Experiment

Did the subjects make choices "as if" they had a preference relation \succ over bundles of (IC, HB)? If so, could we infer \succ and predict future choices or offer advice about choices?

In situation 2 the amount of money was $\$ 3.00$ and the prices were $p_{H B}=.50$ and $p_{I C}=1.00$; in situation 5 the amount of money was $\$ 3.60$ and the prices were $p_{H B}=.60$ and $p_{I C}=1.20$. The affordable set was the same in these two cases. So if the framing of the question doesn't matter would expect the same choice in 2 as in 5 .
22% of the subjects did not make the same choice in these two situations.

So we observe $x \succ y$ and $y \succ x$ for these people.

Lets look at situation 4 versus situation 1. In situation 4 the amount of money was $\$ 4.20$ and the prices were $p_{H B}=.80$ and $p_{I C}=1.20$; in situation 1 the amount of money was $\$ 3.60$ and the prices were $p_{H B}=.40$ and $p_{I C}=1.60$. The affordable sets in these two cases are graphed below.

If we observe choices x at 4 and y at 1 then we have $x \succ y$ and $y \succ x$. No one made choices like this.

Static Decision Theory Under Certainty

A set of objects X.
An individual is asked to express his preferences among these objects or is asked to make choices from subsets of X.

For $x, y \in X$ we can ask which, if either, is strictly preferred.

- If the individual says x is strictly better than y we write $x \succ y$, read as x is strictly preferred to y.
- \succ is a binary relation on X.

Example 1: $X=\{a, b, p\}, b \succ a, a \succ p$ and $b \succ p$.
What if the answers also included $a \succ b$?

Axioms

Asymmetry: For any $x, y \in X$ if $x \succ y$ then $\operatorname{not}[y \succ x]$.

Negative Transitivity: For any $x, y, z \in X$ if $\operatorname{not}[x \succ y]$ and $\operatorname{not}[y \succ z]$ then $\operatorname{not}[x \succ z]$.

Proposition. The binary relation \succ is negatively transitive iff $x \succ z$ implies that, for all $y \in X, x \succ y$ or $y \succ z$.

Example 2: $X=\{a, b, c\}, b \succ a, a \succ c$ and $b ? c$. If we have asymmetry and NT you also know how b and c must be ranked.

Definition. A binary relation \succ is called a (strict) preference relation if it is asymmetric and negatively transitive.

Is Asymmetry a good normative or descriptive property? What about NT?

Weak Preference

Definition. For $x, y \in X$:

1. x is weakly preferred to $y, x \succeq y$, if $\operatorname{not}[y \succ x]$.
2. x is indifferent to $y, x \sim y$, if $\operatorname{not}[x \succ y]$ and $\operatorname{not}[y \succ x]$.

Does the absence of strict preference in either direction require real indifference or could it permit non-comparability?

Example. $X=\{a, b, c\}$. Suppose a is not ranked (by $\succ)$ relative to either b or c. If \succ satisfies NT, then b and c are not ranked either.

An interesting alternative would be to ask about \succ and \sim separately. Then define $x \succeq y$ as either $x \succ y$ or $x \sim y$. This permits the possibility that x and y are not comparable.

Definition. The binary relation \succeq on X is complete if for all $x, y \in X, x \succeq y, y \succeq x$ or both. It is transitive if $x \succeq y$ and $y \succeq z$ implies $x \succeq z$.

Proposition. Let \succ be a binary relation on X.

1. \succ is asymmetric $\mathrm{iff} \succeq$ is complete.
2. \succ is negatively transitive $\mathrm{iff} \succeq$ is transitive.

Proof of \Rightarrow

1. By asymmetry of \succ there is no pair $x, y \in X$ such that both $x \succ y$ and $y \succ x$. So at least one of $\operatorname{not}[x \succ y]$ and $\operatorname{not}[y \succ x]$ is true. Thus for any $x, y \in X$ either $y \succeq x$ or $x \succeq y$ or both. This is completeness.
2. Using the definition of \succeq, negative transitivity of \succ is: for any $x, y, z \in X, y \succeq x$ and $z \succeq y$ implies $z \succeq x$. This is transitivity.
\Leftarrow will be on homework 1 .

Transitivity

Why do we care about transitivity?
Remark: If \succ is a preference relation then \succ is transitive.

Normative property?
Important for choice.
Example. $X=\{a, b, p\}$. Consider a sequence of choices from among pairs.

1. $\{a, b\}, a \succ b$ and a is chosen.
2. $\{a, p\}, p \succ a$ and p is chosen.
3. $\{p, b\}, b \succ p$ and b is chosen.
4. $\{a, b\} \ldots$

Without transitivity can get cycles.
Remark: If \succ is a preference relation then \succ is acyclic,
i.e. $\left[x_{1} \succ x_{2} \succ \ldots x_{n-1} \succ x_{n}\right] \Rightarrow\left[x_{1} \neq x_{n}\right]$.

Choice

Extend binary comparisons to choice over a set of more objects.

A finite set of objects X. Let $P(X)$ be the set of all non-empty subsets of X.

Definition. For \succ a preference relation on X define $c(\cdot, \succ)$ by, for $A \in P(X)$,

$$
c(A, \succ)=\{x \in A: \text { for all } y \in A, y \nsucc x\} .
$$

Interpretation: $c(A, \succ)$ is the set of alternatives chosen from A by a decision maker with preferences \succ.

Remark: If $x, y \in c(A, \succ)$ then $x \sim y$.

Proposition. For \succ a preference relation on a finite set X,

$$
c(\cdot, \succ): P(X) \rightarrow P(X)
$$

What else do we know about $c(\cdot, A)$?

Consider general choice functions and ask what is special about $c(\cdot, A)$.

Definition. A choice function for X is a function $c: P(X) \rightarrow P(X)$ such that for all $A \in P(X)$, $c(A) \subset A$.

Clearly, $c(\cdot, \succ)$ is a choice function.
Can any choice function be generated by some preference relation \succ ? No.

Example. $X=\{a, b, c\}$.

1. $c(\{a, b, c\})=\{a\}$ and $c(\{a, b\})=\{b\} \Rightarrow$ a violation of asymmetry.
2. $c(\{a, b\})=\{a, b\}$ and $c(\{a, b, c\})=\{b\} \Rightarrow a$ violation of NT.

Axioms

Sen's α. If $x \in B \subset A$ and $x \in C(A)$, then $x \in C(B)$. Independence of Irrelevant Alternatives.

Proposition. If \succ is a preference relation then $c(\cdot, \succ)$ satisfies Sen's α.

Proof. Suppose there are sets $A, B \in P(X)$ with $B \subset A, x \in c(A, \succ)$ and $x \notin c(B, \succ)$. Then there is a $y \in B$ such that $y \succ x$. Since $B \subset A$ we have $y \in A$ and $y \succ x$. Thus $x \notin c(A, \succ)$. A contradiction.

Sen's β. If $x, y \in c(A), A \subset B$ and $y \in c(B)$ then $x \in$ $C(B)$.

Proposition. If \succ is a preference relation then $c(\cdot, \succ)$ satisfies Sen's β.

Proof. Since $x \in c(A, \succ)$ and $y \in A$ we have $y \nsucc x$. By definition, $y \in c(B, \succ)$ implies that for all $z \in B, z \nsucc y$. By negative transitivity, $y \nsucc x$ and $z \nsucc y$ implies $z \nsucc x$. Since $x \in B$ and this holds for all $z \in B$ we have $x \in c(B, \succ)$.

Are there any other restrictions on $c(\cdot, \succ)$ that follow from \succ being a preference relation? No.

Proposition. If a choice function c satisfies Sen's α and β, then there is a preference relation \succ such that $c(\cdot)=c(\cdot, \succ)$.

Define the "revealed preference" relation \succ by

$$
x \succ y \text { if } x \neq y \text { and } c(\{x, y\})=\{x\} .
$$

To prove the proposition we need to show that \succ is a preference relation and that $c(\cdot)=c(\cdot, \succ)$.

Proof

To show that \succ is a preference relation we need to show that it is asymmetric and negatively transitive.

1. Asymmetry. Suppose for some x and y, that $x \succ y$ and $y \succ x$. Then $c(\{x, y\})=\{x\}$ and $c(\{x, y\})=\{y\}$. A contradiction.
2. Negative Transitivity. Suppose that for some $x, y, z \in X$ we have $z \nsucc y$ and $y \nsucc x$. We need to show that $z \nsucc x$. This is $x \in c(\{x, z\})$. By Sen's α, showing that $x \in c(\{x, y, z\})$ is sufficient. Suppose $x \notin c(\{x, y, z\})$. Then at least one of y and z are in $c(\{x, y, z\})$.

Suppose $y \in c(\{x, y, z\})$. Then by Sen's α, $y \in c(\{x, y\})$. By $y \nsucc x$ we have $x \in c(\{x, y\})$. By Sen's β this implies that $x \in c(\{x, y, z\})$.
Suppose that $z \in c(\{x, y, z\})$. Then by Sen's α, $z \in c(\{y, z\})$. By $z \nsucc y$ we have $y \in c(\{y, z\})$. By Sens' β this implies that $y \in c(\{x, y, z\})$. By the previous argument this implies that $x \in c(\{x, y, z\})$.

We also need to show that for each $A \in P(X)$, $c(A)=c(A, \succ)$.

1. Suppose $x \in c(A)$. Then by Sen's $\alpha, x \in c(\{x, y\})$ for all $y \in A$. Thus for all $y \in A, y \nsucc x$. So $x \in c(A, \succ)$.
2. Suppose $x \in c(A, \succ)$. Then for all $y \in A, y \nsucc x$. So for all $y \in A, x \in c(\{x, y\})$. Suppose $x \notin c(A)$. Then there is some $z \in A, z \neq x$ such that $z \in c(A)$. By Sen's $\alpha, z \in c(\{x, z\})$. Then $c(\{x, z\})=\{x, z\}$, $\{x, z\} \subset A$ and $z \in c(A)$. So by Sen's $\beta, x \in c(A)$. A contradiction.

So we know,
[Sen's α and β for $c(\cdot)] \Leftrightarrow$

$$
[c(\cdot)=c(\cdot, \succ) \text { for the preference relation } \succ]
$$

WARP

There is an alternative equivalent way to state Sen's α and β.

This is Houthaker's Axiom which is also called the Weak Axiom of Revealed Preference (WARP).

WARP: If x and y are both in A and B and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ and $y \in C(A)$.

Proposition. $c(\cdot)$ satisfies Sen's α and β if and only if it satisfies WARP.

Partial Orders

Completeness of \succeq is questionable from both a descriptive and a normative point of view.

Definition. \succ is a partial order if it is an asymmetric and transitive binary relation.

We can define a choice function as before. What properties does it have?

Sen's α still holds, but Sen's β may fail. (On homework 1.)

Now we would not want to define \sim as before. $x \nsucc y$ and $y \nsucc x$ could express indifference or non-comparability. An alternative approach is to include a positive expression of indifference, i.e. preferences described by the pair (\succ, \sim).

