Maximizing expected utility

Earlier we looked at many decision rules:
® maximin
e minimax regret
e principle of insufficient reason

The most commonly used rule (and the one taught in
business schools!) is maximizing expected utility.

In this discussion, we assumed that we have a set S of
states, a set O of outcomes, and are choosing among acts
(functions from states to outcomes).

The good news: Savage showed that if a decision maker’s
preference relation on acts satisfies certain postulates, she
is acting as if she has a probability on states and a utility
on outcomes, and is maximizing expected utility.

e Moreover, Savage argues that his postulates are ones
that reasonable/rational people should accept.

That was the basis for the dominance of this approach.



Some subtleties

We've assumed that you are given the set of states and
outcomes

e But decision problems don’t usually come with a clearly
prescribed set of states and outcomes.

o The world is messy

o Different people might model things different ways

Even if you have a set of states and outcomes, even de-
scribing the probability and utility might not be so easy

e [f the state space is described by 100 random variables,
there are 2'% states!

Some issues for the rest of the course:
e Finding the right state space
e Representing probability and utility efficiently



Three-Prisoners Puzzle

e T'wo of three prisoners a, b, and c are chosen at ran-
dom to be executed,

e a’s prior that he will be executed is 2/3.
e a asks the jailer whether b or ¢ will be executed

e The jailer says b.

[t seems that the jailer gives a no useful information about
his own chances of being executed.

e o already knew that one of b or ¢ was going to be
executed

But conditioning seems to indicate that a’s posterior prob-
ability of being executed should be 1/2.



The Monty Hall Puzzle

e You're on a game show and given a choice of three
doors.

o Behind one is a car; behind the others are goats.
e You pick door 1.
e Monty Hall opens door 2, which has a goat.

e He then asks you if you still want to take what’s be-
hind door 1, or to take what’s behind door 3 instead.

Should you switch?



The Second-Ace Puzzle

Alice gets two cards from a deck with four cards: A,

24, AQ, 20,

Ad AQ AN 24 Al 20

AQ 24 AQ 20Q 266 20

Alice then tells Bob “I have an ace”.

e Conditioning = Pr(both aces | one ace) = 1/5.

She then says “I have the ace of spades”.

e Prp(both aces | Add) =1/3.
The situation is similar if if Alice says “I have the ace of
hearts”.

Puzzle: Why should finding out which particular ace it is
raise the conditional probability of Alice having two aces?



Protocols

Claim 1: conditioning is always appropriate here, but
you have to condition in the right space.

Claim 2: The right space has to take the protocol (al-
gorithm, strategy) into account:

e a protocol is a description of each agent’s actions as a
function of their information.

o if receive message
then send acknowledgment



Protocols

What is the protocol in the second-ace puzzle?

e There are lots of possibilities!

Possibility 1:
1. Alice gets two cards
2. Alice tells Bob whether she has an ace
3. Alice tells Bob whether she has the ace of spades

There are six possible runs (one for each pair of cards
that Alice could have gotten); the earlier analysis works:

e Prp(two aces | one ace) = 1/5

e Prp(two aces | Add) =1/3

With this protocol, we can’t say “Bob would also think
that the probability was 1/3 if Alice said she had the ace
of hearts”



Possibility 2:
1. Alice gets two cards

2. Alice tells Bob if she has an ace. otherwise she says
nothing.

3. Alice tells Bob which ace she has.

This protocol is not well specified. What does Alice do
at step 3 if she has both aces?”



Possibility 2(a):
e She chooses which ace to say at random:

Now there are seven possible runs.
AD AN A 24 A 20 AM24 AR20 20,20

1/6 1/6 1/6 1/6 1/6 1/6

says AQ ays Add
1/2 1/2

e Each run has probability 1/6, except the two runs
where Alice was dealt two aces, which each have prob-
ability 1/12.

e Prp(two aces | one ace) = 1/5
o Prp(two aces | A) =5 /(4 ¢+ 55) =1/5
e Prp(two aces | AQ) =1/5




More generally: Possibility 2(b):

e She says “I have the ace of spades” with probability
!

o Possibility 2(a) is a special case with a = 1/2
Again, there are seven possible runs.
e Prp(two aces | A#d) = a/(a + 2)
o if o =1/2 get 1/5, as before
oif =0, get 0
o if « =1, get 1/3 (reduces to protocol 1)
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Possibility 3:
1. Alice gets two cards

2. Alice tells Bob she has an ace iff her leftmost card is
an ace; otherwise she says nothing.

3. Alice tells Bob the kind of ace her leftmost card is, if
1t 1s an ace.

What is the sample space in this case?
e has 12 elements, not 6: the order matters

o (20, AM) is not the same as (Ady, 20)
Now Pr(2 aces | Alice says she has an ace) = 1/3.
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The Monty Hall puzzle

Again, what is the protocol?

1. Monty places a car behind one door and a goat behind
the other two. (Assume Monty chooses at random.)

2. You choose a door.

3. Monty opens a door (with a goat behind it, other than
the one you've chosen).

This protocol is not well specified.

e How does Monty choose which door to open if you
choose the door with the car?

e [s this even the protocol? What it Monty does not
have to open a door at Step 37

Not to hard to show:

e If Monty necessarily opens a door at step 3, and chooses
which one at random if Door 1 has the car, then
switching wins with probability 2/3.

But ...

e if Monty does not have to open a door at step 3, then
all bets are off!
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Naive vs. Sophisticated Spaces

Working in the sophisticated space, which takes the pro-
tocol into account, gives the right answers, BUT . ..

e the sophisticated space can be very large

e it is often not even clear what the sophisticated space
1S

o What exactly is Alice’s protocol?

When does conditioning in the naive space give the right
answer’

e Hardly ever!
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Formalization

Assume

e There is an underlying space W: the naive space

e Suppose, for simplicity, there is a one-round protocol,
so you make a single observation. The sophisticated
space S then consists of pairs (w, 0) where

ocweW
o o (the observation) is a subset of W

o w € o: the observation is always accurate.

(w, 0) means the actual world is w and o is observed.

Example: Three prisoners

e The naive space is W = {w,, wy, w.}, where w, is the
world where x is pardoned

e There are two possible observations:

o {wgy, wp}: ¢ is to be executed (i.e., one of a or b
will be pardoned)

o {wgy, w.}: bis to be executed

The sophisticated space consists of four elements of the
form (wy, {w,, w, }), where x # y and {w,, wy, } # {wp, w.}

e the jailer will not tell a that he won’t be executed
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Given a probability Pr on .S (the sophisticated space), let
Pryy be the marginal on W:

Priy(w) = Pr({(w, 0) : (w,0) € S}).
In the 3-prisoners puzzle, Pryy(w) = 1/3 for all w € W,
but Pr is not specified (it depends on the jailer’s protocol).

Some notation:

e Let Xp and Xy be random variables describing the
agent’s observation and the actual world:

Xo = U is the event {(w,0) : 0 =U}.
Xy € U is the event {(w,0) : w € U}.

In the three-prisoners puzzle,

o if Xy € {wg, w.}, then one of a or ¢ is pardoned

oif Xp = {w,, w.}, then the jailer says that b is
executed (so one of a or ¢ is pardoned).
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Question of interest:

When is conditioning on U the same as conditioning on
the observation of U?

e When is Pr(- | Xo=U) =Pr(- | Xyw € U)?
e Equivalently, when is Pr(- | Xo = U) = Pry (- |U)?

When is conditioning on the jailer saying that b will be
executed the same as conditioning on the event that b will
be executed?

e The CAR (Conditioning at Random) condition char-
acterizes when this happens.
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The CAR Condition

Theorem: Fix a probability Pr on the sophisticated
space S and a set U C W. The following are equivalent:

(a) If Pr(Xpo =U) > 0, then for all w € U
Pr( X =w | Xo=U) =Pr( Xy =w | Xy € U).
(b) If Pr(Xyw = w) > 0 and Pr(Xy = w’) > 0, then
PriXo=U|Xw=w)=Pr(Xpo=U | Xy =uw).

For the three-prisoners puzzle, this means that

e the probability of the jailer saying “b will be executed”
must be the same if a is pardoned and if ¢ is pardoned.

e Similarly, for “c will be executed”.

This is impossible no matter what protocol the jailer
uses.

e Thus, conditioning must give the wrong answers.

CAR also doesn’t hold for Monty Hall or any of the other
puzzles.
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Why CAR is important

Consider drug testing:

e In a medical study to test a new drug, several patients
drop out before the end of the experiment

o for compliers (who don’t drop out) you observe
their actual response; for dropouts, you observe
nothing at all.

You may be interested in the fraction of people who have
a bad side effect as a result of taking the drug three times:

e You observe W', the set of compliers

e Let BS be the people who have bad side effects.

o [s Pr(BS | Xy € w) =Pr(BS | Xo=W')?

e Only if Pr(BS | Xy = w) = Pr(BS | Xy = ') for

all agents w, w'.

o This is very unlikely! It is likely to depend on
whether w and w’ complied.

Similar issues arise in questionnaires and polling:

e Are shoplifters really as likely as non-shoplifters to
answer a question like “Have you ever shoplifted?”

e concerns of homeless under-represented in polls
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Newcomb’s Paradox

A highly superior being presents you with two boxes, one
open and one closed:

e The open box contains a $1,000 bill

e Either $0 or $1,000,000 has just been placed in the
closed box by the being.

You can take the closed box or both boxes.

e You get to keep what’s in the boxes; no strings at-
tached.

But there’s a catch:

e The being can predict what humans will do

o If he predicted you'll take both boxes, he put $0 in
the second box.

o If he predicted you’ll just take the closed box, he
put $1,000,000 in the second box.

The being has been right 999 of the the last 1000 times
this was done.

What do you do?
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The decision matrix:
e s1: the being put $0 in the second box
e 5o the being put $1,000,000 in the second box

e a1: choose both boxes

® a5 choose only the closed box

S1 S92
a; | $1,000$1,001,000
as| $0 |$1,000,000

Dominance suggests choosing a;.

e But we've already seen that dominance is inappropri-
ate if states and acts are not independent.

What does expected utility maximization say:

e [f acts and states aren’t independent, we need to com-
pute Pr(s; | a;).

o Suppose Pr(sy | a1) = .999 and Pr(s;y | as) = .999.
e Then take act a that maximizes
Pr(sy | a)u(si,a) + Pr(sy | a)u(ssz, a).
e That’s as.
[s this really right?

e the money is either in the box, or it isn't ...
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A More Concrete Version

The facts

e Smoking cigarettes is highly correlated with heart dis-
ease.

e Heart disease runs in families
e Heart disease more common in type A personalities

Suppose that type A personality is inherited and people
with type A personalities are more likely to smoke.

e That’s why smoking is correlated with heart disease.
Suppose you're a type A personality:.
e Should you smoke?

Now you get a decision table similar to Newcomb’s para-
dox.

e But the fact that Pr(heart disease | smoke) is high
shouldn’t deter you from smoking.
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More Details

Consider two causal models:
1. Smoking causes heart disease:

e Pr(heart disease | smoke) = .6

e Pr(heart disease | —smoke) = .2

2. There is a gene that causes a type A personality, and
hence both heart disease and a desire to smoke.

e Heart disease and smoking are independent condi-
tional on having/not having the gene.

e Pr(heart disease | gene) = Pr(smoke | gene) = «

e Pr(heart disease | -gene) = Pr(smoke | =gene) =

B
e Pr(gene) = v

Can find «, 8,7 such that a > f (so heart disease and
smoking are both positively correlated with having the
gene), and

e Pr(heart disease | smoke) = .6
e Pr(heart disease | msmoke) = .2
Both causal models lead to the same statistics.

e Should the difference affect decisions?
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Recall:

e Pr(heart disease | smoke) = .6

e Pr(heart disease | ~smoke) = .2
Suppose that

e u(heart disease) = —1, 000, 000

e u(smoke) = 1,000

e u(—smoke) = u(—heart disease) = 0

[f smoking causes heart disease, then

EU (smoke)
= —1,000, 000 Pr(heart-disease | smoke) + 1, 000

lyou get 1,000 for sure for smoking]
— 599, 000

EU (—smoke)
= —1,000, 000 Pr(heart-disease | =smoke)
200, 000

Conclusion: don’t smoke.

e But if smoking doesn’t cause heart disease (even though
they're correlated) then you have nothing to lose by
smoking!
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Causal Decision Theory

In the previous example, we want to distinguish between
the case where smoking causes heart disease and the case
where they are correlated, but there is no causal relation-
ship.

e the probabilities are the same in both cases
This is the goal of causal decision theory:

e Want to distinguish between Pr(s|a) and probability
that a causes s.

o What is the probability that smoking causes heart
disease vs. probability that you get heart disease,
given that you smoke.

Let Pro(s | @) denote the probability that a causes s.

e Causal decision theory recommends choosing the act
a that maximizes

YsPro(s | a)u(s, a)
as opposed to the act that maximizes
s Pr(s | a)u(s,a)
So how do you compute Pra(s | a)?
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e You need a good model of causality . ..
Basic idea:

e include the causal model as part of the state, so state
has form: (causal model, rest of state).

e put probability on causal models; the causal model
tells you the probability of the rest of the state

25



In smoking example, need to know the probability of

e smoking being a cause of heart disease:

e heart disease, given that you smoke, if smoking is a

cause: .0

e heart disease given that you don’t smoke, if smoking

1S a cause: .2

e having the gene that’s conducive to heart disesase, if
a gene is the cause: 1 — 0

e heart disease, given that you have the gene: o

e heart disease, given that you don’t have the gene: 3

e the probability of heart disease if the gene is the cause
(whether or not you smoke): ay + 5(1 — ) =e.

and utilities:

e heart disease: —1, 000, 000

e smoking, assuming you don’t get heart disease: 1, 000

Then
EU (smoke) =

EU(—smoke) =

5(.6(—1, 000, 000) + .4(1, 000))+

1 — &)(e(—1,000,000) + (1 — €)(1,000))
5(.2(—1,000,000) + .8(0))+

(1 — &)(e(—1,000,000) + (1 — €)(0))

/N
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EU(smoke) = 8(.6(—1,000,000) + .4(1,000))+

(1 — )(e(—1,000,000) + (1 — €)(1,000))
EU(—smoke) = 6(.2(—1,000,000) + .8(0))+

(1 —6)(e(—1,000,000) 4+ (1 —€)(0))

o If § = 1 (smoking causes heart disease), then gets
the same answer as standard decision theory: you
shouldn’t smoke.

o If ) = 0 (there’s a gene that’s a common cause for
smoking and heart disease), you have nothing to lose
by smoking.

e there is a value of 6 € (0.1) above which you sholdn’t
smoke and below which you might as well.

So what about Newcomb?

e Choose both boxes unless you believe that choosing
both boxes causes the second box to be empty!
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A Medical Decision Problem

You want to build a system to help doctors make deci-
sions, by maximizing expected utility.

e What are the states/acts/outcomes?

States:

e Assume a state is characterized by n binary random
variables, X1, ..., X,:

o A state is a tuple (z1,...,xz,, x; € {0,1}).
o The Xj;s describe symptoms and diseases.
x X; = 0: you haven’t got it
x X; = 1. you have it

e For any one disease, relatively few symptoms may be
relevant.

e But in a complete system, you need to keep track of
all of them.

Acts:

e Ordering tests, performing operations, prescribing med-
1cation
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Outcomes are also characterized by m random variables:
e Does patient die?
e If not, length of recovery time
e Quality of life after recovery

e Side-effects of medications

29



Some obvious problems:

1. Suppose n = 100 (certainly not unreasonable).

2100 states

e Then there are
e How do you get all the probabilities?
o You don’t have statistics for most combinations!

e How do you even begin describe a probability dis-
tribution on 2! states?

2. To compute expected utility, you have to attach a
numerical utility to outcomes.

e What the utility of dying? Living in pain for 5
years?
o Different people have different utilities
o Eliciting these utilities is very difficult
x People often don’t know their own utilities

o Knowing these utilities is critical for making a
decision.
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Bayesian Networks

Let’s focus on one problem: representing probability.

Key observation [Wright,Pearl]: many of these random
variables are independent. Thinking in terms of (in)dependence

e helps structure a problem

e makes it easier to elicit information from experts
By representing the dependencies graphically, get

e a model that’s simpler to think about

e (sometimes) requires far fewer numbers to represent
the probability
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Example

You want to reason about whether smoking causes cancer.
Model consists of four random variables:

e (: “has cancer”

e SH: “exposed to second-hand smoke”
e PS: “at least one parent smokes”

e 5. “smokes”

Here is a graphical representation:

PS

SH S
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Qualitative Bayesian Networks

PS

SH \)

C

This qualitative Bayesian network (BN) gives a quali-
tative representation of independencies.

e Whether or not a patient has cancer is directly influ-
enced by whether he is exposed to second-hand smoke
and whether he smokes.

e These random variables, in turn, are influenced by
whether his parents smoke.

e Whether or not his parents smoke also influences whether
he has cancer, but this influence is mediated through

SH and S.

o Once values of SH and S are known, learning P.S
gives no additional information.

o (' is independent of PS given SH and S.
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Background on Independence

Event A is independent of B given C' (with respect to
Pr) if
Pr(A|BNC)=Pr(A|C)

Equivalently,
Pr(ANB|C)=Pr(A|C) x Pr(B|C).

Random variable X is independent of Y given a set of
variables {71, ..., Z} if for all values x, y, 21, ..., z; of
X,Y,and Z1, ..., Z; respectively:

PrX=z|Y=yNZi=xN0...NZ; = z)
= Pr( X =z|Z1=2N...0NZ; = zp).

Notation: Ip (X, Y |{Z1,...,Z})
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Why We Care About Independence

Our goal: to represent probability distributions compactly.

e Recall: we are interested in state spaces characterized

by random variables X1, ..., X,
e States have form (x1,...,2,): X1 =x1,..., X, =2,
Suppose X1, ..., X5 are independent binary variables

e Then can completely characterize a distribution by 5
numbers: Pr(X; =0), fori=1,...,5

o [f Pr(X;=0)=ay, then Pr(X;=1)=1—
e Because of independence,
Pr(0,1,1,0,0) = a1(1 — as)(1 — ag)ayas.

e Once we know the probability of all states, can com-
pute the probability of a set of states by adding.

More generally, if X;,...,X,, are independent random
variables, can describe the distribution using n numbers

e We just need Pr(X; = 0)

e 1, is much better than 2"
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Situations where Xy, ..., X, are all independent are un-
imteresting

o [f tests, symptoms, and diseases were all independent,
we wouldn’t bother doing any tests, or asking patients
about their symptoms!

The intution behind Bayesian networks:

e A variable typically doesn’t depend on too many other
random variables

e If that’s the case, we don’t need too many numbers
to describe the distribution
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Qualitative Bayesian Networks:
Definition

Formally, a qualitative Bayesian network (BN) is a di-
rected acyclic graph.

e directed means that the edges of the graph have a
direction (indicated by an arrow)

e acyclic means that there are no cycles (you can’t fol-
low a path back to where you started)

The nodes in the BN are labeled by random variables.

Given a node (labeled by) X in a BN G,

e the parents of X, denoted Parg(X)
pointing to X

are the nodes

)

o in the BN for cancer, the parents of C' are .S and
S H; the only parent of S is PS.

e the descendants of X are all the nodes “below” X on
the graph

o the only descendants of S are S itself and C

e the nondescendants of X, denoted NonDesg(X), are
all the nodes that are not descendants.

o the nondescendants of .S are PS and SH
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Qualitative Representation

A qualitative Bayesian network G' represents a probabil-
ity distribution Pr if, for every node X in the network

Ip. (X, NonDesg(X) | Parg(X))

e X is independent of its nondescendants given its par-
ents in GG

Intuitively, G represents Pr if it captures certain (condi-
tional) independencies of Pr.

e But why focus on these independencies?

e These are the ones that lead to a compact represen-
tation!
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Topological Sort of Variables

X1,...,X, is a topological sort of the variables in a
Bayesian network if, whenever X; is an ancestor of Xj,
then 7z < 7.

Key Point: If Xy,..., X, is a topological sort, then
Par(X;) C {X1,...,X;_1} € NonDes(X;)

Thus, it G represents a probability distribution Pr and
X1, ...,X, are toplogically sorted, then

PT(XZ | {Xl, c.e ,Xi_1}> = PF(XZ ’ Par(XZ))

This is because X; is independent of its nondescendants
given 1ts parents.
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The Chain Rule

From Bayes’ Rule, we get
Pr(Alﬂ. . ﬂAn> = Pl“(An | Alﬂ. . .ﬂAn_l)xPr(Alﬂ. . .ﬁAn_l).
[terating this (by induction), we get the chain rule:

Pl”(Al M...N An)
= PI‘(An ’ Al M...0MN An_1> X Pr(An_l ‘ Al M...MN An_g)
X -+ X Pr(As | A1) x Pr(Ay).
In particular, if X, ..., X, are random variables, sorted
topologically:

PrX;=x1Nn...NX, =x,)
= PI‘(Xn = Iy | X1 =21 ... an—l = ZE’n_l)X
PI‘(Xn_l = Tn—1 ’ X1 =x1M...N Xn_g = aj‘n_g)X
oo X PI‘(XQ = I9 ‘ X1 = 33'1) X Pf(Xl = 331>.
If G represents Pr, then
PriXy=z1n...NX, =x,)
= Pr(X,, = 2, | Nx,eparg(x,)Xi = Ti) ¥
Pr(Xn—l — Ln—1 ’ mXieParg(Xn_l)Xi — CIZ'Z')X
ce X PT(Xl = 331).
Key point: if G represents Pr, then Pr is completely
determined by conditional probabilities of the form

Pl"(Xj = lej | mXieparG(Xj)Xi = ZCZ)
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Quantitative BNs

A quantitative Bayesian network G is a qualitative BN
+ a conditional probability table (cpt):

For each node X, if Parg(X) = {Z1,..., Z;}, for each
value x of X and 2z1,..., 2z 0f Z1, ..., Z};, gives a number
dy 2y, 2 Intuitively

Pl”(X =X | Z1=z21N...NZ, = Zk> = da:,zl,...,z

-
A quantitative BN quantitatively represents Pr if it qual-
itatively represents Pr and

dszljm,zk = PI‘(X =T ’ Zl = 21 MN...N Zk = Zk)

If G quantitatively represents Pr, then we can use G to
compute Pr(E) for all events E. Remember:

PriX;=x1Nn...NnX, =x,)
= Pr(X,, = 2, | Nx,epary(x,)Xi = Ti) ¥
Pr(Xn—l — In-1 ’ mXieParg(Xn_l)Xi — ZUZ')X
ce X PI’(Xl = 331).
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Smoking Example Revisited
PS

SH \)

Here is a cpt for the smoking example:

S SH|C=1 PSS =1 PS SH =1 PS =1
11 6 1 4 L ].8 3

1 0 |4 0 |.2 0 |.3

0 1 1

0 0 .01

e The table includes only values for Pr(C' =1 | § =
s,SH =1), Pr(S=1| PS =z), Pr(SH =1 |
PS = z), Pr(PS = 1)

oPr(C=0|SH=s5)=1—-Pr(C=1]|SH = s)

o Can similarly compute other entries
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Pr(PS=0NS=0NSH=1NC=1)

PriC=1|5S=0NSH=1)xPr(S=0| PS=0)
xPr(SH =1| PS=0)x Pr(PS=0)

1 x . 8x.3x.7

0168
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What do BNs Buy Us?

If each node has < k parents, need < 2¥n numbers to
represent the distribution.

e If k is not too large, then 2"n < 2"

May get a much smaller representation of Pr.

Other advantages:
e The information tends to be easier to elicit

o Experts are more willing to give information about
dependencies than to give numbers

e The graphical representation makes it easier to under-
stand what’s going on.

Many computational tools developed for Bayesian net-
works:

e Computing probability given some information
e Learning Bayesian networks
They’ve been used in practice:
e c.2.. in Microsoft’s help for printer problems.
e In modeling medical decision making

Commercial packages exist.
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Can we always use BNs?

Theorem: Every probability measure Pr on space S
characterized by random variables Xi,..., X, can be
represented by a BN.

Construction:
Given Pr, let Y7,...,Y,, be any ordering of the random
variables.

e For each k, find a minimal subset of {Y7,..., Y, 1},
call it Pk, such that Ipr<{Yi, c. 7Yk—1}7 Yk | Pk>

e Add edges from each of the nodes in Py to Y).. Call
the resulting graph G.

G qualitatively represents Pr. Use the obvious cpt to get
a quantitative representation:

e Different order of variables gives (in general) a differ-
ent Bayesian network representing Pr.

e Usually best to order variables causally: if Y is a
possible cause of X, then Y precedes X in the order

o This tends to give smaller Bayesian networks.
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Representing Utilities

The same issues arise for utility as for probability.

Suppose that preference is represented in terms of a utility
function. How hard is it to describe the function?

e If an outcome depends on n factors, each with at least
k possible values, get at least k™ possible outcomes.

o Describing the utility function can be hard!
Example: Consider buying a house. What matters?
e price of house (p)
e distance from school (ds)
e quality of local school (sq)
e distance from work (dw)
e condition of house (c)

Thus, utility is a function of these 5 parameters (and
maybe others):

u(p, ds, sq, dw, c)
Suppose each parameter has three possible values.

e Describing the utility function seems to require 3° =
243 numbers.
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We can do better if the utility is additively separable:
U(p, d57 Sq, dw? C) — u1(p)+u2(d8)+u3(8q)—|—u4(dw)+u5(c)
There are only 15 numbers to worry about

e We compute uq, ..., us separately

With additive separability, can consider each attribute
independently:.

e Scems reasonable in the case of the house.
Additive separability doesn’t always hold. We want

e General conditions that allow for simpler descriptions
of utilities

e Graphical representations that allow for easier repre-
sentation

e Techniques to make utility elicitation easier

We won't cover the first two topics (no time ... ), but this
is currently a hot topic in Al
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Eliciting Utilities

For medical decision making, we need to elicit patients’
utilities. There are lots of techniques for doing so. They
all have the following flavor:

o [VNM] standard gamble approach: Suppose 07 is the
the worst outcome, o0y is the best outcome, and o is
another outcome:

o Find p such that o ~ (1 — p)o; + pos.
o Note that (1 — p)o; + pos is a lottery.

e In this way, associate with each outcome a number
po € 10,1].

® 07 is associated with 0

® 0, 1s associated with 1

e the higher p,, the better the outcome
How do you find p,?

e binary search?”
e ping-pong: (alternating between high and low values)

e tilration: keep reducing p by small amounts until you
hit p,

The choice matters!
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Other approaches

Other approaches are possible if there is an obvious linear
order on outcomes.

e c.g.. amount of money won

Then if 0 is worst outcome, 09 is best, then, for each p,
find o such that

o~ (1 —p)or + pos.
e Now p is fixed, o varies; before, o was fixed, p varied

e This makes sense only if you can go continuously from
01 t0 09

e 0 is the certainty equivalent of (1 — p)oy + pos
e This can be used to measure risk aversion
Can also fix o1, 0, and p and find o' such that
(1 —p)oy+po ~d.

Lots of other variants possible.
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Problems

e People’s responses often not consistent

e They find it hard to answer utility elicitation questions
e They want to modify previous responses over time

e They get bored/annoyed with lots of questions

e Different elicitation methods get different answers.

e Subtle changes in problem structure, question format,
or response mode can sometimes dramatically change
preference responses

o Suppose one outcome is getting $100

x Did you win it in a lottery?

x Get it as a gift?

x Get it as payment for something
x Save it in a sale?

o This makes a big difference!

o Gains and losses not treated symmetrically

My conclusion: people don’t “have” utilities.

e They have “partial” utilities, and fill in the rest in
response to questions.
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