How Reasonable are the Axioms?

All the axioms that Savage and von Neumann-Morgenstern use seem so reasonable.

- Savage views his axioms as characterizing rationality Is that reasonable?

They certainly don't always characterize how people act ...

Allais Paradox

Recall the Allais paradox:
The set of prizes is $X=\{\$ 0, \$ 1,000,000, \$ 5,000,000\}$.

- Which probability do you prefer:

$$
p_{1}=(0.00,1.00,0.00) \text { or } p_{2}=(0.01,0.89,0.10) ?
$$

Allais Paradox

The set of prizes is $X=\{\$ 0, \$ 1,000,000, \$ 5,000,000\}$.

- Which probability do you prefer:

$$
p_{1}=(0.00,1.00,0.00) \text { or } p_{2}=(0.01,0.89,0.10) ?
$$

- Which probability do you prefer:

$$
p_{3}=(0.90,0.00,0.10) \text { or } p_{4}=(0.89,0.11,0.00) ?
$$

Many subjects report: $p_{1} \succ p_{2}$ and $p_{3} \succ p_{4}$

Inconsistent with Maximizing Expected Utility

Suppose $\left(u_{0}, u_{1}, u_{5}\right)$ represents \succ.
Then $p_{1} \succ p_{2}$ implies

$$
\begin{aligned}
u_{1} & >.01 u_{0}+.89 u_{1}+.1 u_{5} \\
.11 u_{1}-.01 u_{0} & >.1 u_{5} \\
.11 u_{1}+.89 u_{0} & >.1 u_{5}+.9 u_{0}
\end{aligned}
$$

So $p_{4} \succ p_{3}$.
Which axiom is violated?
Independence: $a \succ b$ iff $\alpha a+(1-\alpha) c \succ \alpha b+(1-\alpha) c$.

- homework - explain exactly how.

Ellsberg Paradox

We considered the Ellsberg paradox in the first class:
There is one urn with 90 balls: 30 of these balls are red (R) and the rest are either blue (B) or yellow (Y). Consider the following two choice situations:

I: a. Win $\$ 100$ if a ball drawn from the urn is R and nothing otherwise.
a^{\prime}. Win $\$ 100$ if a ball drawn from the urn is B and nothing otherwise.

Ellsberg Paradox

There is one urn with with 90 balls: 30 of these balls are red (R) and the rest are either blue (B) or yellow (Y). Consider the following two choice situations:

I: a. Win $\$ 100$ if a ball drawn from the urn is R and nothing otherwise.
a^{\prime}. Win $\$ 100$ if a ball drawn from the urn is B and nothing otherwise.
II: b. Win $\$ 100$ if a ball drawn from the urn is R or Y and nothing otherwise.
b^{\prime}. Win $\$ 100$ if a ball drawn from the urn is B or Y and nothing otherwise.

Inconsistent with SEU

Suppose a decision maker's preferences are such that $a \succ a^{\prime}$ and $b^{\prime} \succ b$.
If there are subjective probabilities then the first choice implies that the probability of a red ball is greater than the probability of a blue ball and the second choice implies the reverse.

Which of Savage's axioms is violated?

- Independence: Remember that an act is a function from states to outcomes. Let $T \subseteq S$ be a subset of states. Then

$$
f_{T} g \succeq f_{T}^{\prime} g \text { iff } f_{T} h \succeq f_{T}^{\prime} h
$$

Homework: prove that the standard choices in the Ellsberg paradox violate this.

These examples suggest that maximizing expected utility is not obviously always the "right" thing to do.

- But if we don't do that, what should we do?
- We've already seen some alternatives (regret, maximin, ...)
- Let's go back to one of them: maxmin expected utility

Maxmin Expected Utility Rule

Suppose that the decision maker's uncertainty can be represented by a set \mathcal{P} of probabilities. Let

$$
\underline{E}_{\mathcal{P}}\left(u_{a}\right)=\inf _{\operatorname{Pr} \in \mathcal{P}}\left\{E_{\operatorname{Pr}}\left(u_{a}\right): \operatorname{Pr} \in \mathcal{P}\right\}
$$

Recall the maximin expected utility rule: (covered earlier in the course):

- $a>{ }_{\mathcal{P}}^{1} a^{\prime}$ iff $\underline{E}_{\mathcal{P}}\left(u_{a}\right)>\underline{E}_{\mathcal{P}}\left(u_{a^{\prime}}\right)$

This is like maximin:

- Optimizing the worst-case expectation

This could explain the Ellsberg Paradox:

- Let $\mathcal{P}=\left\{\left(1 / 3, p_{B}, p_{Y}\right): 0 \leq p_{B} \leq 2 / 3\right\}$

Gilboa and Schmeidler axiomatized the maxmin expected utility rule

- It does not satisfy independence
- Gilboa and Schmeidler replaced independence by a weaker axiom.

Why independence may not be so reasonable

- Suppose that there are four states, w, x, y, z.
- f is the act where you get 1 in state $w, 0$ in all other states
- f^{\prime} is the act where you get 1 in state $x, 0$ in all other states
- g is the act where you get 1 in state $y, 0$ in all other states
- h is the act where you get 1 in state $z, 0$ in all other states
- Let $A=\{w, x\}$.

Why independence may not be so reasonable

- Suppose that there are four states, w, x, y, z.
- f is the act where you get 1 in state $w, 0$ in all other states
- f^{\prime} is the act where you get 1 in state $x, 0$ in all other states
- g is the act where you get 1 in state $y, 0$ in all other states
- h is the act where you get 1 in state $z, 0$ in all other states
- Let $A=\{w, x\}$.

$$
\begin{array}{lllll}
\text { act } & w & x & y & z \\
f_{A} g & 1 & 0 & 1 & 0 \\
f_{A}^{\prime} g & 0 & 1 & 1 & 0 \\
f_{A} h & 1 & 0 & 0 & 1 \\
f_{A}^{\prime} h & 0 & 1 & 0 & 1
\end{array}
$$

Why independence may not be so reasonable

- Suppose that there are four states, w, x, y, z.
- f is the act where you get 1 in state $w, 0$ in all other states
- f^{\prime} is the act where you get 1 in state $x, 0$ in all other states
- g is the act where you get 1 in state $y, 0$ in all other states
- h is the act where you get 1 in state $z, 0$ in all other states
- Let $A=\{w, x\}$.

act	w	x	y	z
$f_{A} g$	1	0	1	0
$f_{A}^{\prime} g$	0	1	1	0
$f_{A} h$	1	0	0	1
$f_{A}^{\prime} h$	0	1	0	1

Now suppose that $\operatorname{Pr}(\{w, y\})=\operatorname{Pr}(\{x, z\})=1 / 2$, but you don't know the probability of individual states. It seems reasonable that

- $f_{A} g \succ f_{A}^{\prime} g$ (getting 1 with probability $1 / 2$ is better than getting 1 with some unknown probability)
- $f_{A}^{\prime} h \succ f_{A} h$ (same logic).

Why independence may not be so reasonable

- Suppose that there are four states, w, x, y, z.
- f is the act where you get 1 in state $w, 0$ in all other states
- f^{\prime} is the act where you get 1 in state $x, 0$ in all other states
- g is the act where you get 1 in state $y, 0$ in all other states
- h is the act where you get 1 in state $z, 0$ in all other states
- Let $A=\{w, x\}$.

act	w	x	y	z
$f_{A} g$	1	0	1	0
$f_{A}^{\prime} g$	0	1	1	0
$f_{A} h$	1	0	0	1
$f_{A}^{\prime} h$	0	1	0	1

Now suppose that $\operatorname{Pr}(\{w, y\})=\operatorname{Pr}(\{x, z\})=1 / 2$, but you don't know the probability of individual states. It seems reasonable that

- $f_{A} g \succ f_{A}^{\prime} g$ (getting 1 with probability $1 / 2$ is better than getting 1 with some unknown probability)
- $f_{A}^{\prime} h \succ f_{A} h$ (same logic).

Independence fails!

Comonotonic independence

The weaker independent axiom used by Gilboa and Schmeidler is called comonotonic independence:

Comonotonic independence

The weaker independent axiom used by Gilboa and Schmeidler is called comonotonic independence:

Acts f and g are comonotonic if there do not exist states s and t such that

$$
f(s) \succ f(t) \text { and } g(t) \succ g(s)
$$

- f and g are comonotonic if you can't be happier to be in state s than state t when doing f and be happier to be in state t than state s when doing g.
- If h is a constant act, then f and h are comonotonic for all acts f (since we never have $h(s) \succ h(t)$).

Comonotonic independence

The weaker independent axiom used by Gilboa and Schmeidler is called comonotonic independence:

Acts f and g are comonotonic if there do not exist states s and t such that

$$
f(s) \succ f(t) \text { and } g(t) \succ g(s)
$$

- f and g are comonotonic if you can't be happier to be in state s than state t when doing f and be happier to be in state t than state s when doing g.
- If h is a constant act, then f and h are comonotonic for all acts f (since we never have $h(s) \succ h(t)$).
- [Comonotonic Independence:] If f and h and g and h are both comonotonic, then $f \succ g$ iff for all $\alpha \in(0,1]$, $\alpha f+(1-\alpha) h \succ \alpha g+(1-\alpha) h$.

Gilboa and Schmeidler proved a representation theorem for their axiomatization:

- An agent's preference order obeys the Gilboa-Schmeidler axioms iff he has a utility function (unique up to affine transformations) and a set \mathcal{P} of probability measures such that $a_{1} \succ a_{2}$ iff $a_{1}>{ }_{\mathcal{P}}^{1} a_{2}$.
- If the agent's preference order obeys the axioms iff he is acting like a maxmin expected utility maximizer
- \mathcal{P} is not unique, but its convex closure is.
- The convex closure of \mathcal{P} is the smallest closed convex set containing \mathcal{P}.
- If $p, p^{\prime} \in P$, then $\alpha p+(1-\alpha) p^{\prime} \in \mathcal{P}$
- \mathcal{P} also contains its limit points
- if (u, \mathcal{P}) and $\left(u, \mathcal{P}^{\prime}\right)$ both represent the axioms, then the convex closure of $\mathcal{P}=$ the convex closure of \mathcal{P}^{\prime}

Gilboa and Schmeidler proved a representation theorem for their axiomatization:

- An agent's preference order obeys the Gilboa-Schmeidler axioms iff he has a utility function (unique up to affine transformations) and a set \mathcal{P} of probability measures such that $a_{1} \succ a_{2}$ iff $a_{1}>{ }_{\mathcal{P}}^{1} a_{2}$.
- If the agent's preference order obeys the axioms iff he is acting like a maxmin expected utility maximizer
- \mathcal{P} is not unique, but its convex closure is.
- The convex closure of \mathcal{P} is the smallest closed convex set containing \mathcal{P}.
- If $p, p^{\prime} \in P$, then $\alpha p+(1-\alpha) p^{\prime} \in \mathcal{P}$
- \mathcal{P} also contains its limit points
- if (u, \mathcal{P}) and $\left(u, \mathcal{P}^{\prime}\right)$ both represent the axioms, then the convex closure of $\mathcal{P}=$ the convex closure of \mathcal{P}^{\prime}

While maxmin expected utility captures some aspects of human behavior, but certainly doesn't capture all its complexities.

Cumulative Prospect Theory

Cumulative prospect theory (CPT) is a model of decision making due to Tversky and Kahneman (1992)

- An improvement over prospect theory, their earlier approach
- CPT was a significant part of why Kahneman won the Nobel Prize (Tversky would have won it too had he not died)
- It is largely viewed as the best descriptive theory of decision making that we have
- It's used by practitioners

Key insights of CPT:

- People care more about losses than gains
- People tend to overweight extreme unlikely events and underweight "average" events.

CPT: Technical details

In the utility functions considered in homework and in class up to now, we took the utility of (final) wealth

- CPT considers a reference point, and takes utility of wealth relative to that reference point
- Above the reference point is a gain; below it is a loss.
- The DM is choosing among prospects (i.e., acts) mapping a state space S to a finite outcome space $X=\left\{x_{-m} \ldots, x_{-1}, x_{0}, \ldots, x_{n}\right\}$.
- The x_{i} 's are ordered by goodness: $x_{j} \succ x_{i}$ if $j>i$
- x_{0} is the reference point
- $v\left(x_{0}\right)=0 ; v\left(x_{i}\right)>0$ if $i>0 ; v\left(x_{i}\right)<0$ if $i<0$.
- For prospect f, A_{i}^{f} is the set of states s such that $f(s)=x_{i}$.
- $V(f)=\sum_{i=-m}^{n} \pi_{i}^{f} v\left(x_{i}\right)$.
- Like expected utility, but π_{i}^{f} is not the probability of getting outcome i with act f
- The DM is choosing among prospects (i.e., acts) mapping a state space S to a finite outcome space $X=\left\{x_{-m} \ldots, x_{-1}, x_{0}, \ldots, x_{n}\right\}$.
- The x_{i} 's are ordered by goodness: $x_{j} \succ x_{i}$ if $j>i$
- x_{0} is the reference point
- $v\left(x_{0}\right)=0 ; v\left(x_{i}\right)>0$ if $i>0 ; v\left(x_{i}\right)<0$ if $i<0$.
- For prospect f, A_{i}^{f} is the set of states s such that $f(s)=x_{i}$.
- $V(f)=\sum_{i=-m}^{n} \pi_{i}^{f} v\left(x_{i}\right)$.
- Like expected utility, but π_{i}^{f} is not the probability of getting outcome i with act f
- A capacity W is a generalization of a probability measure:
- $W(\emptyset)=0 ; W(S)=1 ; W(A) \leq W(B)$ if $A \subseteq B$.
- $\pi_{n}^{f}=W\left(A_{n}^{f}\right) ; \pi_{-m}^{f}=W\left(A_{-m}^{f}\right)$
- $\pi_{i}^{f}=W\left(A_{i}^{f} \cup \ldots \cup A_{n}^{f}\right)-W\left(A_{i+1}^{f} \cup \ldots \cup A_{n}^{f}\right)$ if $0 \leq i \leq n-1$
- $\pi_{i}^{f}=W\left(A_{-m}^{f} \cup \ldots \cup A_{i}^{f}\right)-W\left(A_{-m}^{f} \cup \ldots \cup A_{i-1}^{f}\right)$ if $-m<i \leq 0$
- W lets us treat losses differently from gains
- W lets us overweight extreme unlikely events $\left(A_{-m}^{f}\right.$ and $\left.A_{n}^{f}\right)$
- if W is a probability, then π_{i}^{f} is the probability of getting outcome x_{i} with f.

Framing Effects—Kahneman and Tversky

A disease is expected to kill 600 people. Two alternative programs have been proposed:

- Program A: 200 people will be saved
- Program B:
- probability 1/3: 600 people will be saved
- probability 2/3: no one will be saved

Which program would you favor?

Framing Effects—Kahneman and Tversky

A disease is expected to kill 600 people. Two alternative programs have been proposed:

- Program C: 400 people will die
- Program D:
- probability 1/3: no one will die
- probability 2/3: 600 will die

Which program would you favor?

Framing Effects—Kahneman and Tversky

Kahneman and Tversky found:

- 72% chose A over B.
- 22% chose C over D.

But if 200 people will be saved out of 600 is the same to the decision-maker as 400 people will die out of 600 , and so on, then A and C are identical and so are B and D.

- losses (death) are weighed more heavily than gains (people staying alive)

Conjunction Fallacy or Failure of Extensionality

Tom is a rancher from Montana.
Which bet would you prefer?

- Win $\$ 10$ if Tom drives either a Ford or a Chevy, otherwise win nothing
- Win $\$ 10$ if Tom drives either a Chevy truck or Ford truck, otherwise win nothing

Kahneman and Tversky experiment:
Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations. Which is more probable?

- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement. 85% of subjects chose the second option.

Kahneman and Tversky experiment:
Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations. Which is more probable?

- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.

Another systematic error: Ignoring priors

A cab was involved in a hit and run accident last night. Two cab companies, Green and Blue, operate in the city.
You know:

- A witness identified the cab as Blue.
- Witnesses are pretty reliable: Tests have shown that in similar cirumstances witnesses correctly identify each of the two cabs 80% of the time and misidentify them 20% of the time.
- 85% of the cabs in the city are Green the rest are Blue.

What is the probability that the cab involved in the accident was Blue?

The correct answer requires Bayes rule:

$$
\begin{aligned}
\operatorname{Pr}(B \mid i d B) & =\frac{\operatorname{Pr}(i d B \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(i d B)} \\
& =\frac{(.8)(.15)}{(.8)(.15)+(.2)(.85)} \\
& =.41
\end{aligned}
$$

Computational limitations

People use "fast and frugal" heuristics [Gigerenzer]

- simple decision rules for making decisions that often work surprisingly well
- Which has a larger population: Detroit or Milwaukee?
- Europeans do better on this question than Americans!

Computational limitations

People use "fast and frugal" heuristics [Gigerenzer]

- simple decision rules for making decisions that often work surprisingly well
- Which has a larger population: Detroit or Milwaukee?
- Europeans do better on this question than Americans!

Computational limitations

People use "fast and frugal" heuristics [Gigerenzer]

- simple decision rules for making decisions that often work surprisingly well
- Which has a larger population: Detroit or Milwaukee?
- Europeans do better on this question than Americans!

Claim: People are rational, but the "mistakes" that we're seeing are the outcome of computational limitations [Wilson; Halpern/Pass/Seeman]

