
CS 5788: Introduction to Generative Models

Lecture 6: Normalizing flows

Many slides from Brubaker & Köthe and figures from
Kobyzev, Prince, and Brubaker normalizing flow tutorial.

2

Today
• PS1 due next Tuesday
• Project info out in late February

Recall: Variational autoencoders

Encoder Decoder
(μ(x), Σ(x))

z ∼ 𝒩(μ(x), Σ(x))

• Encoder net defines a distribution over : .z q(z ∣ x) = 𝒩 (μ(x), Σ(x))
x̂ = D(z)

• Decoder net defines a distribution over : .x p(x ∣ z) = D(z)

<latexit sha1_base64="pnZcRN6FuiRTLWuGaGJmQkuQVm8=">AAAFiXicvVRbb9MwFPa2ZoyMSzceeTFUVK1UqmaCbWKaNDGQkOBhSHSbVFeV4zipNcfJbAdRTH4L/4k3/g1u2qk3aCchOFKkk3P9vmP7+ClnSrdaP9fWN0rO5p2tu+72vfsPHpZ3ds9VkklC2yThibz0saKcCdrWTHN6mUqKY5/TC//qdOi/+EylYon4pAcp7cY4EixkBGtr6u1sfEc+jZgw9FpgKfEgdxFPIpjWUIx13w/Nl7zuVo+rsDAjJvSMr3Gjfs3rqAGDyS9EIhFZ7FOJ0FyB69okDMUsmGoFUcNFocTE/KlLbpak58swoIhWbwegQPqPUBz/FYbpyGLkae0/olq4Ggtwpju46Og5Orp13RHZZQTMLNlVfAqXb97mveVjeYI4DXVnJTnJor7ujlm96ZnCJ2Pz/kN+U6S2guc3i3mGxKhofQLeRVQEU6+xV660mq1C4KLijZUKGMtZr/wDBQnJYio04VipjtdKdddgqRnh1B5KpmiKyRWOaMeqAsdUdU2xSXL4zFoCGCbSfvbUCut0hsGxUoPYt5FDDmreNzT+ztfJdHjYNUykmaaCjBqFGYc6gcO1BAMmKdF8YBVMJLNYIeljeyG0XV7DIXjzlBeV872mt9988XGvcvJ6PI4t8Bg8BTXggQNwAt6BM9AGpLRZapRelvadbcdzDp1Xo9D1tXHOIzAjzukvhzrmeQ==</latexit>

log p(x) = log

∫
p(x, z) dz

= log

∫
q(z | x) p(x, z)

q(z | x) dz

→
∫

q(z | x) log p(x, z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) p(z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) dz ↑

∫
q(z | x) log q(z | x)

p(z)
dz

= Eq(z|x)[log p(x | z)] ↑ DKL(q(z | x) ↓ p(z))

<latexit sha1_base64="pnZcRN6FuiRTLWuGaGJmQkuQVm8=">AAAFiXicvVRbb9MwFPa2ZoyMSzceeTFUVK1UqmaCbWKaNDGQkOBhSHSbVFeV4zipNcfJbAdRTH4L/4k3/g1u2qk3aCchOFKkk3P9vmP7+ClnSrdaP9fWN0rO5p2tu+72vfsPHpZ3ds9VkklC2yThibz0saKcCdrWTHN6mUqKY5/TC//qdOi/+EylYon4pAcp7cY4EixkBGtr6u1sfEc+jZgw9FpgKfEgdxFPIpjWUIx13w/Nl7zuVo+rsDAjJvSMr3Gjfs3rqAGDyS9EIhFZ7FOJ0FyB69okDMUsmGoFUcNFocTE/KlLbpak58swoIhWbwegQPqPUBz/FYbpyGLkae0/olq4Ggtwpju46Og5Orp13RHZZQTMLNlVfAqXb97mveVjeYI4DXVnJTnJor7ujlm96ZnCJ2Pz/kN+U6S2guc3i3mGxKhofQLeRVQEU6+xV660mq1C4KLijZUKGMtZr/wDBQnJYio04VipjtdKdddgqRnh1B5KpmiKyRWOaMeqAsdUdU2xSXL4zFoCGCbSfvbUCut0hsGxUoPYt5FDDmreNzT+ztfJdHjYNUykmaaCjBqFGYc6gcO1BAMmKdF8YBVMJLNYIeljeyG0XV7DIXjzlBeV872mt9988XGvcvJ6PI4t8Bg8BTXggQNwAt6BM9AGpLRZapRelvadbcdzDp1Xo9D1tXHOIzAjzukvhzrmeQ==</latexit>

log p(x) = log

∫
p(x, z) dz

= log

∫
q(z | x) p(x, z)

q(z | x) dz

→
∫

q(z | x) log p(x, z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) p(z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) dz ↑

∫
q(z | x) log q(z | x)

p(z)
dz

= Eq(z|x)[log p(x | z)] ↑ DKL(q(z | x) ↓ p(z))

<latexit sha1_base64="pnZcRN6FuiRTLWuGaGJmQkuQVm8=">AAAFiXicvVRbb9MwFPa2ZoyMSzceeTFUVK1UqmaCbWKaNDGQkOBhSHSbVFeV4zipNcfJbAdRTH4L/4k3/g1u2qk3aCchOFKkk3P9vmP7+ClnSrdaP9fWN0rO5p2tu+72vfsPHpZ3ds9VkklC2yThibz0saKcCdrWTHN6mUqKY5/TC//qdOi/+EylYon4pAcp7cY4EixkBGtr6u1sfEc+jZgw9FpgKfEgdxFPIpjWUIx13w/Nl7zuVo+rsDAjJvSMr3Gjfs3rqAGDyS9EIhFZ7FOJ0FyB69okDMUsmGoFUcNFocTE/KlLbpak58swoIhWbwegQPqPUBz/FYbpyGLkae0/olq4Ggtwpju46Og5Orp13RHZZQTMLNlVfAqXb97mveVjeYI4DXVnJTnJor7ujlm96ZnCJ2Pz/kN+U6S2guc3i3mGxKhofQLeRVQEU6+xV660mq1C4KLijZUKGMtZr/wDBQnJYio04VipjtdKdddgqRnh1B5KpmiKyRWOaMeqAsdUdU2xSXL4zFoCGCbSfvbUCut0hsGxUoPYt5FDDmreNzT+ztfJdHjYNUykmaaCjBqFGYc6gcO1BAMmKdF8YBVMJLNYIeljeyG0XV7DIXjzlBeV872mt9988XGvcvJ6PI4t8Bg8BTXggQNwAt6BM9AGpLRZapRelvadbcdzDp1Xo9D1tXHOIzAjzukvhzrmeQ==</latexit>

log p(x) = log

∫
p(x, z) dz

= log

∫
q(z | x) p(x, z)

q(z | x) dz

→
∫

q(z | x) log p(x, z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) p(z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) dz ↑

∫
q(z | x) log q(z | x)

p(z)
dz

= Eq(z|x)[log p(x | z)] ↑ DKL(q(z | x) ↓ p(z))

ℒR = ∥x − x̂∥2
Reconstruction loss:

Equivalent to log likelihood of : i.e.,
how likely is under a Gaussian with mean ?

𝒩(x̂, I)
x x̂

(up to scale factor)

Recall: training a VAE

<latexit sha1_base64="pnZcRN6FuiRTLWuGaGJmQkuQVm8=">AAAFiXicvVRbb9MwFPa2ZoyMSzceeTFUVK1UqmaCbWKaNDGQkOBhSHSbVFeV4zipNcfJbAdRTH4L/4k3/g1u2qk3aCchOFKkk3P9vmP7+ClnSrdaP9fWN0rO5p2tu+72vfsPHpZ3ds9VkklC2yThibz0saKcCdrWTHN6mUqKY5/TC//qdOi/+EylYon4pAcp7cY4EixkBGtr6u1sfEc+jZgw9FpgKfEgdxFPIpjWUIx13w/Nl7zuVo+rsDAjJvSMr3Gjfs3rqAGDyS9EIhFZ7FOJ0FyB69okDMUsmGoFUcNFocTE/KlLbpak58swoIhWbwegQPqPUBz/FYbpyGLkae0/olq4Ggtwpju46Og5Orp13RHZZQTMLNlVfAqXb97mveVjeYI4DXVnJTnJor7ujlm96ZnCJ2Pz/kN+U6S2guc3i3mGxKhofQLeRVQEU6+xV660mq1C4KLijZUKGMtZr/wDBQnJYio04VipjtdKdddgqRnh1B5KpmiKyRWOaMeqAsdUdU2xSXL4zFoCGCbSfvbUCut0hsGxUoPYt5FDDmreNzT+ztfJdHjYNUykmaaCjBqFGYc6gcO1BAMmKdF8YBVMJLNYIeljeyG0XV7DIXjzlBeV872mt9988XGvcvJ6PI4t8Bg8BTXggQNwAt6BM9AGpLRZapRelvadbcdzDp1Xo9D1tXHOIzAjzukvhzrmeQ==</latexit>

log p(x) = log

∫
p(x, z) dz

= log

∫
q(z | x) p(x, z)

q(z | x) dz

→
∫

q(z | x) log p(x, z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) p(z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) dz ↑

∫
q(z | x) log q(z | x)

p(z)
dz

= Eq(z|x)[log p(x | z)] ↑ DKL(q(z | x) ↓ p(z))

<latexit sha1_base64="pnZcRN6FuiRTLWuGaGJmQkuQVm8=">AAAFiXicvVRbb9MwFPa2ZoyMSzceeTFUVK1UqmaCbWKaNDGQkOBhSHSbVFeV4zipNcfJbAdRTH4L/4k3/g1u2qk3aCchOFKkk3P9vmP7+ClnSrdaP9fWN0rO5p2tu+72vfsPHpZ3ds9VkklC2yThibz0saKcCdrWTHN6mUqKY5/TC//qdOi/+EylYon4pAcp7cY4EixkBGtr6u1sfEc+jZgw9FpgKfEgdxFPIpjWUIx13w/Nl7zuVo+rsDAjJvSMr3Gjfs3rqAGDyS9EIhFZ7FOJ0FyB69okDMUsmGoFUcNFocTE/KlLbpak58swoIhWbwegQPqPUBz/FYbpyGLkae0/olq4Ggtwpju46Og5Orp13RHZZQTMLNlVfAqXb97mveVjeYI4DXVnJTnJor7ujlm96ZnCJ2Pz/kN+U6S2guc3i3mGxKhofQLeRVQEU6+xV660mq1C4KLijZUKGMtZr/wDBQnJYio04VipjtdKdddgqRnh1B5KpmiKyRWOaMeqAsdUdU2xSXL4zFoCGCbSfvbUCut0hsGxUoPYt5FDDmreNzT+ztfJdHjYNUykmaaCjBqFGYc6gcO1BAMmKdF8YBVMJLNYIeljeyG0XV7DIXjzlBeV872mt9988XGvcvJ6PI4t8Bg8BTXggQNwAt6BM9AGpLRZapRelvadbcdzDp1Xo9D1tXHOIzAjzukvhzrmeQ==</latexit>

log p(x) = log

∫
p(x, z) dz

= log

∫
q(z | x) p(x, z)

q(z | x) dz

→
∫

q(z | x) log p(x, z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) p(z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) dz ↑

∫
q(z | x) log q(z | x)

p(z)
dz

= Eq(z|x)[log p(x | z)] ↑ DKL(q(z | x) ↓ p(z))ℒP = DKL (q(z ∣ x) ∥ 𝒩(0, I))
Make to match our desired source distribution.z

KL divergence loss:

Potential problems with VAEs

• Can’t directly estimate .

• Instead, you are optimizing a lower bound.

• Requires you to capture all variation in low-dimensional .

• Need separate encoder/decoder networks.

log pθ(x)

z

Encoder Decoder
(μ(x), Σ(x))

z ∼ 𝒩(μ(x), Σ(x))

x̂ = D(z)

Can we get rid of the encoder?

Recall: Variational autoencoders

Invertible transformations

Z X = g(Z)
g : Z → X

generative direction

Invertible transformations

X Z = f(X) f ≜ g−1

f : X → Z

normalizing direction (“flow”)

Change of variables formula
pX(x) = pZ (g−1(x)) det Dg−1(x)If , thenX = g(Z)

pX(x) = pZ (f(x)) det Df(x) for f ≜ g−1

We say that is the pushforward of by .pX pZ g

where is the Jacobian, i.e., the matrix of partial derivatives: Df

Df =

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

Volume correction

Example: change of variables formula

Z ∼ U(0, 1)

pZ(z) = U(0, 1)

X = Z

pZ(z) = U(0, 1)

where

pZ(z) = U(0, 1)

pZ(z) = {1, 0 < z < 1,
0, otherwise., i.e.,

px(x) = {2x 0 < x < 1
0 otherwise

pX(x) = pZ (g−1(x)) det Dg−1(x)If , thenX = g(Z)

Function composition

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Composition of functions: N
g = gN ∘ gN−1 ∘ . . . ∘ g1

g−1 = g−1
1 ∘ g−1

2 ∘ g−1
N

det Df(x) =
N

∏
i=1

det Dfi(yi)

where yi = gi ∘ gi−1 ∘ . . . g1(z)

Determinant:

= f1 ∘ f2 ∘ . . . fi(x)

g : Z → X

Inverse:
f = f1 ∘ f2 ∘ . . . ∘ fN

f : X → Z

Composition of Flows

f1 f2 f3 f4

f −11 f −1	 f −1	
2	 3 f −14

f −1	 = f −1 ∘ f −1 ∘ f −1 ∘ f −1	
 1	 2	 3	 4

f = f4 ∘ f3 ∘ f2 ∘ f1

Source: M. Brubaker & Köthe

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Building a deep generative model

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

g1 g2 g3 g4

Normalizing flow model

Z X = g(Z)

gN ∘ gN−1 ∘ . . . ∘ g1(z)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

X Z = f(X)fN fN−1 fN−2 fN−3, . . .

Normalizing flow model

log pθ(X) =
M

∑
i=1

log pZ(f(xi)) + log det(Df(xi)) where is a training example.xi

For estimating the density and learning:

Exact likelihood estimation (unlike VAE, which uses lower bound).

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

What’s the catch?

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Let’s look at the change-of-variables formula again:

pX(x) = pZ (g−1(x)) det Dg−1(x)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Network architecture?

The change-of-variables formula places constraints on network:

• Each layer must be invertible

• Must be able to compute

• Latent needs to be same dimension as

• All of these must be efficient to compute!

gi

log det Dfi
z x

log pθ(X) =
M

∑
i=1

log pZ(f(xi)) + log det(Df(xi))

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Pointwise nonlinearities

f(y) =

g(y1)
g(y2)…
g(yd)

if is invertible, so is g f

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Pointwise nonlinearities

f(y) =

g(y1)
g(y2)…
g(yd)

(Jacobian of is similar, but using for simplicity)f −1 f

D =

g′￼(y1) 0 0 0
0 g′￼(y2) 0 0
0 0 g′￼(y3) 0
0 0 0 …

Jacobian:

det D =
N

∏
i=1

g′￼(yi)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Linear layers

f(y) = Ay + b
Inverse?

Determinant?

but needs to be full rank.

f −1(y) = A−1(y − b)
A

…but expensive! 𝒪(N3)
f : ℝn → ℝn det Df(x) = det A

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Linear layers: special cases

g(y) = Dy + b

g : ℝn → ℝn

D = diag(a, b, c, …) =

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 …

det(D) = a × b × c × . . .

computable in time.O(n)

Diagonal matrix:

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Linear layers: special cases

g(y) = Ly + b

g : ℝn → ℝn

L =

a 0 0 0
b c 0 0
d e f 0
g h i j

• Determinant is product of diagonal.

Triangular matrix:

Still, limited expressiveness…
• Invertible in time.O(n2)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Linear layers: permutation matrix

g(y) = Py + b

g : ℝn → ℝn
P =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 = 1det(P)

Permutation matrix:
What does this matrix do?

Can chain together with lower triangular matrix to
improve expressiveness.

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Other useful special cases

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling Flows

Coupling Network θ(𝒩)

Coupling
Transform

Split

xA

xB ∼f(xB |θ(xA))

Concat.

f(x) = [xA

∼f(xB |θ(xA))]x

[Figure adapted from Jason Yu]

Coupling flows

Source: M. Brubaker & Köthe

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling Flows: Inverse

Coupling Network θ(𝒩)

Inverse Coupling
Transform

Concat.

∼f ⋅1(zB |θ(zA))

zA

zB

Split

f ⋅1(z) = [zA

∼f ⋅1(zB |θ(zA))] z

[Figure adapted from Jason Yu]

Coupling flows: inverse

Source: M. Brubaker & Köthe

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows

f(x) =
xA

̂f(xB ∣ θ(xA)) Df(x) = [
I 0

∂
∂xA

̂f(xB ∣ θ(xA)) D ̂f(xB ∣ θ(xA))]

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows

f(x) =
xA

̂f(xB ∣ θ(xA)) Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) D ̂f (xB ∣ θ(xA))]

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows

Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) D ̂f (xB ∣ θ(xA))]

det Df(x) = ? det [A 0
C D] = det(A) det(D)

Useful property:

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows

Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) D ̂f (xB ∣ θ(xA))]

det Df(x) = det (D ̂f (xB ∣ θ(xA))) θ(xA) is arbitrary!
(e.g., MLP, CNN, etc.)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flowsCoupling Flows

Coupling Network θ(𝒩)

Coupling
Transform

Split

xA

xB ∼f(xB |θ(xA))

Concat.

f(x)
x

[Figure adapted from Jason Yu]

Permutation

or

Linear
Transform

Can increase expressivity with other operations.
Source: M. Brubaker & Köthe

Coupling transforms

Adapted from M. Brubaker & Köthe

• Additive [“NICE”, Dinh et al 2014]

Lots of possible choices.

̂f(x ∣ t) = x + t

• Affine [“RealNVP”, Dinh et al 2016], where is elementwise product⊙

̂f(x ∣ s, t) = x ⊙ exp(s) + t

(where is a function that maps to a vector the same size as).t xA xB

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows (affine model)

Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) D ̂f (xB ∣ θ(xA))]

det Df(x) = D ̂f (xB ∣ θ(xA))

Jacobian:

Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) diag (exp(s1), . . . , exp(sK))]

log det(Df(x)) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) diag(s1, s2, . . . , sK)]

̂f(x ∣ s, t) = x ⊙ exp(s) + t

det(Df(x))) = exp (
K

∑
i=1

si)

Log determinant:

Handling images

Multi-Scale Flows

f1
f2

f3

[Dinh et al 2016]Adapted from M. Brubaker & Köthe

Multiscale flows

Normalizing flows force same dimension. But we can just stop using subsets of dimensions as we go!

Masked convolution

Source: [Dinh et al., “RealNVP”]

Mask features before convolution

Masked convolution

Source: [Dinh et al., “RealNVP”]

y = b ⊙ x + (1 − b) ⊙ (x ⊙ exp(s(b ⊙ x)) + t(b ⊙ x))

Masked convolution

Source: [Dinh et al., “RealNVP”]

y = b ⊙ x + (1 − b) ⊙ (x ⊙ exp(s(b ⊙ x)) + t(b ⊙ x))
binary mask

Masked convolution

Source: [Dinh et al., “RealNVP”]

y = b ⊙ x + (1 − b) ⊙ (x ⊙ exp(s(b ⊙ x)) + t(b ⊙ x))
convolutional nets

Generated images

Source: [Dinh et al., “RealNVP”]

Real Generated

Improved model [Kingma and Dhariwal, “GLOW”, NeurIPS 2018] Source: M. Brubaker & Köthe

Generated images

Normalizing flows vs. VAEs

• Normalizing flows give exact log likelihood, while VAEs
allow you to approximately estimate a lower bound.

• Architecture for VAE is much less constrained.

• Normalizing flow layers must be invertible

• Must also be efficient to compute determinant of
Jacobian

• VAEs typically reduce dimensionality in encoder, whereas
normalizing flow must preserve input size throughout.

Next class: Generative adversarial networks

