Lecture 6: Normalizing flows

CS 5788: Introduction to Generative Models

Many slides from Brubaker & Kothe and figures from

Kobyzev, Prince, and Brubaker normalizing flow tutorial.



Today

e PS1 due next Tuesday

 Projectinfo outin late February



Recall: Variational autoencoders

" == = = -
. / “‘,‘:
""-
i ! ‘;;
== e |
S-—
z"" R
"m ey

Encoder Decoder

(r(x), Z(x)) X = D(z)

® Encoder net defines a distribution overz: g(z | xX) = (ﬂ(x), E(x)).

® Decoder net defines a distribution over x: p(x | z) = D(z).



Recall: training a VAE

logp(x) = log / p(X,2) dz
> [t x) logp(x | 2)dz — [ ata] %) log 222 a
p(2)
= Ey(zx)logp(x | z)] — Dkrlq(z | x) || p(2))
Reconstruction loss: KL divergence loss:

g — ||X — 5\( 2 (up to scale tactor)
R=1 ” Zp =Dy (qz | x) || /O, D)
Equivalent to log likelihood of #/(Xx,1): i.e.,

how likely is x under a Gaussian with mean Xx? Make z to match our desired source distribution.




Potential problems with VAEs

e Can't directly estimate log p,(X).

® |nstead, you are optimizing a lower bound.

® Requires you to capture all variation in low-dimensional z.

® Need separate encoder/decoder networks.



Recall: Variational autoencoders
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Decoder
X = D(z)

Can we get rid of the encoder?



Invertible transformations

Irection

generative d

X = g(Z)
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Invertible transformations

normalizing direction




Change of variables formula

Volume correction

f X = g(Z), then px(x) = pz (g7 (%)) ‘det Dg‘l(X)‘

px(X) = py, (f(x)) |detDf(x)| for f£ ¢!

where Df is the Jacobian, i.e., the matrix of partial derivatives:

U

axl 8)62
Df =

%%

Oxl a.X2

We say that px is the pushforward of p, by g.



Example: change of variables tormula

X = g(Z), then px(X) = p; (¢7'(%)) |detDg™'(x)

I, O<z<l,
0, otherwise.
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200 T P2
2x O0<x<1 N e

Px(x) = . -
0 otherwise

Z
o 1.00 -
go)

0.75 A

0.50 -

0.25 -

0.00

—0.2 0.0 0.2 0.4 0.6 0.8 1.0

1.2



Function composition

Inverse:

f=fofyo...ofy
f:X->Z

Composition of N functions:
g=8yo8N-1°-°& >
g:. 1 - X

Determinant:

N
det Df(x) = | [ detDf(y,)
=1

wherey; =g;eg;_j°...8/(2)
=fiofro...[(X)



Composition of Flows

J=JaxJ3:/2-N

Source: M. Brubaker & Kothe



Building a deep generative model|



Normalizing flow model
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Normalizing flow model

For estimating the density and learning:
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M
log pp(X) = Z log pz(f(x))) + log |det(Df(x;)) | where X is a training example.
=1

Exact likelihood estimation (unlike VAE, which uses lower bound).



What's the catch?



L et's look at the change-of-variables tormula again:

Px(X) = pz (27'(x) | det Dg™'(x)



Network architecture?

M
log py(X) = ) log p,(f(x)) + log | det(Df(x,)) |
=1

The change-of-variables formula places constraints on network:
® Fach layer g; must be invertible
® Must be able to compute log det Df.

® | atent Z needs to be same dimension as X

® All of these must be efficient to compute!



Pointwise nonlinearities

gy
fiy) = [802) if gisinvertible, sois f

g(yy)



Pointwise nonlinearities

Jacobian:

gv) g 00 0
0 g0, 0 0
0 0 g0y O

g(Va) o0 0

N
detD = Hg )
i=1

fiy) = |80 D =

(Jacobian of f~!is similar, but using ffor simplicity)



| inear layers

Inverse? f~l(y) =A~!(y —b)
Ay) =Ay+b but A needs to be full rank.

Determinant? det Df(x) = detA

f:R"—> R"
...but expensive! O(N°)



Linear layers: special cases

Diagonal matrix:

g(y)=Dy+Db D = diag(a, b,c,...) =

OO O Q
o O T O

g R"—> R"
det(D)=aXbXcX...

computable in O(n) time.

o o O O

o O O



Linear layers: special cases

Triangular matrix:

a 0O 0 O

g(y)=Ly+Db b ¢ 00
L= d e [ O

g R"—> R" g h 1 ]

® Determinant is product of diagonal.
e Invertible in O(n?) time.

Still, limited expressiveness...



Linear layers: permutation matrix

Permutation matrix:
What does this matrix do?

g(y) =Py+b O 100

P = det(P) = 1

1
0
0

o O O

0 0O
0 1
1 0

Can chain together with lower triangular matrix to
IMmprove expressiveness.



Other usetul special cases



Coupling tlows

XA

T = fct ) gty

| Coupling Network 6 -) |
Split Concat.

F(xB|6(x*))

Source: M. Brubaker & Kothe  [Figure adapted from Jason Yu]



Coupling tlows: inverse
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Concat. Split

Inverse Coupling j ¢
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f(z8 1 0z*))

Source: M. Brubaker & Kothe  [Figure adapted from Jason Yu]



Coupling tlows

J(X) = []?(XB ‘ Q(XA))} Df(x) = l



Coupling tlows

XA

/ 0
J(x) = []?(XB ‘ H(XA))

Dfx) = l 27 (xB ] 0x") DJ(x®] o)

oxA



Coupling tlows

| 0
D) = L—;f (xB | ox*)) Df(xB H(XA))]
Useful property:

det Df(x) = ? A Of _
det [ C D] = det(A) det(D)



Coupling tlows

7 0

DI =19 (x5 | ox)) Df(x* | 6xh)

oxA

o(x ) is arbitrary!

det Df(x) = det (Df(XB ‘ H(XA))) (e.g., MLP, CNN, etc.)



Coupling tlows

X

J(X)

Permutation
or
Linear
Transform

X

| Coupling Network 0( - ) |

Concat.

F(xB|6(x*))

Can increase expressivity with other operations.

Source: M. Brubaker & Kothe  [Figure adapted from Jason Yu]



Coupling transtorms

Lots of possible choices.

e Additive ["NICE", Dinh et al 2014]

f(xlt)=x+t

(where tis a function that maps x* to a vector the same size as x?).

o Affine ["'RealNVP”, Dinh et al 2016], where © is elementwise product

f(x | s,t) = x @ exp(s) +t

Adapted from M. Brubaker & Kothe



Coupling tlows (affine model)

f(x | s,t) = x @ exp(s) +t

Jacobian: Log determinant:

I 0

K
det(Df(x))) = exp ( Z Sl-)
i=1

I 0

Df(x) = [ a% ]? <XB | Q(XA)) diag (exp(sl) ..... €XP(SK)>]



Handling images



Multiscale flows

Normalizing flows force same dimension. But we can just stop using subsets of dimensions as we go!

Adapted from M. Brubaker & Kothe [Dinh et al 2016]



Masked convolution

Mask features before convolution

Source: [Dinh et al., "RealNVP"]



Masked convolution

Source: [Dinh et al., “"RealNVP"]



Masked convolution

binary mask

y=b®X+(1—b)@(X@exp(s(bé)x))+t(b®x))

Source: [Dinh et al., "RealNVP"]



Masked convolution

convolutional nets

y=b®X+(1—b)@(X@exp(s(bé)x))+t(b®x))

Source: [Dinh et al., "RealNVP"]



Generated images

Generated

Source: [Dinh et al., “RealNVP”]



Generated images

Improved model [Kingma and Dhariwal, “GLOW”, NeurlPS 2018]  Source: M. Brubaker & Kothe



Normalizing flows vs. VAEs

® Normalizing flows give exact log likelihood, while VAEs
allow you to approximately estimate a lower bound.

® Architecture for VAE is much less constrained.
® Normalizing flow layers must be invertible

® Must also be efficient to compute determinant of
Jacobian

® \/AEs typically reduce dimensionality in encoder, whereas
normalizing tlow must preserve input size throughout.



Next class: Generative adversarial networks



