
CS 5788: Introduction to Generative Models

Lecture 6: Normalizing flows

Many slides from Brubaker & Köthe and figures from 
Kobyzev, Prince, and Brubaker normalizing flow tutorial.
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Today
• PS1 due next Tuesday 
• Project info out in late February



Recall: Variational autoencoders

Encoder Decoder
(μ(x), Σ(x))

z ∼ 𝒩(μ(x), Σ(x))

• Encoder net defines a distribution over :  .z q(z ∣ x) = 𝒩 (μ(x), Σ(x))
x̂ = D(z)

• Decoder net defines a distribution over :  .x p(x ∣ z) = D(z)



<latexit sha1_base64="pnZcRN6FuiRTLWuGaGJmQkuQVm8="></latexit>

log p(x) = log

∫
p(x, z) dz

= log

∫
q(z | x) p(x, z)

q(z | x) dz

→
∫

q(z | x) log p(x, z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) p(z)

q(z | x) dz

=

∫
q(z | x) log p(x | z) dz ↑

∫
q(z | x) log q(z | x)

p(z)
dz

= Eq(z|x)[log p(x | z)] ↑ DKL(q(z | x) ↓ p(z))
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ℒR = ∥x − x̂∥2
Reconstruction loss:

Equivalent to log likelihood of : i.e., 
how likely is  under a Gaussian with mean ?

𝒩(x̂, I)
x x̂

(up to scale factor)

Recall: training a VAE
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Make  to match our desired source distribution.z

KL divergence loss:



Potential problems with VAEs

• Can’t directly estimate .  

• Instead, you are optimizing a lower bound. 

• Requires you to capture all variation in low-dimensional . 

• Need separate encoder/decoder networks. 

log pθ(x)

z



Encoder Decoder
(μ(x), Σ(x))

z ∼ 𝒩(μ(x), Σ(x))

x̂ = D(z)

Can we get rid of the encoder?

Recall: Variational autoencoders



Invertible transformations

Z X = g(Z)
g : Z → X

generative direction



Invertible transformations

X Z = f(X) f ≜ g−1

f : X → Z

normalizing direction (“flow”)



Change of variables formula
pX(x) = pZ (g−1(x)) det Dg−1(x)If , thenX = g(Z)

pX(x) = pZ (f(x)) det Df(x) for  f ≜ g−1

We say that  is the pushforward of  by .pX pZ g

where  is the Jacobian, i.e., the matrix of partial derivatives: Df

Df =

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

Volume correction



Example: change of variables formula

Z ∼ U(0, 1)

pZ(z) = U(0, 1)

X = Z

pZ(z) = U(0, 1)

where

pZ(z) = U(0, 1)

pZ(z) = {1, 0 < z < 1,
0, otherwise., i.e.,

px(x) = {2x 0 < x < 1
0 otherwise

pX(x) = pZ (g−1(x)) det Dg−1(x)If , thenX = g(Z)



Function composition

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Composition of  functions:  N
g = gN ∘ gN−1 ∘ . . . ∘ g1

g−1 = g−1
1 ∘ g−1

2 ∘ g−1
N

det Df(x) =
N

∏
i=1

det Dfi(yi)

where yi = gi ∘ gi−1 ∘ . . . g1(z)

Determinant:

= f1 ∘ f2 ∘ . . . fi(x)

g : Z → X

Inverse: 
f = f1 ∘ f2 ∘ . . . ∘ fN

f : X → Z



Composition of Flows

f1 f2 f3 f4

f −11 f −1	 f −1	
2	 3 f −14

f −1	 =  f −1 ∘ f −1 ∘ f −1 ∘ f −1	
  1	 2	 3	 4

f =  f4 ∘ f3 ∘ f2 ∘ f1

Source: M. Brubaker & Köthe



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Building a deep generative model



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

g1 g2 g3 g4

Normalizing flow model

Z X = g(Z)

gN ∘ gN−1 ∘ . . . ∘ g1(z)



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

X Z = f(X)fN fN−1 fN−2 fN−3, . . .

Normalizing flow model

log pθ(X) =
M

∑
i=1

log pZ( f(xi)) + log det(Df(xi)) where  is a training example.xi

For estimating the density and learning:

Exact likelihood estimation (unlike VAE, which uses lower bound).



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

What’s the catch?



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Let’s look at the change-of-variables formula again:

pX(x) = pZ (g−1(x)) det Dg−1(x)



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Network architecture?

The change-of-variables formula places constraints on network: 

• Each layer  must be invertible 

• Must be able to compute  

• Latent  needs to be same dimension as  

• All of these must be efficient to compute!

gi

log det Dfi
z x

log pθ(X) =
M

∑
i=1

log pZ( f(xi)) + log det(Df(xi))



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Pointwise nonlinearities

f(y) =

g(y1)
g(y2)…
g(yd)

if  is invertible, so is g f



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Pointwise nonlinearities

f(y) =

g(y1)
g(y2)…
g(yd)

(Jacobian of  is similar, but using  for simplicity)f −1 f

D =

g′￼(y1) 0 0 0
0 g′￼(y2) 0 0
0 0 g′￼(y3) 0
0 0 0 …

Jacobian:

det D =
N

∏
i=1

g′￼(yi)



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Linear layers

f(y) = Ay + b
Inverse? 

Determinant?

  

but  needs to be full rank.

f −1(y) = A−1(y − b)
A

…but expensive! 𝒪(N3)
f : ℝn → ℝn det Df(x) = det A



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Linear layers: special cases

g(y) = Dy + b

g : ℝn → ℝn

D = diag(a, b, c, …) =

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 …

det(D) = a × b × c × . . .

computable in  time.O(n)

Diagonal matrix:



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Linear layers: special cases

g(y) = Ly + b

g : ℝn → ℝn

L =

a 0 0 0
b c 0 0
d e f 0
g h i j

• Determinant is product of diagonal. 

Triangular matrix:

Still, limited expressiveness…
• Invertible in  time.O(n2)



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Linear layers: permutation matrix

g(y) = Py + b

g : ℝn → ℝn
P =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 = 1det(P)

Permutation matrix: 
What does this matrix do?

Can chain together with lower triangular matrix to 
improve expressiveness.



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Other useful special cases



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling Flows

Coupling Network θ( 𝒩 )

Coupling 
Transform

Split

xA

xB ∼f(xB |θ(xA))

Concat.

f(x) = [ xA

∼f(xB |θ(xA))]x

[Figure adapted from Jason Yu]

Coupling flows

Source: M. Brubaker & Köthe



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling Flows: Inverse

Coupling Network θ( 𝒩 )

Inverse Coupling 
Transform

Concat.

∼f ⋅1(zB |θ(zA))

zA

zB

Split

f ⋅1(z) = [ zA

∼f ⋅1(zB |θ(zA))] z

[Figure adapted from Jason Yu]

Coupling flows: inverse

Source: M. Brubaker & Köthe



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows

f(x) =
xA

̂f(xB ∣ θ(xA)) Df(x) = [
I 0

∂
∂xA

̂f(xB ∣ θ(xA)) D ̂f(xB ∣ θ(xA))]



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows

f(x) =
xA

̂f(xB ∣ θ(xA)) Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) D ̂f (xB ∣ θ(xA))]



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows

Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) D ̂f (xB ∣ θ(xA))]

det Df(x) = ? det [A 0
C D] = det(A) det(D)

Useful property: 



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows

Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) D ̂f (xB ∣ θ(xA))]

det Df(x) = det (D ̂f (xB ∣ θ(xA))) θ(xA) is arbitrary! 
(e.g., MLP, CNN, etc.)



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flowsCoupling Flows

Coupling Network θ( 𝒩 )

Coupling 
Transform

Split

xA

xB ∼f(xB |θ(xA))

Concat.

f(x)
x

[Figure adapted from Jason Yu]

Permutation

or


Linear 
Transform

Can increase expressivity with other operations.
Source: M. Brubaker & Köthe



Coupling transforms

Adapted from M. Brubaker & Köthe

• Additive [“NICE”, Dinh et al 2014]

Lots of possible choices.

̂f(x ∣ t) = x + t

• Affine [“RealNVP”, Dinh et al 2016], where  is elementwise product⊙

̂f(x ∣ s, t) = x ⊙ exp(s) + t

(where  is a function that maps  to a vector the same size as ).t xA xB



pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

pZ(z) = U(0, 1)

Coupling flows (affine model)

Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) D ̂f (xB ∣ θ(xA))]

det Df(x) = D ̂f (xB ∣ θ(xA))

Jacobian:

Df(x) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) diag (exp(s1), . . . , exp(sK))]

log det(Df(x)) = [
I 0

∂
∂xA

̂f (xB ∣ θ(xA)) diag(s1, s2, . . . , sK)]

̂f(x ∣ s, t) = x ⊙ exp(s) + t

det(Df(x))) = exp (
K

∑
i=1

si)

Log determinant:



Handling images



Multi-Scale Flows

f1
f2

f3

[Dinh et al 2016]Adapted from M. Brubaker & Köthe

Multiscale flows

Normalizing flows force same dimension. But we can just stop using subsets of dimensions as we go!



Masked convolution

Source: [Dinh et al., “RealNVP”]

Mask features before convolution



Masked convolution

Source: [Dinh et al., “RealNVP”]

y = b ⊙ x + (1 − b) ⊙ (x ⊙ exp(s(b ⊙ x)) + t(b ⊙ x))



Masked convolution

Source: [Dinh et al., “RealNVP”]

y = b ⊙ x + (1 − b) ⊙ (x ⊙ exp(s(b ⊙ x)) + t(b ⊙ x))
binary mask



Masked convolution

Source: [Dinh et al., “RealNVP”]

y = b ⊙ x + (1 − b) ⊙ (x ⊙ exp(s(b ⊙ x)) + t(b ⊙ x))
convolutional nets



Generated images

Source: [Dinh et al., “RealNVP”]

Real Generated



Improved model [Kingma and Dhariwal, “GLOW”, NeurIPS 2018] Source: M. Brubaker & Köthe

Generated images



Normalizing flows vs. VAEs

• Normalizing flows give exact log likelihood, while VAEs 
allow you to approximately estimate a lower bound. 

• Architecture for VAE is much less constrained. 

• Normalizing flow layers must be invertible  

• Must also be efficient to compute determinant of 
Jacobian 

• VAEs typically reduce dimensionality in encoder, whereas 
normalizing flow must preserve input size throughout.



Next class: Generative adversarial networks


