Lecture 7: Generative adversarial networks

CS 5788: Introduction to Generative Models

Many slides trom Phillip Isola

Today

e PS1 deadline pushed back 2 days

e See Ed Discussion for hint about
initialization.

o PS2 will be out soon. We'll release it in
parts.

Recall: Neural networks as distribution transformers

Source distribution Target distribution

p(x)

Source: Isola, Freeman, Torralb:

Recall: Neural networks as distribution transformers

——.‘ ’
'4
'

Source: Isola, Freeman, Torralb:

(Gaussian noise Synthesized
2~ N(D,1) mage

Recall: variational autoencoder

N = =
e —

—
. - 5 N
/I

—

—
-—
-

Z W 2 : ! : E— e T -~
- — - - &
e —— P - - e
S — — - -
e — - _-
— = — -
— - - — - —
— — - — -
e - — -
- e e
— - - \ .
> F '/4 e "/ - ~
7 - e — -
—-— - - g e —
o s ¥ R i s —
g = e . = .
& - L= i A= 2
—
- — " o X —
. =5 ' -~
o ¥l m -
=3 Z C 2 -
= - - = &
5 o h '.. T g
> =" 5 & . S
- A \ -
— | ; . -
. . -~
“a - i
= ' ’
——
: 4 — %
s *
T EaRL ——
e —— \
- s > il - 1N
e R = S ;‘*"!, pumoT .
7 P ’ (N o g T -~
- - e - —
- - - Aq",g(_ > L g oy
s - . o M TR ey |
: y s’ o ::;T:e"éf“"'-—-ﬁ’ ST A
(Y it - N L i e e T Co]
&3 S : G arhas -4 PRk WG

o —
i
.- 4 ,’
. -
- . - 3 ’t.'.
& o | — St
A : -

v —__ - S~
-
; —
4 — ~% k
~==
-

i
—
#h
&

—
-
L,;
o
&
by
e 7S
IR
7 S
S,

Encoder Decoder

(r(x), Z(x)) X = D(z)

® Encoder net defines a distribution overz: g(z | xX) = (ﬂ(x), E(x)).
® Decoder net defines a distribution over x: p(x | z) = /V(}A(, I).

Recall: Normalizing tflow model

o e ‘w‘_, / ‘tq%j“:
) o *@‘j‘" S
N 2 TEN Ay '~..J PR A
it

}" y .u' Ay
Y

. #\3 :_;A‘_r X -__
st f){«'-. - %
P aEA 0 A

Recall: Normalizing tflow model

or estimating the density and learning:

v Iv-1 SN2 In-ss -

M
0g pp(X) = Z log pz(f(x))) + log |det(Df(x;)) | where X is a training example.
=1

Exact likelihood estimation (unlike VAE, which uses lower bound).

Classitying real vs. take

We can successtully classify real vs. fake.

> | | o] | _>

Classitying real vs. take

We can successtully classify real vs. fake.
Can we build a generative model tfrom this idea?

]
G
o~

S
N

e

v s @
M. ™ :.'-’.‘4 CHet i
:"‘ﬁf‘ i g‘ e ’.‘_ X

s

=

S E

Wty 1 Do d(b S
AR AT e
AL R T R
i -‘.‘tuiff%g"@i : N
\ ! A ;&.' £y ﬁ&ﬁu"h ‘,ﬂ\ Ty
Lo
({;'

o

o 5 ol }yi.‘ ; ﬁk‘ L R RN Pt
2 ! o W .‘,g’,‘v‘..‘ L ,"‘ . d .\ : RIERGCA
AT e 4 R AR B T ; 2 SRS (ALmE et Ve A RSP AT
SN e] "'ﬂ‘é) o o B R e g e Ry T N e L T by e
7 Ul LY } ' b A e 3 L AR A
N N, / ;,\% 2 g ”‘v SIS o A F f o AL . ,{g,‘ ; N 2 4 XY
7 .‘5.‘» . A o Rt \ A G Ty A s LA
555 X 3 i o (L Ao S et sV R e A SR i e o, A T e i
R T S i R e e SR
] R . k! R = ” & "’ Wiy i 5 N 3 I
5) ol Py D ";_' l‘ \; ¥ ;,:v,\ -& - J: ’ N ¥ W ﬂ, N il
/ A ot AV o Ul SRR Ol g o b
; 5] X R o Lo ‘{W e
N e 3 ! \ Ittt
(" 2 A ' iy g) ,:L 2 Y
)

e G(z) D

Z ADDH—) ﬂﬂﬂ— real or fake”?

(Generator Discriminator

G tries to synthesize fake images that fool D

D tries to identity the takes

|Goodfellow et al., 2014]

Source: Isola, Freeman, Torralba 10

™
o | "

.\ . \ Y "‘ ’ ‘.:
\ \ \ ‘ .

‘:L ,:’. -

e K

s o -

- _‘l "!_.‘*: A'A:Axkl ,N‘
WES » "
-\

Y N

g max B M + log (1 = D))
D

|Goodfellow et al., 2014]

Source: Isola, Freeman, Torralba

real or fake”

G tries to synthesize fake images that fool D:

ar Czx| log D(G(z)) + log(1— D(x)) |

|Goodfellow et al., 2014]

Source: Isola, Freeman, Torralba 12

G G2) D
N 'Y %
. \‘ \ : -
/4 - real or fake”
\

G tries to synthesize fake images that fool the best D:

arg x| log D(G(z)) + log(1—D(x)) |

|Goodfellow et al., 2014]

Source: Isola, Freeman, Torralba 13

Training
D

ﬂﬂﬂ— real or fake?

G tries to synthesize take images that fool D

D tries to identify the fakes
* Jraining: iterate between training D and G with backprop.

e Global optimum when G reproduces data distribution (see book)

|Goodfellow et al., 2014]

Source: Isola, Freeman, Torralba 14

GANSs are implicit generative models

® data ® data
— model density ¢ model samples

D 0 G ee {7 w o o W e ee
Prescribed generative model Implicit generative model
(a density that you can sample from) (only a sampling procedure)

Figure source: [Murphy, PMLAT book]

Training pseudocode

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(!), ..., 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {w(l), e zc(m)} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, L 3" [log D () + 108 (1- D (& (=0)))].

=1
end for

e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

o, 2olos (1- 0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum 1n our experiments.

Source: [Goodfellow et al., 2014]

Toy example

..........
“t-e~.

' 'y
[] & r
° e ' Y B
. !
s !
4

/I Y/ NN

Generator (green) and discriminator (blue) as training progresses.

‘
D o

L
*r—o—&

L
Z

Figure source: [Goodfellow et al., 2014]

Analysis

What is the optimal discriminator?

where p, . is the data distribution

(X)
D*(X) = P and p, is the generator’s distribution (i.e.,

Pdata(X) +p8(X) the distribution of G(z))

Given a generator G, we are maximizing:

V(G,D) = [P (X)0g(D(X))dx + [p.(z)log(l — D(G(z)))dz

| PuaIo(D) + p,(log(1 - Dxx

How do you maximize this? For some (a, b), consider:

d]
f) = alogy+blog(1 —y) set L =% _p—L o
dy Yy 1 -y
1l —y b 1 b a

y a y a a+b

Pg = Pdata isthe unique global minimizer of the GAN objective.

Proot sketch:
C(G) =Egnpy,log D ()| + Eqnp, log(l — D (x)))
5 _ pdata(m) _ < _ pg(m)
— tw’\’ ata log —l_ tmN g log
h pdata(m) + pg (.’,13) _ P pdata(m) T pg(m) _

C(G) — — 10g(4) + KL (pdata pdataz at) + KL (pg pdataz Co)

C(G)=—1log(4) +2-JSD (pgaa ||p,) Jensen-Shannon divergence
R/_/
> 07 0 <— Pg — Pdata

20

Source: Isola, Freeman, Torralba

Exploring learned GAN models

Generative models organize the manifold of natural images

latent space image space
s 9 IR
O"‘ ~~~\ ‘
4 A
Y4) 3
? 4
4
' R
| |
| |
| |
' |
) 4
\ Y 4
) 4
A\ Y4
) 3 4
) 2 4
§~ "¢

22 Source: Isola, Freeman, Torralba

Samples tfrom BigGAN

[Brock et al. 2018]

More here: https://arxiv.org/pdf/1809.11096.pdf

53 Source: Isola, Freeman, Torralba

https://arxiv.org/pdf/1809.11096.pdf

Latent space Data space
(Gaussian) (Natural image manifold)

X

Z

[BigGAN, Brock et al. 2018]

R IS I e . RS SRR T o
: b ‘3‘ - h’ < . . - ‘

-~ &‘,

[Brock et al. 2018]

fo’f e

S IeGAN3 (O rs)

https://github.Com/NV|abS/sty|egan3 [Karras et al., "Alias-Free Generative Adversarial Networks”, 2021]

https://github.com/NVlabs/stylegan3

[Karras et al., “Alias-Free Generative Adversarial Networks” 2021]

N3-(Ours)

[Karras et al., “Alias-Free Generative Adversarial Networks” 2021}

GAN variants

Conditional GANs

Unconditional GAN:

= |log(D(x))| + E, |log(1 — D(G(2)))]

min max V(G, D) =
G D

Conditional GAN:

min max V(G, D) =
G D

=y [log(D(x,)] +

=, [log(1 = D(G(z, y), y))]

A living room with a fireplace at
a wood cabin. Interior design.

Isometric underwater Atlantis city
with a Greek temple in a bubble.

Text-to-image GANs

a blue Porsche 356 parked'in Eiffel Tower, landscapé A painting of a majestic royal
front of a yellow brick wall. photography tall ship in Age of Discovery.

A hot air balloon in shape of a low poly bunny with cute eyes A cube made of denim on a wooden
heart. Grand Canyon table

[Kang et al., “Scaling up GANSs for Text-to-lmage Synthesis”, 2023]

Encoder-decoder models

features data

B é)

Q1
<N D>_’
Omim

p - /

Source: [Donahue et al., "BiGAN", 2019]

Encoder-decoder models

Real image

G(E(X))

Source: [Donahue et al., "BigBiGAN", 2019]

Challenges of training GANSs

Saturation

® (Generator loss function: LG — EZ [l()g(l — D(G(Z)))]

e \What happens when D gets really high accuracy?

® (Generator’s loss is nearly tlat when D(x) approaches 0. Consequently,
gradient of loss w.r.t. generator’s parameters V, L will be small.

Slide adapted from R. Grosse

Saturation

One solution: replace L, = [, [log(l — D(G(Z)))] with
G = E, |-10g(D(G(2)))]

200 -
5 | . log (1 — D(G(2)))
Q 2B —log D(G(#))
— T~a___ —7 —logD(G(2)) s O - '
% 0 - S e e e O 0 - Kl —————— -
o a
® Q
= o B |
U —200 ! ILI I | I I |
' ' ' ' ' ! 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0 D(G(2))
D(G(z))

Figure source: [Murphy, PMLAT book]

L ack of diversity

Why does this happen?

Category: fish
[Brock et al., "BigGAN", 2018]

Figure source: [Razavi et al., 2019]

L ack of diversity

real (0.1)

(Generator Discriminator

Don't need to cover the full distribution. Only need to fool the discriminator!

Mode collapse and mode hopping

(a) Data

Disc Loss: 0.892
Gen Loss: 1.852

'9

Disc Loss: 1.252
Gen Loss: 0.753

(b) 2000 iterations

Disc Loss: 0.457
Gen Loss: 3.258

(d) 8000 iterations

Disc Loss: 1.136
Gen Loss: 0.740

Y

(e) 12000 iterations

(c) 4000 iterations

Disc Loss: 0.305
Gen Loss: 3.016

\

(f) 14000 iterations

Figure source: [Murphy, PMLAT book]

Point estimate

Probability Density

40

Mode seeking property

* *

g = argmin, Dk (p|/q) ¢ = argmin, Dk (q||p)

Probability Density
Probability Density

I I

Maximum likelihood Reverse KL

adapted from [Goodfellow, 2016]

Source: Isola, Freeman, Torralba

41

Mode seeking property

KL:
Dy (p 1l @) = J p(x)log (p(x)> dx
. q(x)
Reverse KL: (
Dki(q Il p) = J g(x)log (Q(x)> dx
. p(x) |

What happens when you miss a mode, i.e., p(x) > 0 and g(x) is near zero.

adapted from [Goodfellow, 2016], and Isola, Torralba, Freeman

Behavior under model misspecification

Data Max likelihood Jensen-Shannon Divergence

["A note on the evaluation of generative models”, Theis et al. 2016]

42 Source: Isola, Freeman, Torralba

Mode covering versus mode seeking

[Larsen et al. 2016]

43 Source: Isola, Freeman, Torralba

Does maximum likelihood lead to good samples?

® Suppose that we mix a really good model of a distribution, p(x), with pure

random noise, g(x).

py(x) = 0.01p(x) 4+ 0.99g(x)
® \What happens to the log likelihood for high dimensional data?
log [0.01p(x) + 0.99¢(x)| > 10g(0.01p(x)) = log p(x) — log 100
® Butlog p(x) is proportional d and log(100) =~ 4.61 is a constant.
® Different models might differ in log(p(x)) by 10000 X

® So, a model can generate bad samples most of the time without
affecting log likelihood much.

Source: [“A note on the evaluation of generative models”, Theis et al. 2016]

Loss doesn’t necessarily go down! G and D play a two-player game.

3.0 A
2.5

2.0 A

Loss
=
w

1.0 -

0.5 -

0.0 -

45

Training dynamics ot GANSs

— G_loss

0 1000 2000 3000 4000

lter

Generator loss

5000

Curves from a conditional image-to-image GAN (pix2pix)

— D _loss

0 1000 2000 3000 4000

Iter

Discriminator loss

5000

Training dynamics of GANs

Some differences between GANs and other models we've seen:
® Not optimizing a single loss function.
® The two networks are constantly trying to fool each other.

® (G backpropagates through D and gets feedback about what's wrong,.

® Conceptually, D is a detective, while G is an art forger that gets to
read the mind of D [Lethinen, 2017]

arg mén max {',Z,X[log D(G(z)) log (1 — D(x)) |

46

Training instabilities

Model can “collapse”: sample quality suddenly drops

. Collapse
80 Collapse / 20 -
5 50 s
0 50000 100000 Iteration 150000 200000 0 50000 100000 Iteration 150000 200000
47 Singular values of weight matrix

[Brock et al., “BigGAN", 2018]

48

Rapid improvements in GAN quality (from 2014-2018)

Figure source: lan Goodtellow

Adapted from Isola, Freeman, Torralba

FID Score
N w N wu (@)}
o o o o o

=
o

Dataset = MNIST

140

120

100

80

60

40

20

.

Dataset = FASHION-MNIST

250

200

150

100

50

Dataset = CIFAR10

Better objectives” Optimization”

250

200

150

100

50

Dataset = CELEBA

I - - -
} *
S I—

L A > o> @

X X QXN QI ORI GG OF OF N o OF O O OF O N IO AN O O O

2R ol ZIR\ el 97 v & SERN\ Y &

SR & & ° SR & & ° SR & & ° N & &0
Model Model Model Model

Figure 4: A wide range hyperparameter search (100 hyperparameter samples per model). Black stars indicate
the performance of suggested hyperparameter settings. We observe that GAN training 1s extremely sensitive to
hyperparameter settings and there 1s no model which 1s significantly more stable than others.

[“Are all GANs Created Equaf?”, Lucic*, Kurach*, et al. 2018]

Source: Isola, Freeman, Torralb:

ACGAN [Odena et al. 2016]
.

|
l

s 4
e

More data”

50

Both trained on Imagenet

[, ™

LB PRnSA .‘?’-X‘:
‘:\',{" |?_‘ '.k’

i

- S -
" ~-
T
. N

'.»

O
I~ -
- -
«f
'-.o
] alp” &

~-
,?‘ 2 -
"}(‘*

”

Source: Isola, Freeman, Torralb:

Rapid progress from better architectures

DCGAN StyleGANZ
[Radford, Metz, Chintala 2016} |Karras et al., 2020}

S

51

Source: Isola, Freeman, Torralba

Architectures

DCGAN StyleGAN
[Radford, Metz, Chintala 2016} [Karras, Laine, Aila 2019]
Latent¢z cZz Synthesis network ¢ Noise
Normalize Const 4x4x512
Mapping B
vnetwork f i Ai)I(N)
]
F‘C /) Conv 3x3
A re style 6"9(B
\ FC A —>{ AdalN 4x4
= |]
ide - ;/{:@ F,C Upsalmple
B o = Conv 373
C (8 : @ B |e—
\ s A _iyl; AdaIN
64]
CONV 4 E Conv 3x3
- style @(B«
Transpose convolution + batch norm + nonlinearities AT A“j‘“ 8x8

52

Similar but bigge.r“and lotS
of engineering details.

Source: Isola, Freeman, Torralb:

GANSs vs. other models we've seen

Often generate very qualitatively good samples (e.qg., crisp images)
Doesn’t necessarily cover the full dataset.
Train them by training models that play a minimax game.

Unlike VAEs and normalizing flows, no single loss function that you can
use to measure quality.

Training can collapse (e.qg., it one model wins)

Next class: GANs for images

Google Map Satellite photo

54

Source: Isola, Freeman, Torralb:

