. In the representation, we have a great deal of flexibility
as to the choice of the state space S and the outcome space O. One might have
thought that the space of atoms, AtT (T0), would be a rich enough state space on
which to build representations. This is not true when preferences are incomplete and
we ask for a representation with a single utility function. A rich enough state space is
needed to account for the incompleteness.

Definition 14. Given a partial order � on a set C of choices, let EXAX(�) denote
all the extensions of � to a total order on C satisfying A2.

Our proof shows that we can take S to be AtT (T0) × EXAX(�). Thus, in
particular, if � is complete, then we can take the state space to be AtT (T0). We
later give examples that show that if � is not complete then, in general, if we ask
for a representation with a single utility function, then the state space must have
cardinality larger than that of AtT (T0). While for some applications there may be
a more natural state space, our choice of state space shows that we can always
view the DM’s uncertainty as stemming from two sources: the truth values of various
tests (which are determined by the atoms) and the relative order of two choices not
determined by � (which is given by the extension �′ ∈ EXAX(�) of �). The idea
of a DM being uncertain about her preferences is prevalent elsewhere in decision
theory; for instance, in the menu choice literature (Kreps, 1979). This uncertainty
can be motivated in any number of ways, including both incomplete information and
resource-bounded reasoning.

Theorem 2. A preference relation � on a set C ⊆ AA0,T0 has a constructive T -
consistent SEU representation iff � satisfies A2′. Moreover, in the representation,
either P or U can be taken to be a singleton and, if U is a singleton {u}, the state
space can be taken to be AtT (T0) × EXAX(�). If, in addition, � satisfies A1, then
V can be taken to be a singleton (i.e., both P and U can be taken to be singletons).

Theorem 2 is proved in the appendix. The proof proceeds by first establishing a state-
dependent representation using A0 as the outcome space, and then, by changing
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the outcome space, ‘bootstrapping’ the representation to an EU representation. This
technique shows that, when the state and outcome spaces are part of the represen-
tation, there is no difference between the formal requirement for a state-dependent
representation and that for a SEU representation. This does not mean that expected
utility comes ‘for free’; rather, we interpret it to mean that the beliefs/desires formalism
that motivates expected utility theory is sensible for the decision problems discussed
in this subsection only if the particular outcome space chosen for the representation
has some justification external to our theory. We note that if preferences satisfy A1,
the theorem requires only the cancellation axiom A2 rather than the stronger A2′.

There are no uniqueness requirements on P or U in Theorem 2. In part, this
is because the state space and outcome space are not uniquely determined. But
even if A1 holds, so that the state space can be taken to be the set of atoms, the
probability and the utility are far from unique, as the following example shows.

Example 6. Take A0 = {a, b}, T0 = {t}, and T = ∅. Suppose that � is the reflexive
transitive closure of the following string of preferences:

a � if t then a else b � if t then b else a � b.

Every choice inA is equivalent to one of these four, so A1 holds, and we can take the
state space to be S∗ = {t,¬t}. Let O∗ = {o1, o2}, and define ρ0

S∗O∗ so that ρ0
S∗O∗(a)

is the constant function o1 and ρ0
S∗O∗(b) is the constant function o2. Now define πS∗

in the obvious way, so that πS∗(t) = {t} and πS∗(¬t) = {¬t}. We can represent the
preference order by using any probability measure p∗ such that p∗(t) > 1/2 and any
utility function u∗ such that u∗(o1) > u∗(o2).

As Example 6 shows, the problem really is that the set of actions is not rich
enough to determine the probability and utility. By way of contrast, Savage’s postu-
lates ensure that the state space is infinite and that there are at least two outcomes.
Since the acts are all functions from states to outcomes, there must be uncountably
many acts in Savage’s framework.

The next example shows that without the completeness axiom A1, there may
be no representation in which there is only one utility function and the state space is
AtT (T0).

Example 7. Suppose that T0 = ∅, T = ∅, and A0 (and hence A) consists of the two
primitive choices a and b, which are incomparable. In this case, the smallest state
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space that we can use has cardinality at least 2. For if |S| = 1, then there is only one
possible probability measure on S, so a and b cannot be incomparable. Since there
is only one atom when there are no primitive propositions, we cannot take the state
space to be the set of atoms. There is nothing special about taking T0 = ∅ here;
similar examples can be constructed showing that we cannot take the state space
to be AtT (T0) for arbitrary choices of T0 if the preference order is partial. An easy
argument also shows that there is no representation where |O| = 1.

This preference relation can be represented with two outcomes and two states.
Let S = {s1, s2} and O = {o1, o2}. Define ρ0

SO(a)(si) = oi, and ρ0
SO(b)(si) = o2−i

for i = 1, 2. Let U contain a single function such that u(o1) 6= u(o2). Let P be any
set of probability measures including the measures p1 and p2 such that p1(s1) = 1
and p2(s1) = 0. Then the expected utility ranking of randomized acts under each
pi contains no nontrivial indifference, and the ranking under p2 is the reverse of that
under p1. Thus, these choices represent the preference order.

The assumption that there is only one utility function is critical here. For ex-
ample, we could also represent this preference relation using a single state and two
utility functions, u1 and u2, where u1(a) > u1(b) and u2(b) > u2(a). We conjecture
that if we allow multiple utility functions, then there is always a representation where
the state space is AtT (T0).

4.2 A Representation Theorem for A+

The purpose of this subsection is to show that for the language A+, we can get
something much in the spirit of the standard representation theorem for AA acts.
The standard representation theorem has a mixture independence axiom and an
Archimedean axiom. As we have seen, A2† gives us rational mixture independence;
it does not suffice for full mixture independence. To understand what we need, recall
that the standard Archimedean axiom for AA acts has the following form:

Arch. If a � b � c then there exist r, r′ ∈ (0, 1) such that a � ra + (1 − r)c � b �
r′a+ (1− r′)c � c.

While this axiom is both necessary for and implied by the existence of an SEU
representation when � is complete, the following example describes an incomplete
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preference order � with a multi-probability SEU representation that fails to satisfy
Arch.

Example 8. Suppose that S = {s1, s2, s3}. Let a1, a2, and a3 be acts such that
ai(sj) gives an outcome of 1 if i = j and 0 otherwise. Let P consist of all probability
distributions p on S such that p(s1) ≥ p(s2) ≥ p(s3). Define � by taking a � b
iff the expected outcome of a is at least as large as that of b with respect to all the
probability distributions in P . It is easy to see that a1 � a2 � a3, but for no r ∈ (0, 1)
is it the case that ra1 + (1 − r1)a3 � a2 (consider the probability distribution p such
that p(s1) = p(s2) = 1/2).

We can think of the Archimedean axiom as trying to capture some continuity
properties of�. We use instead the following axiom, which was also used by Aumann
(1962, 1964). If the set of tests has cardinality n and the set of primitive choices has
cardinality m, we can identify an act A+ with an element of R2nm, so the graph of �
(i.e., the set of pairs (x, y) such that x � y) can be viewed as a subset of R2n+1m.

A3. The graph of the preference relation � is closed.

As the following result shows, in the presence of A2† (extended statewise
mixture cancellation), A3 implies full mixture independence. Moreover, if we also
assume A1, then A3 implies Arch. Indeed, it will follow from Theorem 3 that in
the presence of A1 and A2†, A3 and Arch are equivalent. On the other hand, it
seems that Arch does not suffice to capture independence if � is a partial order.
Summarizing, A3 captures the essential features of the Archimedean property, while
being more appropriate if � is only a partial order.

Proposition 6. (a) A2† and A3 imply full mixture independence.
(b) A1, A3, and extended mixture cancellation together imply Arch.

Definition 15. A preference relation � on a set C ⊆ A+
A0,T0

has a constructive T -
consistent SEU representation iff there is a finite set of states S, a finite set O of
outcomes, a set U of utility functions u : O → R, a closed set P of probability
distributions on S, a closed set V ⊆ U × P , a test interpretation πS consistent with
T , and a choice interpretation ρSO such that a � b iff∑

s,o

u(o)ρSO(a)(s)(o)p(s) ≥
∑
s,o

u(o)ρSO(b)(s)(o)p(s) for all (u, p) ∈ V .
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In the statement of the theorem, if � is a preference relation on a mixture-
closed subset of A+

A0,T0
, we use � ⊗ (a, b) to denote the smallest preference order

including � and (a, b) satisfying A2† and A3, and take EX+
AX(�) to consist of all

complete preference orders extending � and satisfying A2† and A3.

Theorem 3. A preference relation � on a closed and mixture-closed set C ⊆ A+
A0,T0

has a constructive T -consistent SEU representation iff � satisfies A2† and A3.
Moreover, in the representation, either P or U can be taken to be a singleton and, if
U is a singleton {u}, the state space can be taken to be AtT (T0)× EX+

AX(�). If, in
addition, � satisfies A1, then V can be taken to be a singleton.

As in the case of the language A, we cannot in general take the state space
to be the set of atoms. Specifically, if A0 consists of two primitive choices and
we take all choices in A+

0 to be incomparable, then the same argument as in Ex-
ample 7 shows that we cannot take S to be At(T0), and there are no interesting
uniqueness requirements that we can place on the set of probability measures or
the utility function. On the other hand, if A1 holds, the proof of Theorem 3 shows
that, in the representation, the expected utility is unique up to affine transforma-
tions. That is, if (S,O, p, πS, ρ

0
SO, u) and (S ′, O′, p′, πS′ , ρ

0
S′O′ , u

′) are both repre-
sentations of �, then there exist constants α and β such that for all acts a ∈ A+

A0,T0
,

Ep(u(ρSO(a))) = αEp′(u
′(ρS′O′(a))) + β.

4.3 Objective Outcomes

In choosing, for instance, certain kinds of insurance or financial assets, there is a
natural, or objective, outcome space—in these cases, monetary payouts. To model
this, we take the set O of objective outcomes as given, and identify it with a subset
of the primitive acts A0. Call the languages with this distinguished set of outcomes
AA0,T0,O and A+

A0,T0,O
, depending on whether we allow randomization.

To get a representation theorem in this setting, we need to make some stan-
dard assumptions. The first is that there is a best and worst outcome; the second
is a state-independence assumption. However, this state-independence assumption
only applies to acts in O, but not to all acts.

A4. There are outcomes o1 and o0 such that for all non-null tests t, o1 �t a �t o0 for
all a ∈ A0.
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A5. If t is not null and o, o′ ∈ O, then o � o′ iff o �t o′.

In all our earlier representation theorems, it was possible to use a single utility
function. A4 and A5 do not suffice to get such a representation theorem. A nec-
essary condition to have a single utility function, if we also want utility to be state
independent, is that � restricted to O be complete.

A6. � restricted to O is complete.

While A5 and A6 are necessary to get a representation with a single utility
function, they are not sufficient, as the following example shows.

Example 9. Suppose that we have a language with one primitive test t, and three out-
comes, o0, o1, and o. Let a1 be if t then o0 else o1 and let a2 be if t then o1 else o0.
Let � be the smallest preference order satisfying A2′, A4, A5, and A6 (or A2†,
A3, A4, A5, and A6, if we are considering the language A+) such that o ∼ a1

and o1 � o0. Note that a1 and a2 are incomparable according to �. Suppose that
there were a representation of � involving a set P of probability measures and a
single utility function u. Thus, there would have to be probability measures p1 and
p2 in P such that a1 � a2 according to (p1, u) and a2 � a1 according to (p2, u). It
easily follows that p1(πS(t)) < 1/2 and p2(πS(t)) > 1/2. We can assume without
loss of generality (by using an appropriate affine transformation) that u(o0) = 0 and
u(o1) = 1. Since o ∼ a1, u(o) must be the same as the expected utility of a1. But
this expected utility is less than 1/2 with p1 and more than 1/2 with p2. This gives the
desired contradiction.

Part of the problem is that it is not just the acts in O that must be state inde-
pendent. Let O+ be the smallest set of acts containing O that is closed under convex
combinations, so that if o and o′ are in O+, then so is ro + (1 − r)o′. Let A5+ and
A6+ be the axioms that result by replacing O by O+ in A5 and A6, respectively.
Example 9 actually shows that A5+ and A6 do not suffice to get a single utility func-
tion; Theorem 4 shows that A5+ and A6+ do, at least for A+. We do not have a
representation theorem forA, and believe it will be hard to obtain such a theorem (for
much the same reasons that it is hard to get a representation theorem in the Savage
setting if we restrict to a finite set of acts).

Theorem 4. A preference relation � on a set C ⊆ A+
A0,T0,O

has a constructive SEU
representation with outcome space O iff � satisfies A2†, A3, A4, A5+, and A6+.
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Moreover, in the representation, U can be taken to be a singleton {u} and the state
space can be taken to have the form AtT (T0) × A0 × EX+

AX(�). If in addition �
satisfies A1, then we can take V to be a singleton too.

Note that, even if� satisfies A1, the state space has the form AtT (T0)×A0.
The fact that we cannot take the state space to be AtT (T0) is a consequence of
our assumption that primitive acts are deterministic. Roughly speaking, we need the
extra information in states to describe our uncertainty regarding how the primitive
acts not in O can be viewed as functions from states to outcomes in the pre-specified
set O. The following example shows that we need the state space to be larger than
AtT (T0) in general.

Example 10. Suppose that there are no primitive propositions, so AtT (T0) is a sin-
gleton. There are three primitive acts in A0: o1 = $50000, o0 = $0, and a, which is
interpreted as buying 100 shares of Alphabet. Suppose that o1 � a � o0. If there
were a representation with only one state, then ρSO(a) would have to be either o1

or o0, which would imply that a ∼ o1 or a ∼ o0, contradicting our description of �.
The issue here is our requirement that a primitive choice be represented as a func-
tion from states to outcomes. If we could represent a as a lottery, there would be no
problem representing � with one state. We could simply take u(o1) = 1, u(o0) = 0,
and take a to be a lottery that gives each of o0 and o1 with probability 1/2.

We prefer not to allow the DM to consider such ‘subjective’ lotteries. Rather,
we have restricted the randomization to acts. The representation theorem would not
change if we allowed primitive choice to map a state to a distribution over outcomes,
rather than requiring them to be mappings from states to single outcomes (except
that we could take the state space to be AtT (T0)).

We can easily represent � using two states, s0 and s1, by taking a to be the
act with outcome oi in state si, for i = 0, 1. Taking each of s0 and s1 to hold with
probability 1/2 then gives a representation of �. In this representation, we can view
s0 as the state where buying Alphabet is a good investment, and s1 as the state where
buying Alphabet is a bad investment. However, the DM cannot talk about Alphabet
being a good investment; this is not part of his language. Another DM might explicitly
consider the test that Alphabet is a good investment. Suppose this DM has the same
preference relation over primitive acts as in the example, is indifferent between 100
shares of Alphabet and o1 if the test is true, and is indifferent between 100 shares of
Alphabet and o0 if the test is false. This DM’s preference order has exactly the same
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representation as the first DM’s preference order, but now s0 can be viewed as the
atom where the test is false, and s1 can be viewed as the atom where the test is true.
The second DM can reason about Alphabet being a good investment explicitly, and
can talk to others about it.

5 Nonstandard Interpretations

Failures of extensionality are concerned with a semantic issue: Identifying when two
descriptions of an event are equivalent. However, the same issue arises with respect
to logical equivalence. For instance, suppose act a gives a DM x if ¬((¬t1 ∧ ¬t3) ∨
(¬t2 ∧ ¬t3)) is true, and y otherwise, and act b gives the DM x if (t1 ∧ t2) ∨ t3 is
true, and y otherwise. Only someone adept at formula manipulation (or with a good
validity-checking program) will recognize that acts a and b are equivalent as a matter
of logic because the equivalence of the two compound propositions is a tautology.
So far we have required that DMs be logically omniscient, and recognize all such
tautologies, because we have considered only standard interpretations.

An interpretation πS on a state space S does not have to be standard; all that
is required is that it associate with each test a subset of S. By allowing nonstan-
dard test interpretations, we can back off from our requirement that DM’s know all
tautologies. This gives us a way of modeling failures of logical omniscience and, in
particular, resource-bounded reasoning by DMs. We remark that such nonstandard
interpretations are essentially what philosophers call ‘impossible possible worlds’
(Rantala, 1982); they have also been used in game theory for modeling resource-
bounded reasoning (Lipman, 1999).

A standard test interpretation is completely determined by its behavior on the
primitive tests. However, in general, there is no similar finite characterization of a
nonstandard test interpretation. To keep things finite, when dealing with nonstandard
interpretations, we assume that there is a finite subset T ∗ of the set T of all tests
such that the only tests that appear in choices are those in T ∗. (This is one way to
model resource-bounded reasoning.) With this constraint, it suffices to consider the
behavior of a nonstandard interpretations only on the tests in T ∗. Let AA0,T ∗ consist
of all choices whose primitive choices are in A0 and whose tests are all in T ∗.

The restriction to choices in AA0,T ∗ allows us to define the cancellation pos-
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tulate in a straightforward way even in the presence of nonstandard interpretations.
A truth assignment to T ∗ is just a function v : T ∗ → {true, false}. We can identify
an interpretation on S with a function that associates with every state s ∈ S the truth
assignment vs such that vs(t) = true iff s ∈ π(t). For a standard interpretation,
we can use an atom instead of a truth assignment, since for a standard interpreta-
tion, the behavior of each truth assignment is determined by its behavior on primitive
propositions, and we can associate with the truth assignment vs that atom δs such
that t is a conjunct in δs iff vs(t) = true. These observations suggest that we can
consider truth assignments to be the generalization of atoms once we move to non-
standard interpretations. Indeed, if we do this, we can easily generalize all our earlier
theorems.

In more detail, we now view a choice as a function, not from atoms to prim-
itive choices, but, more generally, as a function from truth assignments to primitive
choices. As before, we take primitive choices to be constant functions. The choice
a = if t1 then a1 else (if t2 then a2 else a3) can be identified with the function fa
such that

fa(v) =

{
a1 if v(t1) = true

fif t2 then a2 else a3
if v(t1) = false

and

fif t2 then a2 else a3
=

{
a2 if v(t2) = true

a3 if v(t2) = false.

A truth assignment v is consistent with T if v(t) = true for all tests t ∈ T .

With these definitions in hand, all our earlier results hold, with the following
changes:

• we replace AA0,T0 by AA0,T ∗ ;

• we replace ‘atoms δ over T0’ by ‘truth assignment to T ∗’.

The cancellation axioms are all now well defined. With these changes, Proposition 5
and Theorems 2, 3, and 4 hold with essentially no changes in the proof. Thus, we
have representation theorems that apply even to resource-bounded reasoners.

There is one further subtlety, however. A theory puts constraints on the set
of test interpretations we consider. Up to now, we have taken a theory T to be a
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collection of tests. If we restrict to standard interpretations, this suffices, in the sense
that, given a state space S, for all sets I of standard interpretations for the state
space S of a set T of tests, there is a theory TI such that a test interpretation πS for
S respects TI iff πS ∈ I. That is, a theory can specify a set of interpretations. This
is no longer the case once we move to nonstandard interpretations. For example,
the nonstandard interpretation π∗S for S that makes every test true at every state (i.e.,
π∗S(t) = S for all tests t) respects every theory. There is no way that a theory can
disallow π∗S .

To understand why this is an issue, note that with standard interpretations, we
get many properties for free, so to speak. For example, for all test t, t and ¬t cannot
be simultaneously true. More precisely, for all standard interpretations πS for S, we
have πS(t) ∩ πS(¬t) = ∅. We might want to restrict to nonstandard interpretations
that have this property. Unfortunately, there is no way to do this if a theory is just a set
of tests; we cannot exclude the interpretation π∗S , and it does not have this property.
Similarly, we may want to restrict to interpretations where conjunction is commutative,
so πS(t1 ∧ t2) = πS(t2 ∧ t1). Note that just adding the test (t1 ∧ t2)⇔ (t2 ∧ t1) does
not have this effect; it just ensures that πS((t1 ∧ t2)⇔ (t2 ∧ t1)) = S.

We thus consider generalized theories, which consist of generalized axioms
of the form T1 = T2, where T1 and T2 are sets of tests. We also assume that there
are special primitive tests true and false. A test interpretation πS for a state space
S respects a generalized theory T if, for every generalized axiom T1 = T2 in T ,
{s ∈ S : s ∈ πS(t) for all t ∈ T1} = {s ∈ S : s ∈ πS(t) for all t ∈ T2}; that is, we
want all the tests in T1 to be true at a state s iff all the tests in T2 are true. Moreover,
we require that πS(true) = S and πS(false) = ∅.

Working with generalized theories gives us a great deal more power to put
constraints on nonstandard interpretations. For example:

• If T contains the generalized axiom T = {true}, then all the tests in T are
true at every state of a nonstandard interpretation that respects T . (Thus, this
particular generalized axiom has the same effect as the theories we considered
earlier.)

• If T contains {t1 ∧ t2} = {t2 ∧ t1} for all tests t1 and t2, then conjunction is
commutative for all nonstandard interpretations that respect T .
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• If T contains {t,¬t} = {F}, then at most one of t and ¬t will be true according
to πS .

Despite their added expressive power (once we allow nonstandard interpre-
tations), Proposition 5 and Theorems 2, 3, and 4 continue to hold with essentially no
changes in the proof if we allow generalized theories.

6 Updating

There is nothing unique about the state space chosen for an SEU representation of
a given choice problem. Our representation theorems state that if an SEU represen-
tation exists on any given state space and outcome space with test and choice inter-
pretation functions, then preferences satisfy the appropriate cancellation and other
appropriate axioms. Our proofs, however, show that (for standard interpretations) we
can always represent a choice situation on the state space AtT (T0)× EXAX(�), or
AtT (T0) × A0 × EXAX(�) for the objective-outcomes case, so this construction is
in some sense canonical. Just as importantly, this state space respects the DM’s
choice of language and her preferences, and seems like a natural state space for the
DM to use when reasoning about the decision problem.

In our models, there are two kinds of information. A DM can learn more about
the external world, that is, learn the results of some tests. A DM can also learn more
about her internal world, that is, she can learn more about her preferences. This
learning takes the form of adding more comparisons to her (incomplete) preference
order. To make this precise, given a preference order � on a set C ⊆ AA0,T0 sat-
isfying A2′, let � ⊕ (a, b) be the smallest preference order including � and (a, b)
satisfying A2′. (There is such a smallest preference order, since it is easy to see that
if �′ and �′′ both extend �, include (a, b), and satisfy A2′, then so does �′ ∩ �′′.)

If we take the state space to be AtT (T0) × EXAX(�), then a DM’s prefer-
ence order after obtaining either new test information or new comparison information
can be represented by conditioning the original probability measures. If P is a set
of probability distributions on some set S and E is a measurable subset of S, let
P | E = {q : q = p( · |E) for some p ∈ P with p(E) > 0}. That is, in computing
P | E, we throw out all distributions p such that p(E) = 0, and then apply standard
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conditioning to the rest. Let P | t = P | πS(t). In the theorems below, we condition
on a test t and on a partial order �′ extending �. We are implicitly identifying t with
the event {δ ∈ AtT (T0) : δ ⇒ t}, and �′ with the set of total orders in EXAX(�)
extending �.

Theorem 2c. Under the assumptions of Theorem 2, and with a representation of �
in which S = AtT (T0) × EXAX(�) and U is a singleton {u}, �t is represented by
P | t and u, and � ⊕ (a, b) is represented by P | (� ⊕ (a, b)) and u.

Theorem 3c. Under the assumptions of Theorem 3, and with a representation of �
in which S = AtT (T0) × EX+

AX(�) and U is a singleton {u}, �t is represented by
P | t and {u}, and � ⊗ (a, b) is represented by P | (� ⊗ (a, b)) and u.

Theorem 4c. Under the assumptions of Theorem 4, and with a representation of �
in which S = AtT (T0)×A0×EX+

AX(�) and U is a singleton {u}, �t is represented
by P | t and u, and � ⊗ (a, b) is represented by P | (� ⊗ (a, b)) and u.

Information in the external world is modeled as a restriction on the set of fea-
sible acts; information in the internal world is adding comparisons to a the preference
order. These theorems show that both kinds of information can be modeled within a
Bayesian paradigm.

7 Conclusion

Our formulation of decision problems has several advantages over more traditional
formulations. First, we theorize about only the actual observable choices available to
the DM, without having states and outcomes, and without needing to view choices as
functions from states to outcomes. In contrast, in many decision theory experiments,
when the DM is given a word problem, the experimenter has an interpretation of this
problem as a choice among Savage acts. The experimenter is then really testing
whether the DM’s choices are consistent with decision theory given this interpreta-
tion.

Thus, a joint hypothesis is being tested. Standard decision theory can be
rejected only if the other part of the joint test—that the experimenter and DM interpret
represent the word problem with identical Savage acts—is maintained as true. As we
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have shown, given the decision maker’s theory, our approach places restrictions on
choices. Thus, although our approach also leads to a joint hypothesis, we have a
framework for reasoning about what the decision maker knows about the world (a
theory) and about what restrictions on choices arise from SEU given the decision
maker’s theory, rather than the experimenter’s theory. In fact, if an experimenter is
willing to take the existence of an SEU representation as a maintained hypothesis,
she can test hypotheses about the DMs theory of the world.

Second, by viewing choices as syntactic objects, our approach allows us to
consider DMs who associate different meanings to the same object of choice. More-
over, that meaning can depend on the DM’s theory of the world. A DM might have a
theory that does not recognize equivalences between certain tests, and thus choices,
that may be obvious to others. This potential difference between a DM’s theory of the
world and an experimenter’s view of the world provides an explanation for framing
effects, while still allowing us to view a DM as an expected utility maximizer. More-
over, since a DM’s theory may not contain all of standard propositional logic, we can
model resource-bounded DMs who cannot discern all the logical consequences of
their choices. The existence of an SEU representation and the presence of framing
effects are independent once one is free to choose a state space.

Third, our approach allows us to consider different DMs who use different
languages to describe the same phenomena. To see why this might be important,
consider two decision makers who are interested in 100 shares of Alphabet stock
and money (as in Example 10). Suppose that one DM considers quantitative issues
like the price/earnings ratio to be relevant to the future value of Alphabet, while the
other considers astrological tables relevant to Alphabet’s future value. The DM who
uses astrology might not understand price/earnings ratios (the notion is simply not
in his vocabulary) and, similarly, the DM who uses quantitative methods might not
understand what it means for the moon to be in the seventh house. Nevertheless,
they can trade Alphabet stock and money, as long as they both have available primi-
tive actions like ‘buy 100 shares of Alphabet’ and ‘sell 100 shares of Alphabet’. If we
model these decision problems in the Savage framework, we would have to think of
assets as Savage acts on a common state and outcome space. Our approach does
not require us to tie the DM’s decision problems together with a common state space.
Every DM acts as if she has a state space, but these state spaces may be different.
Even if agents agree on the formulas of interest, they may interpret them completely
differently. Thus, agreeing to disagree results (Aumann, 1976), which say that DMs
with a common prior must have a common posterior (they cannot agree to disagree)
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will in general not hold.

A fourth advantage of our approach is more subtle, but potentially profound.
Representation theorems are just that; they merely provide a description of a prefer-
ence order in terms of numerical scales. Decision theorists make no pretense that
these representations have anything to do with the cognitive processes by which in-
dividuals make decisions. But to the extent that the language of choices models the
language of the DM, we have the ability to interpret the effects of cognitive limitations
having to do with the language in terms of the representation. Our approach allows
us to consider the possibility that there may be limitations on the space of choices
because some sequence of tests is too computationally costly to verify. Our model of
nonstandard test interpretations also takes into account a DM’s potential inability to
recognize that two choices logically represent the same function.

There is clearly more than could be done to develop our approach and apply it
in various settings. One obvious development would be to consider decision making
over time, which will require us to consider learning in more detail. Learning in our
framework is not just a matter of conditioning, but also learning about new notions
(i.e., becoming aware of new tests). Note that considering dynamic decision-making
will require us to take a richer collection of objects of choice, a programming language
that allows (among other things) sequential actions (do this, then do that, then do
that). A second direction to consider is multi-agent decision making. As we have
suggested in examples, once we move to a multi-agent case, we can consider agents
who may use different languages. There is clearly a connection here between our
framework and the burgeoning literature on awareness and its applications to game
theory (see, for example, (Feinberg, 2004, Fagin and Halpern, 1988, Halpern, 2001,
Halpern and Rêgo, 2006, Heifetz et al., 2006, Karni and Vierø, 2013, Modica and
Rustichini, 1999) that needs to be explored.

We have shown how our approach can model framing problems as a conse-
quence of the agent having a different theory from the modeler. We believe that our
approach can also model other ‘deviations’ from rationality of the type reported by
Luce (1990), such as failures of particular accounting identities that lead to the re-
quirement that a DM is indifferent between formally equivalent gambles. These devia-
tions can be viewed as a consequence of an agent’s bounded processing power. This
will require us to be able to distinguish sentences such as, for example, 2/3(1/4a +
3/4b) + 1/3c and 1/6a + 5/6(3/5b + 2/5c). To do that, we need to give seman-
tics to choices that does not view them as functions from states to distributions over
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outcomes. We leave further exploration of all these issues to future work.

Appendix

Proof of Proposition 1. First suppose that cancellation holds. To see that � is re-
flexive, take n = 1 and a1 = b1 = a in the cancellation axiom. The hypothesis of the
cancellation axiom clearly holds, so we must have a � a. To see that cancellation
implies transitivity, consider the pair of sequences 〈a, b, c〉 and 〈b, c, a〉. Cancellation
clearly applies. If a � b and b � c, then cancellation implies a � c.

We also need to prove the converse part of the proposition. For the converse,
suppose that � is reflexive and transitive. By way of contradiction, suppose that
〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are two sequences of minimal cardinality n that violate
cancellation; that is, {{a1, . . . , an}} = {{b1, . . . , bn}}, ai � bi for i ∈ {1, . . . , n− 1},
and it is not the case that bn � an

If n = 1, and {{a}} = {{b}}, then we must have a = b, and the cancellation
postulate holds iff a � a, which follows from our assumption that � is reflexive.

If n > 1, since the two multisets are equal, there must be some permutation
τ of {1, . . . , n} such that aτ(i) = bi. Let τ j(1) be the result of applying τ j times,
beginning with 1. Let k be the first integer such that τ k+1(1) is either 1 or n. Then we
have the situation described by the following table, where the diagonal arrow denotes
equality.

a1 � b1

↙
aτ(1) � bτ(1)

↙
...

...
↙

aτk(1) � bτk(1)

Note that we must have k ≤ n− 1. If τ k+1(1) = 1, then bτk(i) = a1. Thus, the multi-
sets {{a1, . . . , aτk(1)}} and {{b1, . . . , bτk(1)}}must be equal. The sequences that re-
main after removing {{a1, . . . , aτk(1)}} from the first sequence and {{b1, . . . , bτk(1)}}
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from the second also provide a counterexample to the cancellation axiom, contradict-
ing the minimality of n. Thus, τ k+1(1) = n, and we can conclude by transitivity that
a1 � an.

Continuing on with the iteration procedure starting with aτk+2(1) = aτ(n) = bn,
we ultimately must return to a1 and b1, as illustrated in the following table: a1 and b1.

bn = aτk+1(1) � bτk+1(1)

↙
...

...
↙

aτ l(1) � bτ1(1) → a1

It follows from transitivity that bn � a1. By another application of transitivity, we
conclude that bn � an. This contradicts the hypothesis that the original sequence
violated the cancellation axiom.

Proof of Proposition 2. Let PO(C) denote all the preference orders� on C. Since
C is finite, so is PO(C). Let PO(C, n) denote the subset of PO(C) consisting of
all preference orders � satisfying SC1, . . . , SCn. PO(C, 1), PO(C, 2), . . . is clearly
a nondecreasing sequence of sets of preference orders. Since PO(C) is finite, the
sequence must stabilize at some point; that is, there must exist some N such that
PO(C, n) = PO(C,N) for all n ≥ N . It follows that if a preference order � on C
satisfies SC1, . . . , SCN , then it satisfies SCn for all n.

Proof of Proposition 3. Take 〈a1, a2〉 = 〈aT c, bT c′〉 and take 〈b1, b2〉 = 〈bT c, aT c′〉.
Note that for each state s ∈ T , {{aT c(s), bT c′(s)}} = {{a(s), b(s)}} =
{{bT c(s), aT c′(s)}}, and for each state s /∈ T , {{aT c(s), bT c′(s)}} =
{{c(s), c′(s)}} = {{bT c(s), aT c′(s)}}. Thus, we can apply statewise cancellation to
get that if aT c � bT c, then aT c′ � bT c

′.

Proof of Proposition 4. Suppose the hypotheses of extended statewise cancella-
tion hold. If bn � an, we are done. If not, by A1, an � bn. But then the hypotheses of
statewise cancellation hold, so again, bn � an.
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Proof of Theorem 1. Suppose that � satisfies extended mixture cancellation. Then
it satisfies cancellation, and so from Proposition 1, � is reflexive and transitive. To
show that � satisfies rational mixture independence, suppose that a � b and r =
m/n. Let a1 = · · · = am = a and am+1 = · · · = am+n = rb + (1 − r)c; let b1 =
· · · = bm = b and bm+1 = · · · = bm+n = ra + (1− r)c. Then

∑m+n
i=1 ai =

∑m+n
i=1 bi,

and so ra+ (1− r)c � rb+ (1− r)c.

Similarly, if ra + (1 − r)c � rb + (1 − r)c, then applying extended mixture
cancellation to the same sequence of acts shows that a � b.

For the converse, suppose that � is reflexive, transitive, and satisfies rational
mixture independence. Suppose that 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are sequences of
of elements of C such that a1 + · · ·+ an = b1 + · · ·+ bn, ai � bi for i = 1, . . . , n− k,
ak+1 = . . . = an, and bk+1 = . . . = bn. Then from transitivity and rational mixture
independence we get that

1

n
(a1 + · · ·+ an) � 1

n
(b1 + · · ·+ bk + ak+1 + · · ·+ an)

=
1

n
(b1 + · · ·+ bk) +

n− k
n

an.

Since bk+1 = . . . = bn and a1 + · · ·+ an = b1 + · · ·+ bn, we have that

1

n
(b1 + · · ·+ bk) +

n− k
n

(bn) =
1

n
(b1 + · · ·+ bn) =

1

n
(a1 + · · ·+ an).

Thus, by transitivity,

1

n
(b1 + · · ·+ bk) +

n− k
n

(bn) � 1

n
(b1 + · · ·+ bk) +

n− k
n

(an).

By rational mixture independence, it follows that bn � an.

Proof of Proposition 5. Let S = AtT (T0), the set of atoms consistent with T , let O
be A0, the set of primitive choices, and define ρ0

SO(c) to be the constant function c
for a primitive choice c. It is easy to see that ρSO(c) = fc for all choices c. If a ≡T b,
then ρSO(a) = ρSO(b), so we must have fa = fb. Now apply A2 with a1 = a and
b1 = b to get b � a, and then reverse the roles of a and b.

Proof of Proposition 6. For part (a), suppose that a � b, and c is an arbitrary act.
By Theorem 1, rational mixture independence holds, so we have ra + (1 − r)c �
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rb+ (1− r)c for all rational r. By A3, we have ra+ (1− r)c � rb+ (1− r)c for all
real r. Conversely, suppose that ra + (1− r)c � rb + (1− r)c for some real r. If r
is rational, it is immediate from rational mixture independence that a � b. If r is not
rational, choose a rational r′ such that 0 < r′ < r. Then we can find a sequence of
rational numbers rn such that rnr converges to r′. By rational mixture independence,
rn(ra+ (1− r)c) + (1− rn)c � rn(rb+ (1− r)c) + (1− rn)c. By A3, it follows that
r′a + (1 − r′)c � r′b + (1 − r′)c. Now by rational mixture independence, we have
a � b, as desired.

For part (b), suppose that a � b � c. Mixture independence (which follows
from A2† and A3, as we have observed) implies that, for all r ∈ (0, 1), a � ra +
(1 − r)c. To see that ra + (1 − r)c � b for some r ∈ (0, 1), suppose not. Then, by
A1, b � ra+ (1− r)c for all r ∈ (0, 1), and by A3, we have that b � a, contradicting
our initial assumption. The remaining inequalities follow in a similar fashion.

We now prove the representation theorems: Theorems 2, 3, and 4. They all
use essentially the same technique. It is convenient to start with Theorem 3. The
first step is to get an additively separable utility representation for AA acts on a state
space S with outcome space O. This result is presented in Theorem 5 which is
somewhat novel because we use extended mixture cancellation and A3 rather than
independence and Arch, and because � can be incomplete.

Theorem 5. A preference relation� on a set C of mixture-closed AA acts mapping a
finite set S of states to distributions over a finite setO of outcomes satisfies Extended
Mixture Cancellation and A3 iff there exists a set U of utility functions on S ×O such
that a � b iff ∑

s∈S

∑
o∈O

u(s, o)a(s)(o) ≥
∑
s∈S

∑
o∈O

u(s, o)b(s)(o) (3)

for all u ∈ U . Moreover, � also satisfies A1 iff we can take U to be a singleton {u}.
In this case, u is unique up affine transformations: if u′ also satisfies (3), then there
exist α and β such that u′ = αu+ β.

Proof. In the totally ordered case, this result is well known. Indeed, for a prefer-
ence order � that satisfies A1, Proposition 7.4 of (Kreps, 1988) shows that such
a representation holds iff � satisfies Arch, mixture independence, transitivity, and
reflexivity. Theorem 1 and Proposition 6 show that if � satisfies extended mixture
cancellation, A1, and A3, then these properties hold, so there is a representation.
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Conversely, if there is such a representation, then all these properties are easily seen
to hold. It follows that in the presence of A1, extended mixture cancellation and A3
are equivalent to these properties. However, since we do not want to assume A1,
we must work a little harder. Fortunately, the techniques we use will be useful for our
later results.

To see that the existence of a representation implies Extended Mixture Can-
cellation and A3, first consider Extended Mixture Cancellation, and suppose that
〈a1, . . . , an〉 and 〈b1 . . . , bn〉 are such that a1 � b1, . . . , ak � bk, ak+1 = . . . = an,
bk+1 = · · · = bn, and a1 + · · · + an = b1 + · · · + bn. For all u ∈ U , for i = 1, . . . , k,
we have ∑

s∈S

u(s, ai(s)) ≥
∑
s∈S

u(s, bi(s)).

Since a1 + · · ·+ an = b1 + · · ·+ bn, for all s ∈ S, it must be that, for all u ∈ U ,

n∑
i=1

∑
s∈S

u(s, ai(s)) =
n∑
i=1

∑
s∈S

u(s, bi(s)).

Thus, for all u ∈ U ,

n∑
i=k+1

∑
s∈S

u(s, ai(s)) ≤
n∑

i=k+1

∑
s∈S

u(s, bi(s)).

Since ak+1 = . . . = an and bk+1 = . . . = bn, it easily follows that, for all u ∈ U ,∑
s∈S

u(s, an(s)) ≤
∑
s∈S

u(s, bn(s)).

Thus bn � an, as desired. The fact that A3 holds is straightforward, and left to the
reader.

For the ‘if’ direction, recall that we can view the elements of C as vectors in
R|S|×|O|. For the rest of this proof, we identify elements of C with such vectors. Let
D = {a− b : a, b ∈ C}, and let D+ = {a− b : a � b}. Recall that a (pointed) cone
in R|S|×|O| is a set CC that is closed under nonnegative linear combinations, so that
if c1, c2 ∈ CC and α, β ≥ 0, then αc1 + βc2 ∈ CC. We need the following lemma.

Lemma 1. There exists a closed convex cone CC such that D+ = CC ∩D.
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Proof. Let CC consist of all vectors of the form α1d1 + · · · + αndn for some n >
0, where d1, . . . , dn ∈ D+ and α1, . . . , αn ≥ 0. Clearly CC is a convex cone,
and closed because D+ is finite. Also, D+ ⊆ CC ∩ D. For the opposite inclu-
sion, suppose that α1d1 + · · · + αndn = d, where d1, . . . , dn ∈ D+, d ∈ D, and
α1, . . . , αn ≥ 0. Thus, there must exist a1, . . . , an, b1, . . . , bn, a, b ∈ C such that
a− b = d, ai − bi = di, and ai � bi for i = 1, . . . , n. We want to show that d ∈ D+

or, equivalently, that a � b. Let r = α1 + · · ·+αn+1. Since C is mixture-closed, both
(α1/r)a1+· · ·+(αn/r)an+(1/r)b ∈ C and (α1/r)b1+· · ·+(αn/r)bn+(1/r)a are in
C. Moreover, since α1d1+· · ·+αndn = d and ai � bi for i = 1, . . . , n, it easily follows
from mixture independence (which is a consequence of extended mixture cancella-
tion) that (α1/r)b1 + · · ·+(αn/r)bn+(1/r)a = (α1/r)a1 + · · ·+(αn/r)an+(1/r)b �
(1/r)b1 + · · ·+ (1/r)bn + (1/r)b. Another application of mixture independence gives
us a � b, as desired.

Returning to the proof of Theorem 5, note that if a � b for all a and b, then
D+ = D, and we can take CC to be the whole space. If � is nontrivial, then CC is
not the whole space. It is well known (Rockafellar, 1970) that every closed cone that
is not the whole space is the intersection of closed half-spaces (where a half-space is
characterized by a vector u such and consists of all the vectors x such that u ·x ≥ 0).
Given our identification of elements of C with vectors, we can identify the vector u in
R|S|×|O| characterizing a half-space with a (state-dependent) utility function, where
u(s, o) is the (s, o) component of the vector u. If CC is the whole space, we can
get a representation by simply taking U to consist of the single utility function such
that u(s, o) = 0 for all (s, o) ∈ S × O. Otherwise, we can take U to consist of the
utility functions characterizing the half-spaces containing CC . It is easy to see that
for a, b ∈ C, we have that a � b iff a − b ∈ D+ iff a − b ∈ CC iff u · (a − b) ≥ 0 for
every half-space u containing CC ; i.e. iff (3) holds.

To prove Theorem 3, the following lemma, which shows that we can identify
complete preference orders with half-spaces, is also useful. Given a subset R of
R|S|×|O|, define the relation �R on C by taking a �R b iff a− b ∈ R.

Lemma 2. EXAX = {�R: R is either a half-space containing CC or the full space}.

Proof. IfR is the full space, then�R is the trivial relation, so clearly�R ∈ EXAX(�).
If R is a half-space H containing CC and H is characterized by u, then �H extends
�, since CC ⊆ H . To see that �H satisfies A1, observe that if (a, b) /∈�H , then



45

u · (a − b) < 0, so u · (b − a) > 0, and b �H a. To see that �H satisfies A2′,
suppose that a1 + · + an = b1 + · + bn, and ai �H bi for i = 1, . . . , n − 1. Thus,
u · (a1 + ·+ an) = u · (b1 + ·bn), and u · (ai − bi) ≥ 0 for i = 1, . . . , n− 1. It follows
that (bn− an) · u ≥ 0, so bn �H an. Finally, for A3, it is clear that if (an, bn)→ (a, b),
and u · (an − bn) ≥ 0, then u · (a− b) ≥ 0, so a �H b. Thus, �H ∈ EXAX(�).

For the opposite inclusion, suppose that�′ ∈ EXAX(�). Let CC ′ be the cone
determined by �′, as in Lemma 1. Clearly CC ⊆ CC ′. If CC ′ is the full space, then
we are done, since �′=�CC ′ . Otherwise, CC ′ is the intersection of half-spaces.
Choose a half-space H such that CC ′ ⊆ H . We claim that �′=�H . Suppose not.
Since CC ′ ⊆ H , we must have�′⊆�H . There must exist a, b ∈ C such that a �H b
and a 6 �′b. Since �′ is complete, we must have b �′ a. Thus, b �H a, so a ∼H b.
Since H is not the full space, there must be some c such that b 6∼Hc. Suppose that
c �H b. We must have c � b, since otherwise b �′ c, and it follows that b ∼H c. By
the Archimedean property (which holds by Proposition 6), since c �′ b �′ a, there
exists r > 0 such that b �′ rc+(1−r)a. Thus we must have b �H rc+(1−r)a �H b.
But this contradicts the assumption that c �H b ∼H a. We get a similar contradiction
if b �H c, since then a �H c.

Proof of Theorems 3 and 3c. It is easy to check that if there is a constructive SEU
representation of �, then � satisfies A2† and A3.

For the converse, suppose that � satisfies A2† and A3. Take S = AtT (T0)
and O′ = A0. Define πS(t) to be the set of all atoms δ in AtT (T0) such that δ ⇒ t.
Define ρ0

SO′(a) to be the constant function a for a primitive choice a. It is easy to
see that ρSO′(a) = fa for all choices a ∈ C. Define a preference relation �S on the
AA acts of the form ρSO′(a) by taking fa �S fb iff a � b. The fact that �S is well
defined follows from Proposition 5, for if fa = fa′ , then it easily follows that a ≡T a′,
so a ∼ a′. Clearly �S satisfies extended statewise cancellation, and satisfies A1 iff
� does. Thus, by Theorem 5, there is an additively separable representation of �.

Now we adjust the state and outcome spaces to get a constructive SEU
representation. Suppose first that A1 holds. Take S = AtT (T0) and take O =
AtT (T0) × A0. For a primitive choice a ∈ A0, define ρ0

SO(a)(δ) = (δ, a). To com-
plete the proof, it clearly suffices to find a probability measure p on AtT (T0) and a
utility function v on AtT (T0) × A0 such that u(δ, a) = p(δ)v(δ, a), where u is the
state-dependent utility function whose existence is guaranteed by Theorem 5. This is
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accomplished by taking any probability measure p on AtT (T0) such that for all atoms
δ, p(δ) > 0, and taking v(δ, a) = u(δ, a)/p(δ).

If A1 does not hold, then proceed as above, using Theorem 5 to get an entire
set U ′ of functions u : AtT (T0) × A0 → R, and a single probability distribution p
that assigns positive probability to every atom. Let U consist of all utility functions
u such that there exists some u′ ∈ U ′ such that u(α, δ) = u′(δ, a)/p(δ). In this
representation, again, the state space is AtT (T0).

We now give a representation using a single utility function. Let S ′ = AtT (T0)×
EXAX(�), and let O′′ = AtT (T0)×A0 × EXAX(�). Define
ρ0
S′O′′(a)(δ,�′) = (δ, a,�′). For t ∈ T0, define πS′(t) = πS(t) × EXAX(�). As be-

fore, let U ′ be the set of utility functions on AtT (T0)×A0 that represent �. Lemma 2
shows that U ′ consists of one utility function u�′ for every total order �′∈ EXAX(�).
Again, fix a probability measure p on AtT (T0) such that p(δ) > 0 for all δ ∈ AtT (T0).
For each relation �′∈ EXAX(�), define p�′ on AtT (T0) × EXAX(�) by taking
p�′(δ,�′′) = p(δ) if �′=�′′, and p�′(δ,�′′) = 0 if �′ 6=�′′. Let P = {p�′ :�′∈
EXAX(�)}. Define v(δ, a,�′) = u�′(δ, a)/p(δ). It is easy to see that P ×{v} repre-
sents �. Moreover, it easily follows that, with this representation, �t and � ⊕ (a, b)
can be represented by updating.

Now we show how the ideas in this proof can be modified to prove Theorems 2
and 2c.

Proof of Theorems 2 and 2c. Again, it is easy to check that if there is a constructive
SEU representation of �, then � satisfies A2′.

For the converse, given a preference relation � that satisfies A2′. The struc-
ture of the proof is identical to that of Theorem 3. We first prove an analogue of
Theorem 5.

Theorem 6. A preference relation � on a set C of Savage acts mapping a finite set
S of states to a finite set O of outcomes satisfies extended statewise cancellation iff
there exists a set U of utility functions on S ×O such that a � b iff∑

ss∈S

u
(
s, a(s)

)
≥ u

(
s, b(s)

)
for all u ∈ U . (4)
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Moreover, � satisfies A1 iff U can be chosen to be a singleton.4

The proof of Theorem 6 is identical to that of Theorem 5, except that we need
an analogue of Lemma 1 for the case that � satisfies A2′. Let D and D+ be defined
as in Lemma 1.

Lemma 3. If � satisfies A2′ There exists a cone CC such that D+ = CC ∩D.

Proof. Again, let CC consist of all vectors of the form α1d1 + · · · + αndn for some
n > 0, where d1, . . . , dn ∈ D+ and α1, . . . , αn ≥ 0. Clearly CC is a cone. Since
C is closed and bounded, so is D, and A3 implies that D+ is closed and bounded.
Therefore CC is closed. Furthermore, D+ ⊆ CC ∩ D. For the converse inclu-
sion, suppose that α1d1 + · · · + αndn = d, where d1, . . . , dn ∈ D+, d ∈ D, and
α1, . . . , αn ≥ 0. That means that α1, . . . , αn is a nonnegative solution to the system
of equations x1d1 + · · · + xndn = d. Since all the coefficients in these equations
are rational (in fact, they are all 0, 1, and −1) there exists a nonnegative ratio-
nal solution to this system of equations. It easily follows that there exist positive
integers β1, . . . , βn+1 such that β1d1 + · · · + βndn = βn+1d. By definition, there
must exist a1, . . . , an, b1, . . . , bn, a, b ∈ C such that a − b = d, ai − bi = di, and
ai � bi for i = 1, . . . , n. It follows that {{a1, . . . , a1, . . . , an, . . . , an, b, . . . , b}} =
{{b1, . . . , b1, . . . , an, . . . , an, b, . . . , b}}, where ai occurs in the left-hand multiset βi
times and b occurs βn+1 times, and, similarly, bi occurs in the right-hand side βi times
and a occurs βn+1 times. A2′ now implies that a � b, so d ∈ CC , as desired.

The proof of Theorem 6 is now identical to that of Theorem 5. Moreover, the
proof of Theorem 2 now follows from Theorem 6 in exactly the same way that the
proof of Theorem 3 follows from Theorem 5.

Proof of Theorems 4 and 4c. First, let S = AtT (T0) and O′ = A0. As in the proof
of Theorem 3, using Theorem 5, we can find an additively separable representation of
�; that is, we can find a set U of utility functions on S = AtT (T0)×A0 that represent
�. Let o1 and o0 denote the best and worst outcomes guaranteed to exist by A4.
Note that it follows from A4 and A5 that u(δ, o0) ≤ u(δ, a) ≤ u(δ, o1) for all (δ, a) ∈
S. (For null atoms δ, we must in fact have u(δ, o0) = u(δ, a) = u(δ, o1) for all a ∈ A0).

4This result is a generalization of Theorem 4.1 of Fishburn (1970), which can be viewed as consid-
ering the case where |S| = 1 and the preference relation � is complete (i.e., satisfies A1).
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Furthermore, note that we can replace u by u′, where u′(δ, a) = u(δ, a) − u(δ, o0)
for all (δ, a) ∈ S to get an equivalent representation; thus, by appropriate scaling, we
can assume without loss of generality that, for all u ∈ U , we have that u(δ, o0) = 0 for
all δ ∈ AtT (T0) (so u(δ, a) ≥ 0 for all (δ, a) ∈ S) and that

∑
δ′∈AtT (T0) u�′(δ

′, o1) = 1.
Finally, note that it easily follows from A3 that, for all o ∈ O, there exists a unique
co ∈ [0, 1] such that o ∼ coo1 + (1− co)o0 (in fact, co = inf{c : co1 + (1− c)o0 � o}).
Clearly co1 = 1 and co0 = 0. By A5, it follows that o ∼δ coo1 +(1−co)o0 for all atoms
δ. Thus, we must have that u(δ, o) = c0u(δ, o1) for all atoms δ and all u ∈ U .

We now construct a state-independent SEU representation using O as the
outcome space. Let S ′ = AtT (T0) ×A0 × EX+

AX(�). Define π0
S′ by taking π0

S(t) =
∪δ⇒t{δ × A0 × EX+

AX(�)}, and define ρSO(a)((δ, a′,�′)) to be a if a ∈ O; o1 if
a ∈ A0 − O and a �′δ a′; and o0 otherwise. Let u′ be defined by taking u′(o) = co.
Finally, recall that we can take U = {u�′ :�′∈ EX+

AX(�)}, where u�′ represents �′.
Let p�′ be defined so that p�′(δ, a,�′′) = 0 and, for all a ∈ A0, p�′({(δ, a′,�′) : a �′
a′}) = u�′(δ, a). It is easy to check that a probability measure p�′ can be defined so
as to satisfy this constraint. In particular, note that p�′({δ}×A0×{�′}) = u�′(δ, o1).
For all (δ, a) ∈ S, we have that

u�′(δ, a) =
∑

a′: a�′a′
p�′(δ, a

′,�′) =
∑
a′∈A0

p�′(δ, a
′,�′)u(ρS′O(a)(δ, a′,�′)).

It follows that P and u represent �, where P = {p�′ :�′∈ EX+
AX(�)}. As usual, it

is straightforward to verify that updating works appropriately.
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