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1. INTRODUCTION

The object of this paper will be to study games of the follow-

ing type. A matrix
(ajj)

is given in which a player must choose
a row. A column will be chosen by

"
Nature", a fictitious player

having no known objective and no known strategy. The payoff to

the player will then be given by the entry in that particular row
and column. This entry should represent a numerical utility in

the sense of von Neumann and Morgenstern. (See [3] or [l].)

It will be shown that several known criteria for playing such

games can be characterized by simple axioms. An axiomatic

procedure will also be used to criticise these criteria, and to

study the possibilities for other criteria.

(Our basic assumption that the player has absolutely no in-

formation about Nature may seem too restrictive. However
such no- information games may be used as a normal form for
a wider class of games in which certain types of partial infor-
mation are allowed. For example if the information consists of

bounds for the probabilities of the various states of Nature, then

by considering only those mixed strategies for Nature which
satisfy these bounds, we construct a new game having no infor-

mation. Unfortunately in practice partial information often oc-
curs in vague, non-mathematical forms which are difficult to

handle.)
The following criteria have been suggested for such games

against Nature.

Laplace. If the probabilities of the different possible states
of Nature are unknown, we should assume that they are all equal.

The preparation of this paper was sponsored in part by the
RAND Corporation. The author was a National Science Founda-
tion fellow during 1952-53.
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50 DECISION PROCESSES

Thus if the player chooses the i-th row his expectation is given

by the average (au+- +ain)/n, and he should choose a row for

which this average is maximized.

Wald [4] (Minimax principle). If the player chooses the i-th

row then his payoff will certainly be at least Min
aij.

The safest

possible course of action is therefore to choose a row for which

Min
a^j

is maximized. This corresponds to the pessimistic hy-

pothesis of expecting the worst.

If mixed strategies for the player are also allowed, then this

criterion should be formulated as follows. Choose a probability
mixture (1, *,m) of the rows so that the quantity
Min (i&ij+* +mamj) is maximized. In other words play

as if Nature were the opposing player in a zero sum game.

Hurwicz*. Select a constant 6 a 1 which measures the

player's optimism. For each row [or probability mixture of

rows] let a denote the smallest component and A the largest.
Choose a row [or probability mixture of rows] for which a A +

(l-a)a is maximized. For a = this reduces to the Wald cri-

terion.

Savage [2] (Minimax Regret). Define the (negative) regret
matrix

(rij) by TIJ
=
a^

- Max
a^j.

Thus
r^j

measures the
K

difference between the payoff which actually is obtained and the

payoff which could have been obtained if the true state of Nature
had been known. Now apply the Wald criterion to the matrix

(rip.
That is choose a row [or mixture of rows] for which

Min
r^j

[or Min
(^irjj-f +mr

mj)l
is maximized.

These four criteria are certainly different. This is illus-

trated by the following example, where the preferred row under
each criterion is indicated.

2 2 1 \ Laplace

1111 \Wald

0400 /Hurwicz (for a > 1/4)

Savage

0400 ll

1 3 O/
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2. AXIOMATIC CHARACTERIZATION OF CRITERIA

In this section we will consider criteria which assign to each

matrix
(ajj)

a preference relation > between pairs of rows^
of the matrix. It will be shown that each of the four criteria of

1 is characterized by certain of the following axioms. The first

five axioms are compatible with all four criteria.

1. Ordering. The relation > is a complete ordering of the

rows. That is it is a transitive relation, such that for any two

rows r,r
f either r > rf or rf > r.

2. Symmetry. This ordering is independent of the numbering
of the rows and columns.

(Thus we are not considering situations where there is any
reason to expect one state of Nature more than another.)

3. Strong domination. If each component of r is greater than

the corresponding component of rf

,
then r > rf

(shorthand for:

r >V but not r1

r).

(k)
4. Continuity. If the matrices a^

'

converge to a^, and if

(k) x (k)
r ^

r\
' for each k, then the limit rows r and rj satisfy

r> rj.

5. Linearity. The ordering relation is not changed if the

matrix (aij) is replaced by (a}j)
where

a}j
=

Aatj
+ M, X > 0.

The following four axioms serve to distinguish between the

four criteria.

6. Row adjunction. The ordering between the old rows is not

changed by the adjunction of a new row.

7. Column linearity. The ordering is not changed if a con-
stant is added to a column.

(This can be interpreted as an assertion that Nature has no

prejudices for or against the player. It also asserts that the

utility is linear, not only with respect to known probabilities,
but also with respect to unknown probabilities of the type under
consideration.)
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8. Column duplication. The ordering is not changed if a new
column, identical with some old column, is adjoined to the

matrix. (Thus we are only interested in what states of Nature
are possible, and not in how often each state may have been
counted in the formation of the matrix.)

9. Convexity, If row r is equal to the average -5 (r
f

+r") of

two equivalent rows, then r > rf
.

(Two rows are equivalent, rf

~r", if r f >r"and r">rf
. This

axiom asserts that the player is not prejudiced against random-
izing. If two rows are equally favorable, then he does not mind
tossing a coin to decide between them.)

Finally we will need a modified form of axiom 6 which is

compatible with all four criteria.

10. Special row adjunction. The ordering between the old

rows is not changed by the adjunction of a new row, providing
that no component of this new row is greater than the corre-

sponding components of all old rows.
The principal results of this section are all incorporated in

the following diagram, which describes the relations between
the ten axioms and the four criteria. The symbol "X" indicates
that the corresponding axiom and criterion are compatible.
Each criterion is characterized by those axioms which are
marked "HP 1

.

1. Ordering

2. Symmetry

3. Str. Domination

4. Continuity

5. Linearity

6. Row adjunction

7. Col. linearity

8. Col. duplication

9. Convexity

10. Special Row adj.

Laplace Wald Hurwicz Savage

B

B
X

X
B
B

X
X

B

B
B
B

B

Diagram 1, X = compatibility.
Each criterion is characterized by axioms marked
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Theorem 1. The Laplace criterion is compatible with all of

these axioms other than axiom 8; the Wald criterion with all but

axiom 7; the Hurwicz criterion with all but 7 and 9; the Savage
criterion with all but 6.

The proofs are all completely trivial. Perhaps the following
two examples are of interest. In the first matrix the Hurwicz
criterion (for a > 0) is not compatible with axiom 9 (convexity)
In the second pair the Savage criterion is not compatible with
axiom 6 (row adjunction).

/2 0\

(l lOJ\0 2 O/

Theorem 2. The Laplace criterion is characterized by
axioms 1,2,3,6,7.

It is first necessary to prove the following.

Lemma 1. Assuming axioms 1,2,6 (ordering, symmetry, row
adjunction) two rows which differ only in the order of their com-
ponents are equivalent.

Adjoin a sequence of intermediate rows so that two consecu-
tive rows differ only by a permutation of two components. The
result now follows by an application of the symmetry axiom to

each pair of consecutive rows.
The proof of theorem 2 follows. Suppose that the average of

the components of r equals the average of the components of rf
.

Alternately perform the following two operations on the matrix:

a) Permute the elements of r and rf so that they are in

order of increasing size. (Permissible by lemma 1, and axiom 6)1

b) Subtract from each column the component in r or the com-
ponent in r1

, whichever is smaller. (Permissible by axiom 7).

After a finite number of steps, all of the components of r and r1

will be zero. It follows that r ~ rf
.

Now using axioms 3 and 6 it follows that r > rf whenever the

average of the elements of r is greater than the average of the

elements of rf
. Thus the criterion is that of Laplace.

Theorem 3. The Wald criterion is characterized by axioms
1,2,3,4,6,8,9.

Two lemmas are first necessary.

Lemma 2. Assuming axioms 3 and 4 (domination and con-

tinuity), if each component of r is greater than or equal to the
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corresponding component of rf

,
then r > rf

.

The proof is clear. 5*

Lemma 3. Assuming axioms 1,2,3,4,6,8, two rows which
have the same minimum element and the same maximum ele-

ment are equivalent.
Let (aj, ,

an) be any row having the minimum component
a and the maximum component A. From lemmas 1 and 2 it

follows that

(a,- -,a,A) < (aj,- -,an) < (A,- - -,A,a).

But (a,- -,a,A) is equivalent to (A, , A,a) since the matrix

f

*

]

*

J
can be obtained from the symmetrical matrix I . 1

by column duplication. Therefore any two rows having minimum
element a and maximum element A are equivalent.

Proof of theorem 3. By lemma 3 it is sufficient to consider

pairs (a, A) with a A in place of rows. Applying the convexity
axiom (9) to the matrix

(a

|(a+A) |(a+A)\
a a A

j
a A a /

we have (a, A) <
(a,-g(a+A) ). By repeated application of this

rule, together with the continuity axiom, we have (a,A) < (a,a),
hence (a,A) ~ (a,a). It follows easily that the criterion is that

of Waldo

Theorem 4. The Hurwicz criteria are characterized by
axioms 1,2,3,4,5,6,8.

Again it suffices to consider pairs (a, A) with a ^ A. Let a
be the supremum of all numbers a f such that

(',<*')< (0,1).

By the domination axiom it follows that cr 1. By con-

tinuity it follows that (a, a) -
(0,1). By linearity

(crA+ (l-a)a, a A + (l-a)a) ~ (a,A),

whenever a < A. It follows easily that the given criterion is just
that criterion of Hurwicz which corresponds to the parameter
value a.
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Theorem 5. The Savage criterion is characterized by axioms
1,3,8,4,7,8,9,10,

A matrix will be called normalized if it contains a row ro
consisting entirely of zeros, and if it contains no positive com-
ponents . Any given matrix can be normalized by first sub-

tracting the maximum element from each column, and then ad-

joining the row ro. By axioms 7 and 10 these operations do
not change the ordering relation between the old rows. In a

normalized matrix we are free, by axiom 10, to adjoin any row
which contains no positive elements and to delete any row other

than r . The proof is now completely parallel to the proof of

theorem 3. It is only necessary to require that all matrices
considered be normalized.

3. CRITICISM OF THE CRITERIA

There is one fundamental principle which has not yet been
mentioned: that of domination (or admissibility). One strategy
is said to dominate another if it is just as good in all states of

Nature and definitely better in at least one. It is natural to re-

quire that the following axiom be satisfied.

3f
. If r dominates rf then r>r!

.

This axiom is not compatible with the criteria of Wald, Hurwicz,
and Savage. Each of these criteria could be modified in a trivial

way^ so as to satisfy 3', but the result would violate the equally
fundamental axiom of continuity. This difficulty is illustrated by
the following two examples.

Example 1. Consider the family of matrices

where ^ k ^ 1. Mixed strategies are to be allowed. In the

case k = 1 the second row dominates the first. It is therefore
natural to expect that the second row should be chosen exclu-

sively for k = 1, and should be chosen with high probability for

k close to 1. But according to the Wald and Hurwicz criteria

(a < 1) the first row should be chosen whenever k< 1. (Compare
diagram 2). In this example the Savage criterion has the ex-

pected behavior, but in the following, more complicated, examnl(
the Savage criterion is also unsatisfactory.
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Laplace

1 i ^T" A

'aid and

HurwiczV

1

2

Parameter k

Diagram 2. Probability
of choosing second row
(Example 1.)

Parameter k

Diagram 3. Probability
of. choosing last two rows

(Example 2.)

Example 2. Consider the matrices

1

0101
1 1 k

,1 1 k

where O^k^l. For k = 1 the first two rows are dominated,
yet according to the Wald and Savage criteria these two rows
should be chosen exclusively whenever k<l. (Compare dia-

gram 3). Only the Laplace criterion gives a satisfactory solu-

tion in this example.
The Laplace criterion has been successful under all of the

tests which have been made of it, with the single exception of

axiom 8 (column duplication),, It appears that, if we are willing
to sacrifice this axiom, then the Laplace criterion is definitely
the best. However in many applications it is desirable to pre-
serve axiom 8. This is particularly true in cases where there
is no clear and natural separation of the possible states of

Nature into a finite number of distinct alternatives.

Thus all of the criteria under consideration seem unsatis-

factory in that they fail to satisfy certain rather basic axioms.
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4 POSSIBILITIES FOR OTHER CRITERIA

It has become apparent that no possible criterion can have
all of the properties that one would desire. It is therefore natu-

ral to try constructing a list of those properties which are most
fundamental and important, to see if at least these can be satis-

fied. The following is the author's attempt to construct such a

list. Others would doubtlessly have given rather different lists.

Let S denote the simplex of mixed strategies over the rows
of the matrix.

I. To each matrix there corresponds a non-vacuous choice

set C contained in S.

(The complete ordering of 2 really gave more information than

was necessary.)

II. Symmetry, C does not depend on the numbering of the

rows and columns.

III. Domination. Every element of C is undominated (
= ad-

missible).

IV. Continuity. If a^ a
tj

,
s (k)

eC(a^), and s (k)
s,

then

V. Row adjunction The choice set is not changed by the ad-

junction of a new row which is dominated by some old row.

(Some stronger row adjunction axiom would be desirable, but at

least this much seems indispensable.)
The following three axioms are also desirable, although not

as basic as the first five.

VI. Column duplication. C is not changed by the adjunction
of a duplicate of some column.

VII. Column linearity. C is not changed by the addition of a
constant to a column.

VIII. Convexity. C is convex.

Evidently no criterion which has been mentioned so far

satisfies all of these axioms.

Theorem 6. There exist criteria which simultaneously satis-

fy the preceding eight axioms.

First consider the following slight modification of the Savage
criterion. Let S be a convex polyhedron of mixed strategies
for the player, and let pj, ,Pn be linear payoff functions on
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S, corresponding to the n possible states of Nature. The nega-
tive regret is defined by rj(s,S)

=
pj(s)

- Max
pj(s').

The Savage
S C O

choice set C(S) consists of the set of all strategies scS for

which Minrj(s,S) attains its maximum M. Instead we will con-
j

J

sider the set C(S) consisting of all seS such that

Min
rj(s,S)

Z M - t .

The required criteria are now constructed as follows. Choose
as parameters an infinite sequence of positive numbers

\>2> " * " which converge to zero. Define the sets SQ ^SjD
by SQ = S, Si = C^S^i). As choice set C(^ 2>

. . .)(S)
we

take the intersection of the Sj.
The axioms I through VIII may now be verified. The proofs

will not be carried out, since they are rather involved (at least

for domination and continuity). In any case these criteria are

probably too difficult computationally to be of practical interest.

A further interesting property which is possessed by these

criteria is the following. The n payoff functions are all constant

on the choice set. Thus any two elements in the choice set are

completely equivalent.
It is interesting to ask if there exist any simple, computable

criteria which satisfy all of the preceding conditions.

FOOTNOTES

1. Suggested by L. Hurwicz in an unpublished paper.

2. For simplicity, only pure strategies for the player are con-
sidered in this section. However the results can easily be gen-
eralized to the (more natural) case where mixed strategies are
allowed.

3. Lemma 2 suggests the following criterion. Define r^>r
f

if

and only if each component of r is the corresponding compo-
nent of rf

. It may be shown that this criterion satisfies all

axioms except 1, and is characterized by 2,3,4,6,7,8, together
with the transitivity portion of 1.

4. Let r be preferred to rf

(in the modified sense) if either

r>rf in the old sense (of Wald, Hurwicz, or Savage) or r

dominates rf
.
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CHAPTER V

NOTE ON SOME PROPOSED DECISION CRITERIA*

by

Roy Radner and Jacob Marschak

COWLES COMMISSION FOR RESEARCH IN ECONOMICS

1. SUMMARY

The purpose of this paper is to apply two currently advocated
statistical decision procedures to a simple problem and show
that they result in solutions that have certain undesirable prop-
erties. Each of the two procedures is a generalization or inter-

pretation of the minimax principle. The problem consists of a

game in which an individual observes and bets on the outcomes
of tosses of a coin with constant but unknown probability of fall-

ing heads.

2. INTRODUCTION

2.1. The Rational Decision-Maker. In this discussion we
shall consider an individual decision-maker who is rational in

the following sense: if he can specify a set of "states of nature"
such that for a given state n and a given strategy he knows the

probability distribution of outcomes, then he will always

(1) choose some admissible strategy (when possible),
1

(2) choose the strategy so as to maximize his expected
utility, if he knows the true state of nature.

Let U(s,n) be the expected utility when n is the true state of

nature and the individual uses strategy s. A strategy s is ad-
missible if there is no other strategy s such that

U(s,n) ^ U(s ,n), for all n, and

*This research was carried out under contract with the Office
of Naval Research. We are indebted to E. Lehmann for several
valuable suggestions and discussions.

61
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U(s,n ) > U(s ,n ) ,
for some no .

2.2. The Minimax Principle, If the individual does not know
the true state of nature then, in general, the criterion of admis-

sibility will not be sufficient to enable him to choose a strategy;
thus some further criteria are needed. Such a criterion is

Wald's "minimax principle.
11

(Cf. [8], p. 18) One interpretation
of this principle is: "Minimax the negative expected utility,"

i.e., choose s to achieve

min max [-U(s,n)] .

s n

This interpretation has been attacked by many as too pessimis-
tic (cf. for example f?], p. 63), and it is this undesirable prop-
erty which has, in part, led to the proposal of two alternative

criteria which we will now consider.

2.3. The Hurwicz Criterion. The first of these, which might
be considered as comprising a whole class of criteria, including
the minimax principle as just stated, is a generalized form of a

criterion proposed by L. Hurwicz [3], In this generalized form
it requires that a strategy be chosen which maximizes:

(1) H(s) = (Sup U(s,n), tnf U(s,n) )

n n

where is some fixed monotone increasing function of each of

its two arguments. itself is chosen by the decision-maker
and in some sense characterizes his attitude towards uncertainty.
A special case (the one actually suggested by Hurwicz) is

(2) = a Sup U(s,n) + (1-a) Inf U(s,n)
n n

where a is some fixed number between and 1. Here a might
be regarded as a degree of optimism (cf. [4], p. 344).

We will present an example in which application of the Hur-
wicz criterion leads to the conclusion that at most one observa-
tion should be taken in a situation in which common sense de-
mands that a large number of observations be taken.

2.4. The Minimax Regret Criterion. A different direction is

taken by L. J. Savage, J7J, who gives good reason why Wald
could not have considered negative expected utility as the appro-
priate thing to minimax (cf. Wald [8], p. 8). Instead, Savage
says the proper interpretation of the "minimax rule" is:

"Choose that strategy which minimizes Sup R(s,n) where
n
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(3) R(s,n) = Sup U(s',n) - U(s,n) .

sr

We will call R(s,n) the regret function.2 Chernoff, [2], has
criticized this principle because there are cases in which, if

the domain S of the player's available strategies is enlarged,
a new minimax regret solution is obtained which differs from
the old one, yet is contained in the original S. (This is not sur-

prising, since the value of R(s,n) for any pair (s,n) depends
upon the domain S. Note that this is not true of H(s). )

It is interesting to note that the idea behind Chernofff s objec-
tion has analogues in Nash's treatment of the bargaining problem
(postulate 7, p. 159 of [5]) and Arrow's discussion of social

welfare functions (Condition 3, p. 27 of [l]). Borrowing Arrow's

terminology we shall say that in the kind of cases described
above the minimax regret solution is "dependent upon irrelevant

alternatives,,"

3. A NON-SEQUENTIAL GAME

3.1. General Description. Consider the following game: The

player observes an odd number (2k + 1) of tosses of a coin with

a constant but unknown probability p of falling heads (and q =

1 - p of falling tails), whereupon he makes a bet on the outcome
of the next toss, wins one dollar if his prediction is correct and
loses one dollar if incorrect. Each toss costs the player c

dollars, and he must decide in advance the (odd) number of

tosses he will observe before betting. The player is also free

not to enter the game at all. This last possible decision we will

call the null strategy. Aside from it, any pure strategy of the

player consists of a number k, which determines that he will

bet after 2k + 1 tosses, and a rule r, which determines for

every set of observations (sample) which way he will bet A
mixed strategy is a probability distribution on the set of pure
strategies (k,r).
We shall see that for both types of solutions there is an op-

timal rule rm which requires that the player bet with the

majority of previous tosses. This will be called the maximum
likelihood rule. It will be shown that the Hurwicz solution has
the property that for any (positive) cost c, and any 0, no more
than one observation should be taken. In the special case of a
linear [equation (2)], the solution is: if a 2c, bet after one

observation, if a 2c do not play.



64 DECISION PROCESSES

The minimax regret solution is of the form: randomize be-

tween two adjacent values of k, these values being certain non-

increasing functions of c; if c is less than a certain quantity,
randomize between one observation and not playing. However,
if we modify the game by compelling the player always to use

the maximum likelihood rule, the optimal number of observa-
tions will be seen to differ from that in the solution of the more
general game.

3.2. Hurwicz Solution. For any non-null strategy the ex-

pected gain cannot be more than 1 - c(N + 1) where N is the

expected number of observations, since this is the gain if the

prediction is correct with certainty. On the other hand, for any

non-null strategy the expected gain for P =
^ is -C (N + *) hence

the minimum cannot be more than -c(N + 1).

If the player uses the maximum likelihood rule, then the ex-

pected gain is exactly 1 -c(N + 1) for p = or 1, while it is

never less than -c(N + 1). (If the reader is not immediately
convinced of this latter statement he can examine the expected
gain function in more detail in the next section.) Moreover,
given that a non-null strategy is used, the smallest possible
value of N is 1. Hence among non-null strategies both

Sup U(n,s) and Inf U(n,s) are maximized by using the maximum
n n

likelihood rule and taking one observation, and no matter what
the and c the optimal procedure will have the property that

no more than one observation is taken. If has the linear form
of (2) and if s is the strategy which consists of using the maxi-
mum likelihood rule after one observation with probability v
and not playing with probability 1 -

v, then

H(s )
= a v(l - 2c) + (1 - a) v(-2c)

= v(a - 2c) .

Thus H(s ) is maximized by taking v equal to 1 or according
as a 2c or a 2c.

3.3 Minimax Regret Solution. This solution is not so easily
obtained as the one imposed by the Hurwicz criterion, and we
will only sketch the method of arriving at it.

Let d(k,r) denote a joint probability distribution of k and the
rule r and let d(r|k) be the conditional distribution of r given
k.
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Denote the player's expected money gain using d(k,r), given

p, by U(d(k,r),p); the expected money gain using d(r|k), given
k and p, by Uk(d(r|k),p); and the null strategy by k = -1. Then:

(4) U(d(k,r),p) = f(k)Uk(d(r|k),p).
k=-l

Let hi and t i be the events of getting i heads and i tails re-

spectively with respective probabilities hi(p) and tj(p)

(i = 0, ,
k + 1). Any d(r |k) is a rule of the form:

"For given k, if hi, bet on heads with the probability
and if ti bet on tails with probability T^."

The maximum likelihood rule rm is defined by /^i
= Li = *

If d(r|k) differs from rm,
it will do so exactly on certain

events
hj (j in J) and

t^
(/in L). It is easily verified that:

(5) Uk(rm,p) = (p - q) 2 [^(p)
-
t^p)]

- 2(k + l)c

(6) Uk(d(r|k),p) = Uk(rm,p)

+ 2(p - q)[z t^pXl
-
^)

~
Jhj(p)(l

-
^)].

It is not hard to show that we can reject as inadmissible all

strategies such that there is some k (with f(k) ^ 0), for which
J and L are not disjoint. The set of remaining strategies we
will call S.

We want that d(k,r) which minimizes the supremum, with

respect to p, of the regret:

R[d(k,r),p] = U(p) - U[d(k,r),p], where

U(p) = Sup U[d(k,r),p] .

d(k,r)

U(p) is attained, for every p, if the player bets on heads

when P ^
9' on tails when p ^

2
and pays as sma11 a cost as

possible (i.e., k = 0) provided the resulting expected gain is

positive; otherwise it is attained by not playing. Thus:

U(p) = max ||p
- q|- 2c9 0} .

Let h(k,p) and t(k,p) be the probabilities of majorities of

heads and tails respectively.
Then for a strategy using the maximum likelihood rule, the

regret is: ^

P(f,p) =
jftopkfp) where, for k >

0,
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2(q-p)h(k,p) + 2kc, (q - p) 2c

p k(p) = 2(k -i- l)c - (p - q)(h(k,p) - t(k,p) ), p - q S 2c

2(p - q)t(k,p) + 2kc, (p - q) 2c

and

P-l(p) = U(p).

The function p(f,p) is symmetric in p, for all f, and has a

maximum at two points, say pi and qj = 1 -
pj, if c < c ; or

at 7:, if c c , where

5 + c< P1 <1

and c is defined by
00

c =

i.e., CQ is the cost per observation for which the three relative

maxima of p(f,p) are equal.

Next, it can be shown that one of the minimax regret strate-

gies uses the maximum likelihood rule. The important step in

the proof of this point is the fact that (when c < c ), if the

regret for some strategy s at p = pi is less than P(f,pj) then

at p =
qj it is greater than p(f,qi), and vice versa.

It remains now to find the optimal distribution f of k, when
the maximum likelihood rule is used.

Although Pfe(p) is defined only for integral values of k, it is,

for every fixed p, analogous to a convex function of k, in that

for every integer k (and fixed p):

p k+l(P)
'

Pk(P) * Pk+2<P)
' Pk+l(P)-

It is shown in [6] that in such a case the only admissible strate-

gies (using the maximum likelihood rule) are those such that

f(k) is concentrated on at most two consecutive integers. Since

such a distribution is determined by its mean we can express
the solution by a single number k, which will be a function of c.

The approximate value of this function k(c) has been deter-

mined numerically for several values of c, and the results are

given in Table 1 below.'
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3.4. Dependence on "Irrelevant Alternatives." We shall now
show that in this game the minimax regret solution "depends
upon irrelevant alternatives."

Suppose we modify the above game by requiring the player to

use the maximum likelihood rule. We proceed to obtain the

minimax regret solution for this case.
The expected gain using f(k) is given by (4) and (5). Again

the negative of Ufc(rm,p) is convex in k for every p, in the

sense described above, and the only admissible f
f s are those

which are zero at all but at most two consecutive values of k.

s in Section 3.3, we have obtained the value of the function

), describing the optimal strategy, for various values of c

The results are given in Table 1.

Table 1. Minimax Regret Solutions for 2 Strategy Domains

We recall that the two games considered differ only in that in

the first game the player is free to use strategies which do not

incorporate the maximum likelihood rule, while in the second he
must use that rule. Nevertheless, in the first game the optimal
strategy is shown to use the maximum likelihood rule, but with
a different number of trials 2k + 1.

4. A SEQUENTIAL GAME-THE HURWICZ SOLUTION

It is worthwhile pointing out4 that the essential feature of the

Hurwicz solution in Section 3.2 carries over to a sequential gen-
eralization of the first game. That is, if we allow the player to

decide when he will make his bet after having seen any number
of observations, it remains true that any optimal strategy will

not involve taking more than one observation. The proof of this

for general is practically the same as that for the non-

sequential game.
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FOOTNOTES

1. In our examples there will always be admissible strategies,,

2. Savage calls this the "loss function" but economists and
others are liable to confuse this with negative income.

3 Computations for this and the following section were made
under the direction of J. Templeton and W. Parrish.

4. We are indebted to E. L. Lehmann for doing so to us.
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