Lecture 8: GANs for conditional image manipulation

CS 5788: Introduction to Generative Models

Many slides from Phillip Isola



GAN review



e G(z) D

Z ADDH— ) ﬂﬂﬂ— real or fake”?

(Generator Discriminator

G tries to synthesize fake images that fool D

D tries to identity the takes

|Goodfellow et al., 2014]

Source: Isola, Freeman, Torralba



g max B M + log (1 = D))
D

|Goodfellow et al., 2014]

Source: Isola, Freeman, Torralba



Training
D

ﬂﬂﬂ— real or fake?

G tries to synthesize take images that fool D

D tries to identify the fakes
* Jraining: iterate between training D and G with backprop.

* Global optimum when G reproduces data distribution.

|Goodfellow et al., 2014]

Source: Isola, Freeman, Torralba



lmage generation with GANs



Progressive generation
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Train a small model, add more layers to G and D, repeat.
Speeds up training and deals with instabilities.

7 [Karras et al., “ProGAN" 2018]



Adding new layers
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[Karras et al., “ProGAN" 2018]



Separating style and content
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[Karras et al., “StyleGAN", 2019]



Source B

Source A

Copying coarse-scale style from source B to source A transtfers pose, hair style, face shape.

[Karras et al., “StyleGAN", 2019]



Source B

Source A

Copying middle-scale style from source B to source A transfers fine-scale features.

[Karras et al., “Style GAN", 2019]



Text-conditioned image generation
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> [Kang et al., “Scaling up GANSs for Text-to-Image Synthesis”, 2023]



A living room with a fireplace at
a wood cabin. Interior design.

Isometric underwater Atlantis city
with a Greek temple in a bubble.

Text-to-image GANs

a blue Porsche 356 parked'in Eiffel Tower, landscapé A painting of a majestic royal
front of a yellow brick wall. photography tall ship in Age of Discovery.

A hot air balloon in shape of a low poly bunny with cute eyes A cube made of denim on a wooden
heart. Grand Canyon table

[Kang et al., “Scaling up GANSs for Text-to-lmage Synthesis”, 2023]



What are the features that a GAN learns?
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There are CNN units whose activations correlate with object categories, like trees.

[Bau et al., “GAN Dissection” 2018]



Manipulating images by editing a network’s teature representation
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[Bau et al., “GAN Dissection” 2018]
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Generate images of churches

[Bau et al., “GAN Dissection” 2018]



Interactive Editing with GANPaint
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Do they “internal statistics” of an image give us useful information?

Figure source: [Zontak and Irani, “Internal Statistics of a Single Natural Image”, 2011]



Single-image GAN
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Do they “internal statistics” of an image give us useful information?
[Shaham et al., “SinGAN" 2019]



Single-image GAN

Training image Random samples from GAN trained on single image

[Shaham et al., “SinGAN" 2019]



Single-image GAN

Training image Random samples from GAN trained on single image (different aspect ratios)

[Shaham et al., “SinGAN" 2019]



Conditional generation



Map2Sat
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ldea: L1 loss

1G(x) =yl

Source: Isola, Freeman, Torralb:



INnput L1 loss
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Source: Isola, Freeman, Torralb:



(Generat

ol

> real or fake?

Discriminator

G tries to synthesize fake images that fool D

D tries to identity the takes

20



1T > fake (0.9)

arg max
D

27

Source: Isola, Freeman, Torralba



> real or fake?

G tries to synthesize fake images that fool D:

ar ixy| log D(G(x)) + log(l—D(y)) |

28

Source: Isola, Freeman, Torralba



> real or fake?

G tries to synthesize fake images that fool the best D:

arg xyl log D(G(x)) + log(l —D(y)) |

29 Source: Isola, Freeman, Torralba



1T > real or fake?

arg mci¥n max x.y| log D(G(x)) + log(l— D(y)) |

30 Source: Isola, Freeman, Torralb:



1T > real!

arg mci¥n max x.y| log D(G(x)) + log(l— D(y)) |

31 Source: Isola, Freeman, Torralb:



il > real or take pair

arg min max {‘,X,y[ log D(G(X)) + lOg(l — D(y)) ]

G D

32 Source: Isola, Freeman, Torralb:
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arg min max “ZXJ[ log D@, G(x)) + log(1 — 5@, y)) ]

G D

33 Source: Isola, Freeman, Torralb:
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arg min max “ZXJ[ log D@, G(x)) + log(1 — 5@, y)) ]

G D

34 Source: Isola, Freeman, Torralb:



> real or fake pair”?
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Source: Isola, Freeman, Torralb:



Training Details: Loss function

Conditional GAN

G* = arg mén max L.aan(G, D)+ A1 (G)

~ G

Pixel-wise loss helps stabilize training + faster convergence

36
Source: Isola, Freeman, Torralb:



Source: Isola, Freeman, Torralb:
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Source: Isola, Freeman, Torralba


http://maps.google.com

INnput L1 loss only
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Source: Isola, Freeman, Torralb:



INnput L1 loss + discriminator

40

Source: Isola, Freeman, Torralba



Patch Discriminator

Rather than penalizing If output image
looks fake, penalize it each
overlapping patch in output looks fake

N pixels

l e Faster, fewer parameters
* More supervised observations
* Applies to arbitrarily large images

41
Source: Isola, Freeman, Torralba



| abels = Facades

1x1 Discriminator

42
Data from [Tylecek, 2013]

Source: Isola, Freeman, Torralba



| abels = Facades

Input 16x16 Discriminator

Data from [Tylecek, 2013]

Source: Isola, Freeman, Torralba



| abels = Facades

Discriminator

44
Data from [Tylecek, 2013]

Source: Isola, Freeman, Torralba



Training data

[HED, Xie & Tu, 2015]
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Source: Isola, Freeman, Torralba
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|Chris Hess, edges?cats]|
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Source: Isola, Freeman, Torralb:



https://affinelayer.com/pixsrv/

edgesZcats
TOOL INPUT OUTPUT

m clear random
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Source: Isola, Freeman, Torralb:



OUTPUT

PIX2PIX

process

vy Tasi @ivymyt

Vitaly Vidmirov @vvid
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Source: Isola, Freeman, Torralb:



Architectures

Generator: U-Net

Skip connections between encoder and decoder layers

49 Figure from [Isola et al., “Image-to-Image Translation with Conditional Adversarial Networks”, 2017]
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Architectures

Discriminator: fully convolutional network
real or fake?

3 5
E EEEEEEEEEEEE NS EEEEEE N AN EE NS RN EEEEE NN NI NN NN EEEEEEE N R R RN RN NN NN NN NS EEEEEEEEEEEEER

IIIIIIIIIIIIII.'IIIIIIIIIIIILIIIllIlllIII;IIIIIIIIIIIII:IIIIIIIIIIIII IIIIIIIIIIIIIII

IIIIIIIIIIIIII.‘IIIIIIllllllf.lIIIIIIIIIIII’.IIIIIIIIIIIII!IIIIIIIIIIIII IIIIIIIIIIIIIII

n X n output map (last conv. layer)

Sequence of strided convolutions
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Architectures

Discriminator: fully convolutional network
real or fake?

B cceptive field

Sometimes called a Patch GAN, since it eftectively only looks at patches



L arger models

[“GauGAN” Park et al., CVPR 2019]



53
["GauGAN" Park et al., CVPR 2019]




Handling unpaired data

Paired data Unpaired data

54
Source: Isola, Freeman, Torralba



. D

% real or fake pair

argminmax Ex y| log D(x,G(x)) + log(1 — D(x,y)) |

G D

5
3 Source: Isola, Freeman, Torralba



real or fake pair

argminmax [Ex y| log D(x,G(x)) + log(1 — D(x,y))

G D

NO Input-output pairs!

56
Source: Isola, Freeman, Torralba



real or fake”

arg min max “ZX,Y[ log D(G(X)) + lOg(l — D(y)) ]

G D

GAN loss checks it output Is part of an admissible set

57
Source: Isola, Freeman, Torralba
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Source: Isola, Freeman, Torralba



Nothing to force output to correspond to input

59
Source: Isola, Freeman, Torralba



CycleGAN

60
Source: Isola, Freeman, Torralba



Cycle Consistency Loss

reconstruction
error

! Source: Isola, Freeman, Torralba



Cycle Consistency Loss

X Y X Y
‘/ reconstruction
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o Source: Isola, Freeman, Torralba









Collection Style Transter

Photograph

Photo by Alexei Efros
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Monet’s paintings — photos




Monet’s paintings — photos
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Other applications
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Amplitude —p
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Spectrograms for audio

Fourier transform
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Amplitude —p
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Amplitude —p

Spectrograms for audio

Vs

Frequency —p

STFT

Time =—»

Treat It like an image and
process with a CNN!
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Short-time Fourier transform

Usually lower dimensional: e.g. 16,000 samples becomes 256 x 256 spectrogram

74
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CycleGAN for audio

Conditional

CQT CycleGAN WaveNet

Generated Generated Flute
Flute CQT Waveform

Raw Violin

Waveform Violin CQT

[Huang et al., “TimbreTron”, 2019]



CycleGAN for audio

[Huang et al., “TimbreTron”, 2019]



CycleGAN for audio

[Huang et al., “TimbreTron”, 2019]



CycleGAN for audio

[Huang et al., “TimbreTron”, 2019]



Domain adaptation



. target domain
source domain
(where we actual use our model)

\ /

Train a model on  Psource test on Ptarget

Space of images

Source data

Target data

31

Adapted from Isola, Torralba, Freeman



Domain adaptation

Data space

source data target data

32

(Or vice versa)

Source: Isola, Torralba, Freeman



Domain adaptation
We have source domain pairs {xsource, ysource}
Learn a mapping F: xsource —; ysource
We want to apply F to target domain data xtarget
Find transtformation T: xtarget —, xsource

Now app\y F(T(xtarget)) to predict ytarget

Source: Isola, Torralba, Freeman



Domain Adaptation

Source ¢

Minimize classification
error

Source ' Target

Maximize domain
confusion

[Tzeng et a\. 201 4] 34 Source: Isola, Torralba, Freeman



Pre-training
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[Tzeng et al., "Adversarial Discriminative Domain Adaptation”, CVPR 2017]
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Horses

CycleGAN

/ebras

Source: Isola, Torralba, Freeman



87

Domain adaptation

Pt arget

psource

Source: Isola, Torralba, Freeman



Domain adaptation by image translation

Source domain Target domain

[Hoftman, Tzeng, Park, Zhu, Isola, Saenko, Darrell, Etros, “CyCADA", 2017]

38

Source: Isola, Torralba, Freeman
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CycleGAN

Source: Isola, Torralba, Freeman



90

CycleGAN

Source: Isola, Torralba, Freeman



lmage synthesis with GANs

We can generate images, audio (and other continuous signals) with
conditional and unconditional GANSs.

Translate between two domains without paired data using cycle
consistency.

GANSs can be hard to train, and thus sometimes require bespoke
architectures.

No built-in encoder (unlike VAEs or normalizing flow)

GANSs |learn useful internal representations that are useful for image
manipulation.



Next class: energy-based models



