## Choice Under Uncertainty

- $Z$ a finite set of outcomes.
- $P$ the set of probabilities on $Z$.
- $p \in P$ is $\left(p_{1}, \ldots, p_{n}\right)$ with each $p_{i} \geq 0$ and $\sum_{i=1}^{n} p_{i}=1$
- Binary relation $\succ$ on $P$.
- Objective probability case.
- Decision maker does not care how $p \in P$ is constructed.
- For $\alpha \in[0,1]$ and $p, q \in P, p^{\prime} \in P$, where

$$
p^{\prime}(z)=\alpha p(z)+(1-\alpha) q(z)
$$

for $z \in Z$.

## Expected Utility

An expected utility representation of $\succ$ is a $u: Z \rightarrow \mathbf{R}$ such that for $p, q \in P, p \succ q$ if and only if

$$
\sum_{z \in Z} p(z) u(z)>\sum_{z \in Z} q(z) u(z) .
$$

## Example

- $Z=\{$ Diet coke, $\$ 1$, Coke $\}$.
- Prefer $D$ for sure to $\$ 1$ for sure to C for sure, i.e. $(1,0,0) \succ(0,1,0) \succ(0,0,1)$.
- Consider $(0,1,0)$ versus $\left(p_{1}, 0,1-p_{1}\right)$.
- Suppose there is a $p^{*}$ such that
$(0,1,0) \sim\left(p^{*}, 0,1-p^{*}\right)$.
If there is an EU representation of $\succ$ on $P$ then $u(\$ 1)=p^{*} u(D)+\left(1-p^{*}\right) u(C)$.

Normalize so that $u(D)=1$ and $u(C)=0$. Then $u(\$ 1)=p^{*}$.

Contrast to a representation of $\succ$ on $Z$ with $D \succ \$ 1 \succ$ $C$. Any function $V$ such that $V(D)>V(\$ 1)>V(C)$ will work.

Can set $V(D)=1$ and $V(C)=0$, but $V(\$ 1)$ is any number strictly between 0 and 1 .

## Axioms

Axiom 1. $\succ$ is a preference relation.

We know that if we have an Archimedean assumption then an ordinal representation of $\succ$ exists. This is a function $V: P \rightarrow \mathbf{R}$ such that $p \succ q$ if and only if $V(p)>V(q)$.

We want a particular form for $V$. There is hope as $P$ is special, not just a set of outcomes, but probabilities on an underlying set of outcomes.

## Structure

What does $V(p)=\sum_{z} p(z) u(z)$ imply about $\succ$ ?

- Suppose $Z=\left\{z_{1}, z_{2}, z_{3}\right\}$. Then any $p \in P$ can be characterized by $\left\{\left(p_{1}, p_{3}\right) \in \mathbf{R}_{+}^{2}: p_{1}+p_{3} \leq 1\right\}$.
- If we have an EU representation with $u$, lets write $u\left(z_{i}\right)=u_{i}$. So $u=\left(u_{1}, u_{2}, u_{3}\right)$ is a vector in $\mathbf{R}^{3}$.
- An indifference curve solves, for a constant $c$,

$$
c=p_{1} u_{1}+p_{2} u_{2}+p_{3} u_{3}=u_{2}-\left(u_{2}-u_{1}\right) p_{1}+\left(u_{3}-u_{2}\right) p_{3}
$$

- So in $\left(p_{1}, p_{3}\right)$ space indifference curves are parallel lines with slope $\left(u_{2}-u_{1}\right) /\left(u_{3}-u_{2}\right)$.


## Archimedean Axiom

Axiom 2. For all $p, q, r \in P$, if $p \succ q \succ r$ then there exist $\alpha, \beta \in(0,1)$ such that

$$
\alpha p+(1-\alpha) r \succ q \succ \beta p+(1-\beta) r .
$$

How might this fail?
Suppose $r$ is probability one on an outcome that is so bad that any mix containing it is worse than any mix not containing it.

## Independence Axiom

Axiom 3. For $p, q, r \in P$ and $\alpha \in(0,1]$, if $p \succ q$ then $\alpha p+(1-\alpha) r \succ \alpha q+(1-\alpha) r$.

Example:

- $Z=\left\{z_{1}, z_{2}, z_{3}\right\}, p=(1,0,0), q=(0,0,1)$, $r=(0,1,0)$
- $\alpha p+(1-\alpha) r=(\alpha, 1-\alpha, 0)$.
- $\alpha q+(1-\alpha) r=(0,1-\alpha, \alpha)$.
- The decision maker will actually receive only one of the outcomes.
- In the $\alpha$ event he prefers the p mixture to the q mixture.
- In the $1-\alpha$ event he is indifferent as will get r in either mixture.

Is this axiom consistent with observed choice?

## Shape of Indifference Curves

Lemma 5.6.c. If $\succ$ on $P$ satisfies Axioms 1,2 and 3 then, for any $r \in P$,

$$
\begin{aligned}
& p \sim q \text { and } \alpha \in[0,1] \Longrightarrow \\
& \alpha p+(1-\alpha) r \sim \alpha q+(1-\alpha) r .
\end{aligned}
$$

## Von Neumann Morgenstern Theorem

The binary relation $\succ$ on $P$ has an expected utility representation if there is a function $u: Z \rightarrow \mathbf{R}$ such that for any $p, q \in P$,

$$
p \succ q \Longleftrightarrow \sum_{z} u(z) p(z)>\sum_{z} u(z) q(z) .
$$

Theorem. A binary relation $\succ$ on $P$ satisfies Axioms 1,2 and 3 if and only if it has an expected utility representation. Further, if $u$ represents $\succ$ then $u^{\prime}$ : $Z \rightarrow \mathbf{R}$ also represents $\succ$ if and only if there exist numbers $a>0$ and $b$ such that $u^{\prime}=a u+b$.

## Outline of the Proof of the Von Neumann Morgenstern Theorem

1. There are best and worst elements $b$ and $w$ of $P$. Can focus on the case of $b \succ w$.
2. For any $\alpha, \beta \in[0,1], \beta b+(1-\beta) w \succ \alpha b+(1-\alpha) w$ if and only if $\beta>\alpha$.
3. For any $p \in P$ there is an $\alpha_{p} \in[0,1]$ such that $\alpha_{p} b+\left(1-\alpha_{p}\right) w \sim p$.
4. (2) implies that the $\alpha_{p}$ in (3) is unique.
5. $p \succ q$ if and only if $\alpha_{p}>\alpha_{q}$.
6. Let $V(p)=\alpha_{p}$. By (5) this $V(\cdot)$ represents $\succ$.
7. This $V(\cdot)$ is an affine function, i.e. for any $p, q \in P$ and $\beta \in[0,1]$ we have $V(\beta p+(1-\beta) q)=\beta V(p)+(1-$ $\beta) V(q)$.
8. Now note that any $p \in P$ can be written as a linear combination of sure probabilities on $Z$.
Let $\delta_{z}$ be a probability that puts unit mass on $z$.
Then by (7) applied repeatedly, we have $V(p)=$ $\sum_{z} p(z) V\left(\delta_{z}\right)=\sum_{z} p(z) u(z)$, where we have defined $u(z)=V\left(\delta_{z}\right)$.

## Non-Finite Set of Outcomes

- Let $Z$ be a set of outcomes (not necessarily finite).
- Let $P_{s}$ be the set of simple probabilities on $Z$, i.e. those with finite support, $p \in P_{s} \Longrightarrow p(z)>0$ for only a finite number of $z \in Z$.
- The axioms for $P_{s}$ are unchanged.
- Change $P$ to $P_{s}$ in the statement of the vNM Theorem.
- Extension to general probabilities is possible.


## Risk Aversion

- Outcomes $Z=\mathbf{R}^{1}$ interpreted as money.
- Let $p$ be a probability on $Z$, let $E_{p}$ be the expected value of $p$ and let $\delta_{E_{p}}$ be point mass on $E_{p}$.
- Suppose that for all $p \in P, \delta_{E_{p}} \succeq p$. This holds if and only if the utility function $u$ in the vNM theorem is concave.
- The degree of concavity reflects how much the decision maker dislikes risk.
- Cannot measure this with $u^{\prime \prime}$ as if $u$ represents $\succ$ so does $v=a u+b$ for any $a>0$.
- Coefficient of Absolute Risk Aversion

$$
\lambda(z)=\frac{-u^{\prime \prime}(z)}{u^{\prime}(z)}
$$

## Portfolio Choice

- One risk free asset (money), $m$, with a total return of 1 .
- One risky asset (stock), $x$, with a Normally distributed total return with mean $\bar{r}$ and variance $\sigma_{r}^{2}$.
- vNM utility of wealth is $u(z)=-\exp (-\lambda z)$.
- Constant absolute risk aversion $\lambda>0$.
- If wealth $z$ is normally distributed with mean $\bar{z}$ and variance $\sigma_{z}^{2}$ ) then expected utility is

$$
-\exp \left[-\lambda\left(\bar{z}-\lambda \sigma_{z}^{2} / 2\right)\right]
$$

- Let $z_{0}$ be initial wealth and $p$ be the price of the risky asset.
- Budget constraint is $z_{0}=m+p x$.
- Wealth is $z=m+r x=z_{0}+x(r-p)$.
- So wealth is Normally distributed with mean $z_{0}+x(\bar{r}-p)$ and variance $x^{2} \sigma_{r}^{2}$.


## Decision Problem

$$
\max _{x}-\exp \left[-\lambda\left(\bar{z}-\lambda \sigma_{z}^{2} / 2\right)\right]
$$

$\Longleftrightarrow$

$$
\max _{x} \bar{z}-\lambda \sigma_{z}^{2} / 2
$$

$\Longleftrightarrow$

$$
\max _{x} z_{0}+x(\bar{r}-p)-\lambda x^{2} \sigma_{r}^{2} / 2
$$

The objective function is concave so the first order condition is necessary and sufficient for a maximum.

$$
\bar{r}-p-\lambda x \sigma_{r}^{2}=0
$$

The optimal choice of the amount of risky asset $x$ is

$$
x^{*}=\frac{\bar{r}-p}{\lambda \sigma_{r}^{2}}
$$

