Ordinal Representations

September 24, 2008

Note: The marked exercises are additional problems I thought would be
amusing to think about.

1 Theories of Measurement

The representation of preference orders by numerical scales is an important
part, but only part, of the theory of measurement. It is worthwhile to under-
stand what we mean by measurement before we begin to think about how
to measure preferences on a numerical scale.

Measurement theory is about assigning numbers to things. Think de-
grees Fahrenheit, pitch, the Richter scale, the category of a hurricane, batting
average and the runs-created index, quarterback efficiency, .... These are
all attempts to scale different kinds of things. Theories of measurement help
us to keep straight what we can and cannot learn from numerical represen-
tations. For instance, the statement I once heard on TV, that “tomorrow
will be twice as hot as today” because today’s high was in the low 20s and
tomorrow’s was expected to be in the mid 40s is meaningless. (Why?) Not
all attributes of numbers are relevant to all measurement systems.

Most generally, a measurement system is One way (not the best way,
I think, and not standard) of describing measurement systems is to describe
the transformations of the measurement scalethat we expect to preserve re-
lationships. Here is a rough categorization of measurement systems:



type description example
nominal equality, 1 — 1 transformations “1 if vaccinated, 0 if not”

ordinal  order relation, strictly preference
increasing transformation

interval  difference matters, positive degrees C and F
affine transformations

ratio difference and ratios matter length in inches, degrees K
positive linear transformations

absolute all properties matter probability
identity transformation

A better way to describe measurement systems is to describe the universe
of objects being measured, a collection of relations among these objects, a
corresponding collection of relations among the real numbers, and a map
from objects to reals that preserves the relationships. We will not pursue
this here. A good book on the topic is Louis Narens’ Abstract Measurement
Theory

2 Ordinal and Cardinal Representations

Briefly, in the scheme above, interval, ratio and absolute measurement sys-
tems are all cardinal measures, while utility, with which we measure prefer-
ences, is ordinal.

We are given a preference order = on X, which wwe want to scale to
the real numbers. The map from objects to numbers, which preserves order
properties, is called a wutility function.

Definition 1. A utility representation of the preference order > is a function
U: X — R such that x = y if and only if u(z) > u(y).

What do we mean by an ordinal representation? First, a representa-
tion is a numerical scaling — a thermometer to measure preference. Thus



if x is better than y, x gets a higher utility number than y, just as if New
York City is hotter than Boston, NY gets a higher temperature number. But
with utility, only the ordinal ranking matters. Temperature is not an ordinal
scale. New York is only slightly hotter than Boston, while Miami is much
hotter than Cleveland.

T'(Miami) — T'(Cleveland) > T'(New York) — T'(Boston) > 0

The temperature difference between New York and Boston is smaller than
the temperature difference between Miami and Cleveland. But to say that

u(z) —u(y) > u(a) —u(d) >0

does not mean that the incremental satisfaction from x over y is more than
the incremental satisfaction from a over b. We express this as follows:

Definition 2. A utility representation for > is an ordinal measure of pref-
erence. That is, if U 1s a utility representation for = and f : R — R is a
strictly increasing function, f o U is also a utility representation for >.

3 Why do we want to measure preferences?

Summary: An ordering is just a list of pairs, which is hard to grasp. A
utility function is a convenient way of summarizing properties of the
order. For instance, with expected utility preferences of the form
U(p) = >, u(a)p,, risk aversion — not preferring a gamble to its ex-
pected value — is equivalent to the concavity of u. The curvature of u
measures how risk-averse the decision-maker is.

Optimization: We want to find optimal elements of orders on feasible sets.
Sometimes these are more easily computed with utility functions. For
instance, if U is C* and B is of the form {z : F'(z) < 0}, then optima
can be found with the calculus.

So why not start with utilities?



e Preferences, after all, are the primitive concept, and we don’t know
that utility representations exist for all kinds of preferences we’d want
to talk about.

e Some characteristic properties of classes of preferences are better un-
derstood by expressing them in terms of orderings.

e Preferences are the primitive concept, and some properties of utility
functions are not readily interpreted in terms of the preference order.

4 When do ordinal representations exist?

There are really two questions to ask:

e Does every preference order have a representation?” More generally,
what binary relations have numerical representations?

e Does every function from X to R represent some preference order?
That is, does every function from X to R describe some preference
relation?

The second question is easy. For a given U : X — R, define z >y y iff
U(z) > Ul(y).

Theorem 1. For any domain X and function U : X — R, the binary
relation =y is a preference order.

Proof. Asymmetry is obvious. If = >~y y, then U(z) > U(y) and so not
U(y) > U(z), so not y =y c. To check negative transitivity, suppose that
not x >y y and not y > z. Then U(z) > U(y) and U(y) > U(z), so
U(z) > U(z), sonot z >y y. O

The answer to the first question depends on the cardinality of X and
the properties of . Recall that an asymmetric relation > is a



partial order: if it is transitive;

preference order: if it is negatively transitive;

We now describe several cases.

4.1 Finite X

This is an intermediate case — theorem 3 covers this case as well, but finite-
ness makes clear what’s going on.

Theorem 2. Suppose X is finite. If = is a preference order, then it has a
utility representation.

Recall K. Proposition 2.3; in particular, if > is a preference relation,
it is transitive and irreflexive. Also recall K. Proposition 2.4d: If w > =z,
x ~vy,and y > z, then w > y and z > z.

Proof. Define W(z) ={y : z > y}. Define U(z) = #W (x).

1. U(xz) is well-defined. That is, it exists for every z.

2. If x >y, then U(x) > U(y). If z € W(y), then z € W(x), so #W (z) >
#W (y). Furthermore, y ¢ W(y) but y € W(x), so #W(x) > #W (y),
that is, U(z) > U(y).

3. If U(z) > Ul(y), then = > y. Observe first that we cannot have y > z,
since otherwise U(y) > U(z), which is a contradiction. If x 3 y, then
x ~ y. But this cannot happen either. If z € W(z), then by 2.4d,
z € W(y), and vice versa, so if  ~ y, then W(x) = W (y), and so
U(z) = U(y), which is a contradiction.



4.2 Denumerable X
4.2.1 Preference orders

Preferences on countable sets can be more complicated. 7 < x5 < --- has
no maximal element. z1 > x9 > --- has no minimal element. If z; > xo,
Tog+1 > Top—1 and Top < Top_o, then there is neither a maximal nor a minimal
element.

Why won’t the construction of Theorem 2 work? Nonetheless, every
preference order has a representation.

Theorem 3. Suppose X is denumerable. If = is a preference order, then it
has a utility representation.

Proof. We will make use of K. Proposition 2.4.d — in particular, if z ~ y
and y > z, then x > 2. The art of the proof is to define a candidate utility
function and see that it works.

Begin by indexing X: X = {x1,s,...}, and consider a preference
order >. For each x € X define W(z) = {y : z > y}, the “worse than z” set.
Define N(z) = {n : z, € W(z)}; the set of indices of elements in the worse
than z set. Finally, define

Ulz) = 0+ ngv%x) (%)n

We must show that U is a utility representation for »; that is, U(z) > U(y)
if and only if x > y.

Suppose that = > y. Since > is transitive and irreflexive, W(y) &



W (x). Consequently N(y) & N(z), and so

Suppose that U(z) > U(y). There are only three possibilities for the
order of x and y: * > y, x ~ y and y > x. We will rule out the last two.
The third is ruled out, because we have already shown that y > x implies
U(y) > U(x). Suppose z ~ y. If z € W(y), then 2.4.d implies that z € W(z)
and vice versa. Thus N(z) = N(y) and so U(z) = U(y). The only remaining
possibility is = > y. O

4.2.2 Partial orders

Indifference need not be transitive in a partial order, so there is no possibility
of getting a full numerical representation. In the following figure, if there is
a path in the direction of the arrows from x to y, then x > y. Any binary
relation with such a representation must be transitive since if there is a path
from a to b and a path from b to ¢, conjoining the two paths gives a path
from a to c¢. The relation will be asymmetric if and only if there are no loops,
thatis, no paths that start from some vertex a and return to a. In this figure,
a~b,b~canda > c If - had an ordinal representation U, then it would
follow that U(a) = U(b), U(b) = U(c), and U(a) > U(c), which is impossible.

However, it has a representation in the following weaker sense:

Definition 3. A weak or one-way utility representation of the partial order
= is a function U : X — R such that if © =y, then U(x) > U(y).



Figure 1: A Partial Order.

A one-way representation for the partial order > in Figure 1 is U(e) = 0,
U(c) =1,U(d) =2,U(a) = 3 and U(b) = 4. Another one-way representation
is V(e)=0,V(c)=2,V(d) =1, V(a) =3 and V (b) = 2.

Theorem 4. Suppose X is denumerable. If > is a partial order, then it has
a weak utility representation.

Proof. The same construction as that in the proof of Theorem 3 works here.
Try it yourself. O

If > is a partial order on a finite set X, then C(B,>) exists for all
B € P*(X), and if x € B maximizes U on B, then x € C(B, ). However
the converse is false. For instance, with the representation U for the > of
Figure 1, only b maximizes utility on {a,b,c,d,e} but C({a,b,c,d, e}, =) =
{a,b}. With the representation V', only a maximizes utility on {a,b, c,d, e}.
If there is a function W that “gets it right” on every subset, then in particular
it would get it right on every pair, and so > =>;. Thus > would have to be
a preference order, which it evidently is not.

Exercise 1. Which of Sen’s azioms o and 3 fail to hold? Find axioms which
characterize those C(B) which are a C(B,>) for some partial order .

Exercise 2. Let > be a partial order on a denumerable set X. Define > and
~ in the usual way. Define x ~ vy if for all z, x ~ z iff y ~ z. Show that

1. =~ is an equivalence relation.

2. lfw=zx, x>y, andy =~ z, then w >y and x > 2.
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3. There is a function U : X — R such that if x > y, then U(x) > U(y)
and x ~y iff U(z) = Ul(y).
Does this still hold true if = is only acyclic rather than transitive?

Alternative representation strategies are possible. One such strategy
is motivated by the Pareto order. This notion comes from economics, and is
a way of ranking social situations. Imagine an apartment with three room-
mates. They must decide on which of some large number of days to have a
party. The set of all possible dates is X. Each roommate has a preference or-
der on X. Number the roommates 1 through 3 and let >; denote roommate
i’s preference order. The (strong) Pareto order = on X is defined by saying
that x > y if and only if x >; y for all . That is, x > y if all roommates
agree that x is a better date than y.!

The Pareto order is a partial order; it is easily seen to be transitive
and symmetric. It may not be a preference order — negative transitivity
may fail.

Exercise 3. Construct an example to show how negative transitivity may fail
for the Pareto order.

Although the Pareto order is only a partial order, it has a kind of
numerical representation. Each roommate has a preference order, and so for
each roommate 7 there is a utility function U; such that x =; y iff U;(x) >
Ui(y). It follows, then, that x = y iff for all 4, U;(z) > U;(y). In other words,
we can represent the Pareto partial order by checking three utility functions,
and if x beats y on all three scales, then x > y. If the set X of dates is
large, this multiple-utility representation can still provide a description of
the partial order > which is more parsimonious than simply listing all the
pairs or ordered dates.

The nice fact is that this idea works in general. Partial orders have
multiple-utility representations. Whether a particular multiple-utility rep-
resentation is useful or not depends upon how many utility functions are

! Afficionados will notice that what I have actually defined is the strong Pareto order.
The regular Pareto order would require that x > y iff there is an ¢ for which = >; y and
for no j is y = x, that is, someone prefers = to y and no one else objects.



needed for a representation, but oftentimes partial orders on large sets can
be described by a very few functions.

Definition 4. A multiple-utility representation for the partial order = on a
set X of alternatives is a set U of functions U : X — R such that x > y iff
U(x) > Ul(y) for allU e U.

The pair of utility functions {U, V'} is a multiple utility representation for
the partial order > of Figure 1. The two functions disagree on the order of
the pairs (a, b), (b, c) and (c, d), and these are precisely the pairs that are not
ranked by >.

Theorem 5. A binary relation = on X has a multiple-utility representation
if and only if it is a partial order.

We did not prove this theorem in class, and you are not responsible
for it, so the next few paragraphs are only for fun.

The “only if” direction is obvious (but make sure you agree), so I will prove
here only the “if” direction. The rest of this section is devoted to the proof.
The key idea is that of an extension of a binary relation. Suppose that
the set U is a multiple utility representation for »>. For each U € U, >y
is a preference order, and =z > y iff x >y y for all U € U. Each >y is an
extension of > to a preference relation: It agrees with > whenever > makes a
comparison, and adds enough additional rankings to make a preference order.
This suggests a proof strategy: Let U denote the set of utility functions of all
extensions of > to a preference order. Perhaps this set will do the trick. If
it does, it may well not be the smallest set which represents >=. We saw this
in class. The > of Figure 1 can be represented by only two utility functions,
but it has 11 distinct extensions. But this is another issue. Now we formalize
this proof idea.

Definition 5. A binary relation =" on X extends the binary relation = on
X if and only if x = y implies that x > y.

So an extension of > will have all the comparisons that > does, and perhaps
more.
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Every partial order has an extension which is a preference order. Sup-
pose U is a weak representation for = on X. Then the binary relation >
is an extension of -, and it is a preference order (because, after all, it has a
utility representation).

Let £ denote the set of all preference orders which extend >, and
let U denote a set of functions with the property that for each =€ £ there
is a utility representation U € U. We have just shown that £ and U are
non-empty.

If z > y, then z >’y for every extension of >. Thus U(z) > U(y) for
all U € U. We need to show the converse, that if U(z) > U(y) for all U € U,
then = > y. Equivalently, and this is key, if x ¥ y, then there is a U € U
such that U(y) > U(x).

If z % y, then either y > x or y and = are not compared by >. If
y > x, we have already seen that U(y) > U(z) for all U € Y. The remaining
case is where x and y are unranked by . In this case we need to show that
there are a U’ in U such that U'(y) > U'(x).

Suppose, then, that = and y are unranked by >. Extend > to a new
partial order >’ by adding the comparison of x and y. That is, define > as
follows: (1) List all the comparisons made by >. (2) Add y ~" . (3) Add
a ' b if there is a chain of elements ag, aq, ..., a, where ag = a, a, = b, and
for all other a;, either a; = a;.; or a; =y and a; 1, = x.2

In general, the extension =" will not be negatively transitive, but it
will be a partial order. And showing this proves the theorem. Why? Because
if it is, then it has a weak representation U’. Since =’ is an extension of =,
U’ is a weak representation for >, and hence U’ is in £. And since U’ is a
weak representation of >/, U'(y) > U'(z).

Finally, then, why does adding “y is better than x” to > and closing
it by transitivity to make =’ guarantee that >’ is a partial order? Clearly
=’ is transitive, because we added all relations that could be derived by
transitivity. We need to show that it is asymmetric. If it were the case that

2We say that = is the transitive closure of the relation formed by starting with = and
adding to it the ordered pair (y, x).
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for some a and b, @ =’ b and b >’ a, transitivity implies that a =’ a. That is,
>’ would not be reflexive. So we need only show that =’ is reflexive.

Suppose =’ it is not reflexive. Then there is some element a such that
a =" a. This comparison was not present in the original >, and so it must
have been added by step (3) in the construction of >’. So there is a chain of
elements aq, ..., a, such that a = ag = a,, and for all 4, a; =’ a;1. That is,

a>"ay =" >"a,_1>"a

Furthermore, one of the comparisons must involve an a; = y and an a;,; = .
Why? because all of the other comparisons are already in >, so if this
were false, we could conclude from the transitivity of > that a > a, which
contradicts asymmetry.

Since this is a preference cycle, we can enumerate it starting from x:
T Qi = Qjg3 7= = = Q1 7= A >~ A1 > Qi1 > Y.

We can write > rather than =’ because all of the comparisons of the cycle
other that y =" x were already in >=. But since > is a partial order, it is
transitive, and so this implies that x > y. This contradicts our hypothesis
that > did not compare z and y, and this completes the proof.

4.3 Uncountable X

Not all preference orders are representable.

Example:

Let X = R2. Define the relation (z1,z2) > (y1,v2) iff 21 > y1 or 1 =
and zy > yp. It is called the lexicographic order on R2. In Figure 1, better
points are to the right, but if two points are equally far to the right, the
top point is better. This order has no utility representation. To see why,
choose two distinct points on each vertical line. Suppose there were a utility
representation U. The top point ¢, on the line with first coordinate x must
map to a higher number than the bottom point b, on that line. Now consider
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Figure 2: The Lexicographic Order.

the collection of intervals {[U(b,),U(t;)] : @ > 0}. These intervals are all
disjoint. Furthermore, since they are non-degenerate, each contains a rational
number. These rational numbers are all distinct, and we have one for each
vertical line, so if a utility function exists, there must exist an uncountable
collection of rational numbers. No such collection exists; the rationals are
countable. So U must not in fact exist. m

Exercise 4. Show that the lexicographic order is in fact a preference order.

4.3.1 Existence of ordinal representations

Again, this subsection is just for kicks. It complements the discus-
sion in Kreps, and you are not responsible for it’s contents.

Another example will illustrate what an ordering that has an ordinal
representation looks like.

Example:

Take X to be R2. For each x € X, define I(x) to be the line with slope —1
through z intersected with X. Define x > y if y lies above the line [(x). The
situation is illustrated in figure 3. Point y is preferred to point x because
y lies above [(x). It is easy to see that > is a preference order. It is also
easy to see that y ~ z if and only if y € I(z). The lines with slope —1 are
called indifference curves, since two points on the same line are indifferent
to each other. Ordering the points comes down to ordering the indifference
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Figure 3: A representable order.

curves. Lines farther out are better, so a natural utility representation is to
measure how far each line is from the origin; that is, where it intersects the
diagonal. O]

For a utility representation to exist, the order > on X must “look
like” the > order on the real line. The order > is complete, transitive and
reflexive, and so is >~ for any preference order . The > order on R has
another property that, strictly speaking, has to do with the structure of R
as well as the order. The rational numbers Q are a countable subset of R
with the property that if a,b are in R/Q and a > b, then there is a rational
number r € Q such that a > r > b. It is exactly this property that fails in
the lexicographic example.

Definition 6. A set Z C X is order-dense if and only if for each pair of
elements x,y € X/Z such that x = y there is a z € Z such that x = z = y.

Theorem 6. For a preference order = on X, a utility representation exists
if and only if X contains a countable order-dense subset.

Proof sketch: Essentially the denumerable construction works: Let Z denote
the countable order-dense set, and let N(z) denote the set of indices of ele-
ments of Z that are worse than z. Proceed as before. O

The existence of a countable order-dense set is an example of an
Archimedean assumption. It is required so that the preference order “fits
in” to R. The set R is an example of an ordered field. The rational numbers
are another example. There are also ordered fields that strictly contain R —
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the so-called hyperreal or non-standard numbers. One can show that if > is
any preference relation, it can be represented in some ordered field. If X is
uncountable, it certainly cannot be represented in Q, and in order to fit into
R, it must be “small enough”. This is what order-denseness does.

Exercise 5. State and prove a representation theorem for partial orders on
a non-denumerable X .

Clearly lexicographic preferences have no countable order-dense set,
since any order-dense set must contain at least one element on each vertical
line, and there are an uncountable number of such lines. The points in R%
with rational coordinates are order-dense for > in the second example.

4.3.2 Continuous representations

The point of choice theory is to describe choice behavior by deriving the
choice functions C'(B, >). When X is finite, or each B we care about is finite,
the fact that > is a preference order is enough to derive that C'(B,>) # 0.
When B is not finite, choice functions may be empty.

Example:
X is the set of non-negative integers. x > y iff x > y. B is the set of even
integers. O

So we want to find restrictions on > and on the set of admissible B of feasible
sets B such that C(B,>) # ( for all all B € B. For example, if X is
denumerable and B is taken to be the collection of all non-empty finite subsets
of X, K. Proposition 2.8 still holds: If > is a preference, then C(B, =) # 0.

When X is not denumerable, more assumptions are needed. The
setting that comes up most often in modelling applications has X a closed
subset of a Euclidean space. If > has a utility representation, then

C(B,») = argmax{U(z),z € B}

We would like to know conditions on U and B that will guarantee the exis-
tence of solutions to this problem.
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A natural generalization of finiteness to this setting is compactness.

Definition 7. A set B in R™ is compact iff it is both closed and bounded.

A basic fact of real analysis is Weierstrass’ Theorem: Every con-
tinuous function has a maximum on every compact set. Formally, if U is
continuous and B is compact, then there is an x € B such that for all y € B,
U(z) > Ul(y). So if we're willing to accept the restriction that B contains
only compact sets, then a sufficient condition guaranteeing choice is that >
have a continuous utility representation. What conditions on > guarantee
that it has a continuous utility representation?

Recall that a preference order is just a set of pairs of alternatives:
{(x,y) e X x X 1z > y}.

Definition 8. A preference order = is continuous iff {(z,y) € X x X : x >
y} is open in X x X.

Theorem 7. A preference order has a continuous utility representation iff

1t 18 contlinuous.

Proof. See Debreu (1954). A cleaner discussion can be found in Rader (1963).
O

Exercise 6. Show that if = is open, the sets W(x) and the corresponding
“better than” sets B(x) = {y : y = x} are open for all x € X. Is the converse
true?

5 Characterizing preferences through their
representations

Another aspect of representation theory is the characterization of preferences
with certain kinds of representations.
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Example:

For instance, consider choice under uncertainty. Suppose there are a finite
set of rewards R = {ry,...r,}. A lottery is a probability distribution on
rewards; that is, a vector (pq,...,p,). Decision makers have preferences on
lotteries. A utility function U on lotteries is an expected utility representation
if there is a function v : R — R such that

U(pla e 7pn) = p1U(T1) + e +an,(’f‘n)

We would like to characterize or otherwise identify those preference orders
that have an expected utility representation. O

This is just one example of how we might like to identify a class of preferences
based on properties of a numerical representation. Another example, which
sits apart from choice under uncertainty, follows.

5.1 Additive Separability

The theory presented so far treats objects of choice as primitive abstract
entities. But in real choice problems the objects of choice have structure,
and this structure may suggest meaningful restrictions on preferences. Here
I want to think of objects of choice as bundles of attributes. The classic
example of this is the commodity bundle in economic analysis. When I go
to the grocery store I don’t just choose coffee or tea. I also have to choose
lemon or sugar, milk or cream, etc. If the store has no fresh lemons, I may
choose to put coffee rather than tea into my shopping basket. At a good
restaurant one puts together an entire meal from a list of appetizers, first
courses, entrees and desserts. One chooses the meal, but each possible meal
is described by a list of these attributes. Choice under uncertainty offers
another example of this phenomenon, which will be discussed at the end of
this section.

How much utility do I get from a box of Kellogg’s Corn Flakes? It is
hard to answer this question because how much I like my corn flakes depends
upon whether we have milk in the fridge, and what bugs are living in the
sugar bowl. I never consume cereal alone, but only as part of a breakfast
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meal. I have to consider all of the attributes together, and for breakfast
I cannot value one attribute independently of the others. Nonetheless one
can imagine situations where it may be sensible to value each object inde-
pendently. Suppose you are buying health insurance. You can describe the
policy by listing all of the possible health events that could happen to you,
and the net payout from the policy in each event. Thus a policy is just a
list of attributes. Here it is plausible that you could talk meaningfully of the
value of the surgical coverage, or the value of the prescription drug coverage.
That is, one can talk meaningfully about preferences over each attribute, and
think about aggregating them to get aggregate preferences over policies.

In formalizing this idea, objects of choice may be thought of as bundles
of attributes. Cars may be characterized by gas milage, engine power, quality
of the ride, etc. Utility of a given car depends upon the whole bundle of
characteristics, but if the characteristics are independent, we may be able
to sensibly ask after the value of gas milage, and so forth. When we can,
utility is said to be additive in the attributes. The general question is, when
objects of choice can be described by a collection of factors, when can one
define utility on each factor, and when is utility of choice objects additive in
the utilities of the factors. Expected utility is a particular example of this,
but far from the only example.

Suppose that X is a product space: X = X; x---x X,,. Eachz € X
is a bundle of attributes or characteristics. Each X, is a factor. Suppose
for concreteness that each X; is an interval in R. Given is a complete weak
order > on X.

Definition 9. A wutility function on X which represents = is additively sep-
arable if there are functions u; : X; — R such that

u(x) =up(zy) + - + up(zy)

Why does additive separability make sense?

Additive separable representations are “more nearly unique” than or-
dinal representations. If U : X — R is an additive separable representation
of = and f : R — R is strictly increasing, then foU is a utility representation
of >, but it is not necessarily additively separable.
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Theorem 8. Suppose U : X — R is an additively separable representation
of =. The function V : X — R is an additively separable representation for
= iff there are real numbers a > 0 and b such that V = aU + b.

This theorem is not true for arbitrary X and U. It requires that the
image of X under U be rich enough. See Basu (1982) on this point. The
conditions on X we suppose and the conclusions about U we derive will be
sufficient to reach this conclusion.

Suppose we can write X = [[;_, X;, where each X; is a connected
subset of some Euclidean space. Suppose that > is a preference order for
which, for all x € X, both W (z) and B(x) are open.

For any subset I of indices and any element = € X, write x; = (x;);er.
Write x_; when referring to the set of all indices but ¢. Define the preference
order >,,. on [[,.; X; such that a =, biff (ar, ;) = (br,xre). Think of
these orders as preferences on the factors in the list I conditional on receiving
the factor bundle zje.

Definition 10. The factors of X are independent if for all I and x,y € X,
=z, =y, Factori is essential if there is an x_; such that =, _, is non-empty.

Independence is the requirement that conditional preferences are in-
dependent of the factor bundles being conditioned on. Clearly indepen-
dence is necessary for the existence of an additive representation. If util-
ity is of the form w(ar,zc) = wui(ar) + ua(zse), then the utility difference
u(ay, xre) — u(br, xse) is independent of the factor bundle xe.

Theorem 9. Suppose > is a preference order such that the n factors are
independent and there are at least three essential factors, then > has an
additive representation. Each u; is continuous. The representation is unique
up to positive affine transformations.

Proof. See Debreu (1960) O

This approach to additive separability hides the algebraic structure
of the problem in topological assumptions. What guarantees, for instance,
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the existence of an additive separable representation on a finite set of alter-
natives?

Here is the ”"standard” approach, laid out for two factors. Suppose
X = X; x Xy, and that > is a binary relation on X which satisfies the
following conditions:

A.1. (preference order): > is asymmetric and negatively transitive.

A.2. (independence): For all a,b in X; and p,q in Xy, if ap > bp then
aq > bq, and if ap > aq then bp > bq.

A.3. (Thomsen): For all a,b,c € X; and p,q,r € X, if bp ~ aq and
cp ~ ar, then cq ~ br.

A.4. (essential): Both factors are essential.

A.5. (solvability): For a,b,c € X; and p,q,r € Xs, if ap = bg = ¢p, then
there is an x € X; such that xp ~ bp, and if ap > bg > ar, there is a
y € X, such that ay ~ bg.

A.6. (Archimedes): An Archimedean axiom.

Definition 11. A pair (X, >) is an additive preference structure if X =
X1 x Xg and = satisfies axioms A.1-6.

Theorem 10. If X s an additive preference structure, then > has an ad-
ditively separable representation, and that representation is unique (among
additively separable representations) up to positive affine transformations. If
= on X = X1 x X5 has an additively separable representation, then > satisfies
A.1-3.

Proof. A clean proof can be found in Holman (1971). O

Axiom 3 is known as the Thomsen condition. The Thomsen condition
captures the essence of additive separability. It is easy to check its necessity.
It describes a kind of “parallel property” that indifference curves must have.
The condition can be described in the figure below.
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This figure contains three pairs of points, identifiable by their shading.
The Thomsen condition says that if the two points are indifferent in any two
of the pairs, the two points in the third pair are indifferent as well. If an indif-
ference curve runs through the two black points, and another runs through
both grey points, then a third curve runs through through the two white
points. Other condition’s can replace the Thomsen condition in theorem 10.

o o

N
N

N
N

r

Figure 4: The Thomsen condition.

You might, for instance, Google on the hexagon condition.

Exercise 7. Verify by direct calculation that if = on X1 X Xo has an additive
separable representation, then the Thomsen condition is satisfied.

The Thomsen condition is a statement about how different indiffer-
ence curves fit together. To see the implications of additive separability for
how indifference curves should fit together somewhat differently, take X to
be the non-negative orthant of the Euclidean plane, and suppose > has a
utility representation U(x,y) = f(z) + g(y), and all functions are C'. The
indifference curve corresponding to utility level u is the set of solutions to
the equation

f(@)+9(y) =u

Differentiating implicity, the derivative of the indifference curve in the xy-
plane through the point (x,y) is ¥/'(x) = —f'(x)/¢'(y). Consider the points
A and B in the figure below. The ratio of the slope of the curve through A to
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that of the curve through B is ¢'(y1)/¢'(y2). This expression is independent of
x. The points C' and D have the same y coordinates as A and B, respectively.
So the ratio of the slope of the curve through C' to that of the curve through
D should be identical. A similar condition must hold for points A and C,
and B and D.

Exercise 8. Take X = R2, and define U(z,y) = 2*> +xy+y*. The function
U represents some preference order, and U is not additively separable. Does
the preference order U represents have an additively separable representation?
Answer the same question for V(z,y) = z* + 2xy + y*. Finally, consider
Uy(z,y) = 22 + axy + y? for a > 0. For which values of the parameter
a does the preference order represented by U, have an additively separable
representation?

Figure 5: Additive separability slope conditions.

I began this section by claiming that additive separability sits apart
from choice under uncertainty. Strictly speaking, this is false. Although
additive separability is interesting in many situations where uncertainty plays
no role, it has connections to choice under uncertainty as well. A simple
example follows. Let’s consider bets on whether or not W. will be reelected.
A bet can be described by a pair of numbers: what you win if he is reelected,
and what you will win if he is not. So for instance, the bet (10, —10) pays off
$10 if W. wins and —$10 if he does not (that is, you pay $10 if he loses). The
bet (0,0) is “no bet”. The set of all possible bets is R2, and a typical bet is
the pair (21, 22). An expected utility representation for a preference order >
on the set of all bets is a pair (p,u) where p is a probability of W. winning,
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and u : R — R is a real valued function, such that

(z1,29) = (y1,92) it pu(z1) + (1 = pu(z2) > pulyr) + (1 — p)u(ya)

That is, p and u are such that the function U(z1, 25) = pu(z1)+ (1 —p)u(zs) is
a utility representation for >. Notice that the utility function U is additively
separable in its components 21, zo. In this case, expected utility is a special
case of additive separability on an appropriate set X of choices.

Exercise 9. Consider the utility function U(z1, z2) = min(zy, 22), which in
the uncertainty context gives rise to the maximin criterion. Which of the
assumptions in Theorem 10 does its ordering violate?
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