
The rest of the course

Subtleties involved with maximizing expected utility:

• Finding the right state space:

◦ The wrong state space leads to intuitively incorrect
answers when conditioning

• Taking causality into account

◦ If you don’t, again you have problems

• Computational issues:

◦ Representing and computing efficiently using graph-
ical representations (Bayesian networks)

◦ (Representing, computing, and eliciting utilities)

• Problems with maximizing expected utility

◦ Effects of framing

◦ Ellsburg paradox, Allais paradox

◦ Dealing with large state/outcome spaces

• (Possibly) decision-making with non-probabilistic rep-
resentations of belief

• Current research by Blume, Easley, Halpern

• Case studies: the stock crisis; global warming
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Savage: Summary

• Savage described seven postulates (called P1–P7 in
his book) that he would claim any “rational” person
should accept.

• Prof. Blume showed that if your preferences satisfy
postulates P1–P5, then that determines a qualitative
probability B on events:

◦ A B B if A is more likely than B (where A and
B are sets of states.

With the help of the remaining two (arguably less plau-
sible) axioms Savage is able toprove his major theorem:

Theorem: If � is a preference order on acts satisfying
P1–P7, then there exists a probability Pr on states and a
utility u on outcomes such that

f � g iff EUPr(f) > EUPr(g).

Moreover, Pr is unique and u is unique up to affine trans-
formations.
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Savage: Interpretation

• Savage’s theorem says that, if a decision maker obeys
Savage’s postulates, she is acting as if she has a prob-
ability on states and a utility on outcomes, and is
maximizing expected utility.

• Not surprisingly, Pr(A) = 0 iff A is null

• Pr extends the qualitative probability determined by
P1–P5.

• For each set B, �B also satisfies Savage’s postulates;
Pr(· | B) is the probability determined by this pref-
erence order.

Today’s topic: Savage assumes you’re handed a state
space.

• How do we now we have the right state space?

• The wrong state space leads to funny results.

• The Blume-Easley-Halpern approach avoids states al-
together.
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Three-Prisoners Puzzle

Computing the value of information involves condition-
ing. Conditioning can be subtle ...

Consider the three-prisoner’s puzzle:

• Two of three prisoners a, b, and c are chosen at ran-
dom to be executed,

• a’s prior that he will be executed is 2/3.

• a asks the jailer whether b or c will be executed

• The jailer says b.

It seems that the jailer gives a no useful information about
his own chances of being executed.

• a already knew that one of b or c was going to be
executed

But conditioning seems to indicate that a’s posterior prob-
ability of being executed should be 1/2.

This is easily rephrased in terms of value of information
. . .
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The Monty Hall Puzzle

• You’re on a game show and given a choice of three
doors.

◦ Behind one is a car; behind the others are goats.

• You pick door 1.

• Monty Hall opens door 2, which has a goat.

• He then asks you if you still want to take what’s be-
hind door 1, or to take what’s behind door 3 instead.

Should you switch?

• What’s the value of Monty’s information?
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The Second-Ace Puzzle

Alice gets two cards from a deck with four cards: A♠,
2♠, A♥, 2♥.

A♠ A♥ A♠ 2♠ A♠ 2♥

A♥ 2♠ A♥ 2♥ 2♠ 2♥

Alice then tells Bob “I have an ace”.

• Conditioning ⇒ Pr(both aces | one ace) = 1/5.

She then says “I have the ace of spades”.

• PrB(both aces | A♠) = 1/3.

The situation is similar if if Alice says “I have the ace of
hearts”.

Puzzle: Why should finding out which particular ace it is
raise the conditional probability of Alice having two aces?
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Protocols

Claim 1: conditioning is always appropriate here, but
you have to condition in the right space.

Claim 2: The right space has to take the protocol (al-
gorithm, strategy) into account:

• a protocol is a description of each agent’s actions as a
function of their information.

◦ if receive message
then send acknowledgment
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Protocols

What is the protocol in the second-ace puzzle?

• There are lots of possibilities!

Possibility 1:

1. Alice gets two cards

2. Alice tells Bob whether she has an ace

3. Alice tells Bob whether she has the ace of spades

There are six possible runs (one for each pair of cards
that Alice could have gotten); the earlier analysis works:

• PrB(two aces | one ace) = 1/5

• PrB(two aces | A♠) = 1/3

With this protocol, we can’t say “Bob would also think
that the probability was 1/3 if Alice said she had the ace
of hearts”
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Possibility 2:

1. Alice gets two cards

2. Alice tells Bob she has an ace iff her leftmost card is
an ace; otherwise she says nothing.

3. Alice tells Bob the kind of ace her leftmost card is, if
it is an ace.

This protocol is not well specified. What does Alice do
at step 3 if she has both aces?
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Possibility 2(a):

• She chooses which ace to say at random:

Now there are seven possible runs.

















J
J
J

J
J

JJ

1/6 1/6 1/6 1/6 1/6 1/6

says A♥ says A♠

1/2 1/2

A♥,A♠ A♥,2♠ A♥,2♥ A♠,2♠ A♠,2♥ 2♥,2♠

• Each run has probability 1/6, except the two runs
where Alice was dealt two aces, which each have prob-
ability 1/12.

• PrB(two aces | one ace) = 1/5

• PrB(two aces | A♠) = 1
12/(1

6 + 1
6 + 1

12) = 1/5

• PrB(two aces | A♥) = 1/5
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More generally: Possibility 2(b):

• She says “I have the ace of spades” with probability
α

◦ Possibility 2(a) is a special case with α = 1/2

Again, there are seven possible runs.

• PrB(two aces | A♠) = α/(α + 2)

• if α = 1/2, get 1/5, as before

• if α = 0, get 0

• if α = 1, get 1/3 (reduces to protocol 1)
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Possibility 3:

1. Alice gets two cards

2. Alice tells Bob she has an ace iff her leftmost card is
an ace; otherwise she says nothing.

3. Alice tells Bob the kind of ace her leftmost card is, if
it is an ace.

What is the sample space in this case?

• has 12 points, not 6: the order matters

◦ (2♥, A♠) is not the same as (A♠, 2♥)

Now Pr(2 aces | Alice says she has an ace) = 1/3.
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The Monty Hall puzzle

Again, what is the protocol?

1. Monty places a car behind one door and a goat behind
the other two. (Assume Monty chooses at random.)

2. You choose a door.

3. Monty opens a door (with a goat behind it, other than
the one you’ve chosen).

This protocol is not well specified.

• How does Monty choose which door to open if you
choose the door with the car?

• Is this even the protocol? What if Monty does not
have to open a door at Step 3?

Not to hard to show:

• If Monty necessarily opens a door at step 3, and chooses
which one at random if Door 1 has the car, then
switching wins with probability 2/3.

But . . .

• if Monty does not have to open a door at step 3, then
all bets are off!
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Naive vs. Sophisticated Spaces

Working in the sophisticated space gives the right an-
swers, BUT . . .

• the sophisticated space can be very large

• it is often not even clear what the sophisticated space
is

◦ What exactly is Alice’s protocol?

When does conditioning in the naive space give the right
answer?

• Hardly ever!
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Formalization

Assume

• There is an underlying space W : the naive space

• The sophisticated space S consists of pairs (w, o) where

◦ w ∈ W

◦ o (the observation) is a subset of W

◦ w ∈ o: the observation is always accurate.

Example: Three prisoners

• The naive space is W = {wa, wb, wc}, where wx is the
world where x is not executed.

• There are two possible observations:

◦ {wa, wb}: c is to be executed (i.e., one of a or b
won’t be executed)

◦ {wa, wc}: b is to be executed

The sophisticated space consists of four elements of the
form (wx, {wx, wy}), where x 6= y and {wx, wy} 6= {wb, wc}

• the jailer will not tell a that he won’t be executed
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Given a probability Pr on S (the sophisticated space), let
PrW be the marginal on W :

PrW (U) = Pr({(w, o) : w ∈ U}).

In the three-prisoners puzzle, PrW (w) = 1/3 for all w ∈
W , but Pr is not specified.

Some notation:

• Let XO and XW be random variables describing the
agent’s observation and the actual world:

XO = U is the event {(w, o) : o = U}.

XW ∈ U is the event {(w, o) : w ∈ U}.

Question of interest:

When is conditioning on U the same as conditioning on
the observation of U?

• When is Pr(· | XO = U) = Pr(· |XW ∈ U)?

• Equivalently, when is Pr(· |XO = U) = PrW (· |U)?

This question has been studied before in the statistics
community. The CAR (Conditioning at Random) condi-
tion characterizes when this happens.

16



The CAR Condition

Theorem: Fix a probability Pr on R and a set U ⊆ W .
The following are equivalent:

(a) If Pr(XO = U) > 0, then for all w ∈ U

Pr(XW = w | XO = U) = Pr(XW = w | XW ∈ U).

(b) If Pr(XW = w) > 0 and Pr(XW = w′) > 0, then

Pr(XO = U | XW = w) = Pr(XO = U | XW = w′).

For the three-prisoners puzzle, this means that

• the probability of the jailer saying “b will be executed”
must be the same if a is pardoned and if c is pardoned.

• Similarly, for “c will be executed”.

This is impossible no matter what protocol the jailer
uses.

• Thus, conditioning must give the wrong answers.

CAR also doesn’t hold for Monty Hall or any of the other
puzzles.
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Why CAR is important

Consider drug testing:

• In a medical study to test a new drug, several patients
drop out before the end of the experiment

◦ for compliers (who don’t drop out) you observe
their actual response; for dropouts, you observe
nothing at all.

You may be interested in the fraction of people who have
a bad side effect as a result of taking the drug three times:

• You can observe the fraction of compliers who have
bad side effects

• Are dropouts “missing at random”?

◦ If someone drops out, you observe W .

◦ Is Pr(XW = w | XO = W ) =
Pr(XW = w | XW ∈ W ) = Pr(XW = w)?

Similar issues arise in questionnaires and polling:

• Are shoplifters really as likely as non-shoplifters to
answer a question like “Have you ever shoplifted?”

• concerns of homeless under-represented in polls
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Newcomb’s Paradox

A highly superior being presents you with two boxes, one
open and one closed:

• The open box contains a $1,000 bill

• Either $0 or $1,000,000 has just been placed in the
closed box by the being.

You can take the closed box or both boxes.

• You get to keep what’s in the boxes; no strings at-
tached.

But there’s a catch:

• The being can predict what humans will do

◦ If he predicted you’ll take both boxes, he put $0 in
the second box.

◦ If he predicted you’ll just take the closed box, he
put $1,000,000 in the second box.

The being has been right 999 of the the last 1000 times
this was done.

What do you do?
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The decision matrix:

• s1: the being put $0 in the second box

• s2: the being put $1,000,000 in the second box

• a1: choose both boxes

• a2: choose only the closed box

s1 s2

a1 $1,000 $1,001,000
a2 $0 $1,000,000

Dominance suggests choosing a1.

• But we’ve already seen that dominance is inappropri-
ate if states and acts are not independent.

What does expected utility maximization say:

• If acts and states aren’t independent, we need to com-
pute Pr(si | aj).

◦ Suppose Pr(s1 | a1) = .999 and Pr(s2 | a2) = .999.

• Then take act a that maximizes

Pr(s1 | a)u(s1, a) + Pr(s2 | a)u(s2, a).

• That’s a2.

Is this really right?

• the money is either in the box, or it isn’t . . .
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A More Concrete Version

The facts

• Smoking cigarettes is highly correlated with heart dis-
ease.

• Heart disease runs in families

• Heart disease more common in type A personalities

Suppose that type A personality is inherited and people
with type A personalities are more likely to smoke.

• That’s why smoking is correlated with heart disease.

Suppose you’re a type A personality.

• Should you smoke?

Now you get a decision table similar to Newcomb’s para-
dox.

• But the fact that Pr(heart disease | smoke) is high
shouldn’t deter you from smoking.
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More Details

Consider two causal models:

1. Smoking causes heart disease:

• Pr(heart disease | smoke) = .6

• Pr(heart disease | ¬smoke) = .2

2. There is a gene that causes a type A personality, heart
disease, and a desire to smoke.

• Pr(heart disease ∧ smoke | gene) = .48

• Pr(heart disease ∧ ¬smoke | gene) = .04

• Pr(smoke | gene) = .8

• Pr(heart disease ∧ smoke | ¬gene) = .12

• Pr(heart disease ∧ ¬smoke | ¬gene) = .16

• Pr(smoke | ¬gene) = .2

• Pr(gene) = .3

Conclusion:

• Pr(heart disease | smoke) = .6

• Pr(heart disease | ¬smoke) = .2

Both causal models lead to the same statistics.

• Should the difference affect decisions?
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Recall:

• Pr(heart disease | smoke) = .6

• Pr(heart disease | ¬smoke) = .2

Suppose that

• u(heart disease) = −1, 000, 000

• u(smoke) = 1, 000

A naive use of expected utility suggests:

EU(smoke)
= −999, 000 Pr(heart-disease | smoke)

+1, 000 Pr(¬heart-disease | smoke)
= −999, 000(.6) + 1, 000(.4)
= −599, 800

EU(¬smoke)
= −1, 000, 000 Pr(heart-disease | ¬smoke)
= −200, 000

Conclusion: don’t smoke.

• But if smoking doesn’t cause heart disease (even though
they’re correlated) then you have nothing to lose by
smoking!
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Causal Decision Theory

In the previous example, we want to distinguish between
the case where smoking causes heart disease and the case
where they are correlated, but there is no causal relation-
ship.

• the probabilities are the same in both cases

This is the goal of causal decision theory:

• Want to distinguish between Pr(s|a) and probability
that a causes s.

◦ What is the probability that smoking causes heart
disease vs. probability that you get heart disease,
given that you smoke.

Let PrC(s|a) denote the probability that a causes s.

• Causal decision theory recommends choosing the act
a that maximizes

ΣsPrC(s | a)u(s, a)

as opposed to the act that maximizes

Σs Pr(s | a)u(s, a)

So how do you compute PrC(s | a)?
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• You need a good model of causality . . .

Basic idea:

• include the causal model as part of the state, so state
has form: (causal model, rest of state).

• put probability on causal models; the causal model
tells you the probability of the rest of the state

• in the case of smoking, you need to know the proba-
bility that
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In smoking example, need to know the probability that

• smoking is a cause of heart disease: α

• the probability of heart disease given that you smoke,
if smoking is a cause: .6

• the probability of no disease given that you don’t
smoke, if smoking is a cause: .2

• the probability that the gene is the cause: 1 − α

• the probability of heart disease if the gene is the cause
(whether or not you smoke):
(.52 × .3) + (.28 × .7) = .352.

EU(smoke) = α(.6(−999, 000) + .4(1, 000))+
(1 − α).352(−999, 000) + .658(1, 000))

EU(¬smoke) = α.2(−1, 000, 000) + (1 − α).352(−1, 000, 000)

• If α = 1 (smoking causes heart disease), then gets
the same answer as standard decision theory: you
shouldn’t smoke.

• If α = 0 (there’s a gene that’s a common cause for
smoking and heart disease), you have nothing to lose
by smoking.
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So what about Newcomb?

• Choose both boxes unless you believe that choosing
both boxes causes the second box to be empty!
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A Medical Decision Problem

You want to build a system to help doctors make deci-
sions, by maximizing expected utility.

• What are the states/acts/outcomes?

States:

• Assume a state is characterized by n binary random
variables, X1, . . . ,Xn:

◦ A state is a tuple (x1, . . . , xn, xi ∈ {0, 1}).

◦ The Xis describe symptoms and diseases.

∗ Xi = 0: you haven’t got it

∗ Xi = 1: you have it

• For any one disease, relatively few symptoms may be
relevant.

• But in a complete system, you need to keep track of
all of them.

Acts:

• Ordering tests, performing operations, prescribing med-
ication
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Outcomes are also characterized by m random variables:

• Does patient die?

• If not, length of recovery time

• Quality of life after recovery

• Side-effects of medications
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Some obvious problems:

1. Suppose n = 100 (certainly not unreasonable).

• Then there are 2100 states

• How do you get all the probabilities?

◦ You don’t have statistics for most combinations!

• How do you even begin describe a probability dis-
tribution on 2100 states?

2. To compute expected utility, you have to attach a
numerical utility to outcomes.

• What the utility of dying? Living in pain for 5
years?

◦ Different people have different utilities

◦ Eliciting these utilities is very difficult

∗ People often don’t know their own utilities

◦ Knowing these utilities is critical for making a
decision.
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Bayesian Networks

Let’s focus on one problem: representing probability.

Key observation [Wright,Pearl]: many of these random
variables are independent. Thinking in terms of (in)dependence

• helps structure a problem

• makes it easier to elicit information from experts

By representing the dependencies graphically, get

• a model that’s simpler to think about

• (sometimes) requires far fewer numbers to represent
the probability
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Example

You want to reason about whether smoking causes cancer.
Model consists of four random variables:

• C: “has cancer”

• SH : “exposed to second-hand smoke”

• PS: “at least one parent smokes”

• S: “smokes”

Here is a graphical representation:

PS

SH S

C
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Qualitative Bayesian Networks

PS

SH S

C

This qualitative Bayesian network (BN) gives a quali-
tative representation of independencies.

• Whether or not a patient has cancer is directly influ-
enced by whether he is exposed to second-hand smoke
and whether he smokes.

• These random variables, in turn, are influenced by
whether his parents smoke.

• Whether or not his parents smoke also influences whether
he has cancer, but this influence is mediated through
SH and S.

◦ Once values of SH and S are known, finding out
whether his parents smoke gives no additional in-
formation.

◦ C is independent of PS given SH and S.
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Background on Independence

Event A is independent of B given C (with respect to
Pr) if

Pr(A |B ∩ C) = Pr(A |C)

Equivalently,

Pr(A ∩ B |C) = Pr(A |C) × Pr(B |C).

Random variable X is independent of Y given a set of
variables {Z1, . . . , Zk} if for all values x, y, z1, . . . , zk of
X , Y , and Z1, . . . , Zk respectively:

Pr(X = x |Y = y ∩ Z1 = z1 . . . ∩ Zk = zk)
= Pr(X = x |Z1 = z1 . . . ∩ Zk = zk).

Notation: IPr(X,Y | {Z1, . . . , Zk})
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Why We Care About Independence

Our goal: to represent probability distributions compactly.

• Recall: we are interested in state spaces characterized
by random variables X1, . . . ,Xn

• States have form (x1, . . . , xn): X1 = x1, . . . ,Xn = xn

Suppose X1, . . . ,X5 are independent binary variables

• Then can completely characterize a distribution by 5
numbers: Pr(Xi = 0), for i = 1, . . . , 5

• If Pr(Xi = 0) = α1, then Pr(Xi = 1) = 1 − αi

• Because of independence,

Pr(0, 1, 1, 0, 0) = α1(1 − α2)(1 − α3)α4α5.

• Once we know the probability of all states, can com-
pute the probability of a set of states by adding.

More generally, if X1, . . . , Xn are independent random
variables, can describe the distribution using n numbers

• We just need Pr(Xi = 0)

• n is much better than 2n!
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Situations where X1, . . . ,Xn are all independent are un-
interesting

• If tests, symptoms, and diseases were all independent,
we wouldn’t bother doing any tests, or asking patients
about their symptoms!

The intution behind Bayesian networks:

• A variable typically doesn’t depend on too many other
random variables

• If that’s the case, we don’t need too many numbers
to describe the distribuiton
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Qualitative Bayesian Networks:

Definition

Formally, a qualitative Bayesian network (BN) is a di-
rected acyclic graph.

• directed means that the edges of the graph have a
direction (indicated by an arrow)

• acyclic means that there are no cycles (you can’t fol-
low a path back to where you started)

The nodes in the BN are labeled by random variables.

Given a node (labeled by) X in a BN G,

• the parents of X , denoted ParG(X), are the nodes
pointing to X

◦ in the BN for cancer, the parents of C are S and
SH ; the only parent of S is PS.

• the descendants of X are all the nodes “below” X on
the graph

◦ the only descendants of S are S itself and C

• the nondescendants of X , denoted NonDesG(X), are
all the nodes that are not descendants.

◦ the nondescendants of S and PS and SH
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Qualitative Representation

A qualitative Bayesian network G represents a probabil-
ity distribution Pr if, for every node X in the network

IPr(X, NonDesG(X) |ParG(X))

• X is independent of its nondescendants given its par-
ents in G

Intuitively, G represents Pr if it captures certain (condi-
tional) independencies of Pr.

• But why focus on these independencies?

• These are the ones that lead to a compact represen-
tation!
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Topological Sort of Variables

X1, . . . ,Xn is a topological sort of the variables in a
Bayesian network if, whenever Xi is an ancestor of Xj,
then i < j.

Key Point: If X1, . . . , Xn is a topological sort, then

Par(Xi) ⊆ {X1, . . . ,Xi−1} ⊆ NonDes(Xi)

Thus, if G represents a probability distribution Pr and
X1, . . . ,Xn are toplogically sorted, then

Pr(Xi | {X1, . . . , Xi−1}) = Pr(Xi | Par(Xi))

This is because Xi is independent of its nondescendants
given its parents.
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The Chain Rule

From Bayes’ Rule, we get

Pr(A1∩. . .∩An) = Pr(An | A1∩. . .∩An−1)×Pr(A1∩. . .∩An−1).

Iterating this (by induction), we get the chain rule:

Pr(A1 ∩ . . . ∩ An)
= Pr(An | A1 ∩ . . . ∩ An−1) × Pr(An−1 | A1 ∩ . . . ∩ An−2)

× · · · × Pr(A2 | A1) × Pr(A1).

In particular, if X1, . . . , Xn are random variables, sorted
topologically:

Pr(X1 = x1 ∩ . . . ∩ Xn = xn)
= Pr(Xn = xn | X1 = x1 ∩ . . . ∩ Xn−1 = xn−1)×

Pr(Xn−1 = xn−1 | X1 = x1 ∩ . . . ∩ Xn−2 = xn−2)×
. . . × Pr(X2 = x2 | X1 = x1) × Pr(X1 = x1).

If G represents Pr, then

Pr(X1 = x1 ∩ . . . ∩ Xn = xn)
= Pr(Xn = xn | ∩Xi∈ParG(Xn)Xi = xi)×

Pr(Xn−1 = xn−1 | ∩Xi∈ParG(Xn−1)Xi = xi)×
· · · × Pr(X1 = x1).

Key point: if G represents Pr, then Pr is completely
determined by conditional probabilities of the form

Pr(Xj = xj | ∩Xi∈ParG(Xj)Xi = xi).
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Quantitative BNs

A quantitative Bayesian network G is a qualitative BN
+ a conditional probability table (cpt):

For each node X , if ParG(X) = {Z1, . . . , Zk}, for each
value x of X and z1, . . . , zk of Z1, . . . , Zk, gives a number
dx,z1,...,zk

. Intuitively

Pr(X = x | Z1 = z1 ∩ . . . ∩ Zk = zk) = dx,z1,...,zk
.

A quantitative BN quantitatively represents Pr if it qual-
itatively represents Pr and

dx,z1,...,zk
= Pr(X = x | Z1 = z1 ∩ . . . ∩ Zk = zk).

If G quantitatively represents Pr, then we can use G to
compute Pr(E) for all events E. Remember:

Pr(X1 = x1 ∩ . . . ∩ Xn = xn)
= Pr(Xn = xn | ∩Xi∈ParG(Xn)Xi = xi)×

Pr(Xn−1 = xn−1 | ∩Xi∈ParG(Xn−1)Xi = xi)×
· · · × Pr(X1 = x1).
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Smoking Example Revisited

PS

SH S

C

Here is a cpt for the smoking example:

S SH C = 1 PS S = 1 PS SH = 1 PS = 1
1 1 .6 1 .4 1 .8 .3
1 0 .4 0 .2 0 .3
0 1 .1
0 0 .01

• The table includes only values for Pr(C = 1 | S, SH),
Pr(S = 1 | PS), Pr(SH = 1 | PS), Pr(PS = 1)

◦ Pr(C = 0 | SH) = 1 − Pr(C = 1 | SH)

◦ Can similarly compute other entries

Pr(PS = 0 ∩ S = 0 ∩ SH = 1 ∩ C = 1)
= Pr(C = 1 | S = 0 ∩ SH = 1) × Pr(S = 0 | PS = 0)

×Pr(SH = 1 | PS = 0) × Pr(PS = 0)
= .1 × .8 × .3 × .7
= .0168

42



What do BNs Buy Us?

If each node has ≤ k parents, need ≤ 2kn numbers to
represent the distribution.

• If k is not too large, then 2kn � 2n.

May get a much smaller representation of Pr.

Other advantages:

• The information tends to be easier to elicit

◦ Experts are more willing to give information about
dependencies than to give numbers

• The graphical representation makes it easier to under-
stand what’s going on.

Many computational tools developed for Bayesian net-
works:

• Computing probability given some information

• Learning Bayesian networks

They’ve been used in practice:

• e.g., in Microsoft’s help for printer problems.

• In modeling medical decision making

Commercial packages exist.
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Can we always use BNs?

Theorem: Every probability measure Pr on space S
characterized by random variables X1, . . . ,Xn can be
represented by a BN.

Construction:

Given Pr, let Y1, . . . , Yn be any ordering of the random
variables.

• For each k, find a minimal subset of {Y1, . . . , Yk−1},
call it Pk, such that I({Y1, . . . , Yk−1}, Yk | Pk).

• Add edges from each of the nodes in Pk to Yk. Call
the resulting graph G.

G qualitatively represents Pr. Use the obvious cpt to get
a quantitative representation:

• Different order of variables gives (in general) a differ-
ent Bayesian network representing Pr.

• Usually best to order variables causally: if Y is a
possible cause of X , then Y precedes X in the order

◦ This tends to give smaller Bayesian networks.
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Eliciting Utilities

For medical decision making, we need to elicit patients’
utilities. There are lots of techniques for doing so. They
all have the following flavor:

• [vNM] standard gamble approach: Suppose o1 is the
the worst outcome, o2 is the best outcome, and o is
another outcome:

◦ Find p such that o ∼ (1 − p)o1 + po2.

◦ Note that (1 − p)o1 + po2 is a lottery.

• In this way, associate with each outcome a number
po ∈ [0, 1].

• o1 is associated with 0

• o2 is associated with 1

• the higher po, the better the outcome

How do you find po?

• binary search?

• ping-pong: (alternating between high and low values)

• titration: keep reducing p by small amounts until you
hit po

The choice matters!
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Other approaches

Other approaches are possible if there is an obvious linear
order on outcomes.

• e.g., amount of money won

Then if o1 is worst outcome, o2 is best, then, for each p,
find o such that

o ∼ (1 − p)o1 + po2.

• Now p is fixed, o varies; before, o was fixed, p varied

• This makes sense only if you can go continuously from
o1 to o2

• o is the certainty equivalent of (1 − p)o1 + po2

• This can be used to measure risk aversion

Can also fix o1, o, and p and find o′ such that

(1 − p)o1 + po ∼ o′.

Lots of other variants possible.

46



Problems

• People’s responses often not consistent

• They find it hard to answer utility elicitation questions

• They want to modify previous responses over time

• They get bored/annoyed with lots of questions

• Different elicitation methods get different answers.

• Subtle changes in problem structure, question format,
or response mode can sometimes dramatically change
preference responses

◦ Suppose one outcome is getting $100

∗ Did you win it in a lottery?

∗ Get it as a gift?

∗ Get it as payment for something

∗ Save it in a sale?

◦ This makes a big difference!

◦ Gains and losses not treated symmetrically

My conclusion: people don’t “have” utilities.

• They have “partial” utilities, and fill in the rest in
response to questions.
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