Lecture 6: Normalizing flows

CS 5788: Introduction to Generative Models

Many slides from Brubaker & Kothe and figures from

Kobyzev, Prince, and Brubaker normalizing flow tutorial.

Today

e PS1 due next Tuesday

 Projectinfo outin late February

Recall: Variational autoencoders

" == = = -
. / “‘,‘:
""-
i ! ‘;;
== e |
S-—
z"" R
"m ey

Encoder Decoder

(r(x), Z(x)) X = D(z)

® Encoder net defines a distribution overz: g(z | xX) = (ﬂ(x), E(x)).

® Decoder net defines a distribution over x: p(x | z) = D(z).

Recall: training a VAE

logp(x) = log / p(X,2) dz
> [t x) logp(x | 2)dz — [ata] %) log 222 a
p(2)
= Ey(zx)logp(x | z)] — Dkrlq(z | x) || p(2))
Reconstruction loss: KL divergence loss:

g — ||X — 5\(2 (up to scale tactor)
R=1 ” Zp =Dy (qz | x) || /O, D)
Equivalent to log likelihood of #/(Xx,1): i.e.,

how likely is x under a Gaussian with mean Xx? Make z to match our desired source distribution.

Potential problems with VAEs

e Can't directly estimate log p,(X).

® |nstead, you are optimizing a lower bound.

® Requires you to capture all variation in low-dimensional z.

® Need separate encoder/decoder networks.

Recall: Variational autoencoders

Z ; N W X' E r - . e o5 -
— e
- o — g - - &=
e ——— P - e - - -
— et T —
e — — < -
T o o = a5 -
— e = ‘-_/_’ — e ay, = ---’-.’
— > - p—— =
—— e < - = =
- / 2 - - —
— — p— . -
- O e - — ’
~ -— =
L - -4 — — = -
~ ~ -). —
2 -
~ > - i -_— _ -
~ : 3 - ’ ’ il -
LS e o gl - e
A =N S
. V- A T . = C—
e =T y R ! e
- b 3 . -
N v a . .
s
: ~
e w = = =
—— - % -_—
— s T— - a2 e
e SRR N R ‘
» X dw
-— - > - -~ Nt ~
o e & e .- -
= e ~—~— D i v
= g = ‘:‘;-‘ = o
- [X o e o
- >. . > i - S
< S BRI Rl " e e
p ‘ ; : ¢ _' ,,..‘::-_‘__,".-\'- T"” 3 - : ‘v)* TS "‘.-'.Ar-,‘ i:u
rak R i FN S Sraliesas e ot S -g

Decoder
X = D(z)

Can we get rid of the encoder?

Invertible transformations

Irection

generative d

X = g(Z)

8

e g S e Y P A — ‘
e o R SR

A R R ’y ol S
Ry 4 .

X o { v v A h s 7 e L RE M.w L S -
% . : - s v : Al Y R o~ \ st 2 - o hes ‘w.;vf A, oy & 4
HI . i S %5 Vs : 1 b 3 Rk ..W»%U. : H..x. r 3
u‘ oo e e g5 o w1 3 <p Fcrﬁ\ﬂ.\v‘m > 2

Ty

AERA Bl)

s & ; ¢) o o
FEGETSEN ¢ e s U BateChs iAo,

Invertible transformations

normalizing direction

Change of variables formula

Volume correction

f X = g(Z), then px(x) = pz (g7 (%)) ‘det Dg‘l(X)‘

px(X) = py, (f(x)) |detDf(x)| for f£ ¢!

where Df is the Jacobian, i.e., the matrix of partial derivatives:

U

axl 8)62
Df =

%%

Oxl a.X2

We say that px is the pushforward of p, by g.

Example: change of variables tormula

X = g(Z), then px(X) = p; (¢7'(%)) |detDg™'(x)

I, O<z<l,
0, otherwise.

a
l
l
l
l
1
l
l
l
l

X = ﬁ where Z ~ U0, 1), i.e. Pz(2) = {

200 T P2
2x O0<x<1 N e

Px(x) = . -
0 otherwise

Z
o 1.00 -
go)

0.75 A

0.50 -

0.25 -

0.00

—0.2 0.0 0.2 0.4 0.6 0.8 1.0

1.2

Function composition

Inverse:

f=fofyo...ofy
f:X->Z

Composition of N functions:
g=8yo8N-1°-°& >
g:. 1 - X

Determinant:

N
det Df(x) = | [detDf(y,)
=1

wherey; =g;eg;_j°...8/(2)
=fiofro...[(X)

Composition of Flows

J=JaxJ3:/2-N

Source: M. Brubaker & Kothe

Building a deep generative model|

Normalizing flow model

‘) -) Lo ' BT Y S N T QST Y R 3 R AT e
PR L s R Y A DI A, g iy !
- * - 7, e A % %, A .: P (R B : a0
Jer SRS B ok é§ SR o T 2 R TV e
¥ ‘4 i : '_.. ﬁ : il'U '_h"'_"}f oA ‘-, .&“;" ‘?:‘;‘%..~-— -,
PR s A R R SR e TR KBTS P T
> e A I L e SR g S
o R Yf%’ E s ‘;;v (A
. @ Ty e d Sl - N RPA STE ap i Sl TR
5 % A 2 ,’ﬁf ?.? o '.:frg‘- ‘T’l’m"};‘ ‘_'g;c] e
R B LG B
< x “\“"« X 2 ; ; fg/ %) \,‘i%x‘;- ,' .._ 4 :.'-- TH ."..‘ .
: :9 A i } 2 ‘q‘ IO (e ek St 3%
2 » - 3] ! S Dl §i nated AT 3
gt e G SR
v R«“,?)v - P " { '\"’ i XY > Ve SR NS
ATREW e e e
X PR : : s 7 IR S Redal)
L
d - 2) 3 . i 25 Y
AR A é‘ o BT . AN 7 A%
; g ! 3 ‘
PYR NI e S oA S : W - 2

81 f) 83 84

N

2
v
'

*
J
+

R
(Xt "2y
AR

EN ° EN— o...0g(2)

Normalizing flow model

For estimating the density and learning:

< »

2 0%
L
A "l L

]
R
R

v ~
AT
. | Pl
s 7‘C ."("’t -
. ”".,'\}\4:_ & - :

[%

M
log pp(X) = Z log pz(f(x))) + log |det(Df(x;)) | where X is a training example.
=1

Exact likelihood estimation (unlike VAE, which uses lower bound).

What's the catch?

L et's look at the change-of-variables tormula again:

Px(X) = pz (27'(x) | det Dg™'(x)

Network architecture?

M
log py(X) =) log p,(f(x)) + log | det(Df(x,)) |
=1

The change-of-variables formula places constraints on network:
® Fach layer g; must be invertible
® Must be able to compute log det Df.

® | atent Z needs to be same dimension as X

® All of these must be efficient to compute!

Pointwise nonlinearities

gy
fiy) = [802) if gisinvertible, sois f

g(yy)

Pointwise nonlinearities

Jacobian:

gv) g 00 0
0 g0, 0 0
0 0 g0y O

g(Va) o0 0

N
detD = Hg)
i=1

fiy) = |80 D =

(Jacobian of f~!is similar, but using ffor simplicity)

| inear layers

Inverse? f~l(y) =A~!(y —b)
Ay) =Ay+b but A needs to be full rank.

Determinant? det Df(x) = detA

f:R"—> R"
...but expensive! O(N°)

Linear layers: special cases

Diagonal matrix:

g(y)=Dy+Db D = diag(a, b,c,...) =

OO O Q
o O T O

g R"—> R"
det(D)=aXbXcX...

computable in O(n) time.

o o O O

o O O

Linear layers: special cases

Triangular matrix:

a 0O 0 O

g(y)=Ly+Db b ¢ 00
L= d e [O

g R"—> R" g h 1]

® Determinant is product of diagonal.
e Invertible in O(n?) time.

Still, limited expressiveness...

Linear layers: permutation matrix

Permutation matrix:
What does this matrix do?

g(y) =Py+b O 100

P = det(P) = 1

1
0
0

o O O

0 0O
0 1
1 0

Can chain together with lower triangular matrix to
IMmprove expressiveness.

Other usetul special cases

Coupling tlows

XA

T = fct) gty

| Coupling Network 6 -) |
Split Concat.

F(xB|6(x*))

Source: M. Brubaker & Kothe [Figure adapted from Jason Yu]

Coupling tlows: inverse

ZA

f@P o)

—
v
. T Ty O I T I I R T S P T P A N U S e S
e - N - T - N N - N T - N - N T - ~ -
o> A i
B 4
~ S A
4
2
Y - ~
.
.
.
b4 P
j 1

@ =

| Coupling Network 6 -) |

Concat. Split

Inverse Coupling j ¢

ROy
TN
5 ol
y X §
p
~
R B
5 '_ v
/ g
g v
e s R
D ; "0
Ny v -V - N . ’ " g - . . - B iU
L | (S _ . N S { RS - '
> .
Ry
e /)
]

f(z8 1 0z*))

Source: M. Brubaker & Kothe [Figure adapted from Jason Yu]

Coupling tlows

J(X) = []?(XB ‘ Q(XA))} Df(x) = l

Coupling tlows

XA

/ 0
J(x) = []?(XB ‘ H(XA))

Dfx) = l 27 (xB] 0x") DJ(x®] o)

oxA

Coupling tlows

| 0
D) = L—;f (xB | ox*)) Df(xB H(XA))]
Useful property:

det Df(x) = ? A Of _
det [C D] = det(A) det(D)

Coupling tlows

7 0

DI =19 (x5 | ox)) Df(x* | 6xh)

oxA

o(x) is arbitrary!

det Df(x) = det (Df(XB ‘ H(XA))) (e.g., MLP, CNN, etc.)

Coupling tlows

X

J(X)

Permutation
or
Linear
Transform

X

| Coupling Network 0(-) |

Concat.

F(xB|6(x*))

Can increase expressivity with other operations.

Source: M. Brubaker & Kothe [Figure adapted from Jason Yu]

Coupling transtorms

Lots of possible choices.

e Additive ["NICE", Dinh et al 2014]

f(xlt)=x+t

(where tis a function that maps x* to a vector the same size as x?).

o Affine ["'RealNVP”, Dinh et al 2016], where © is elementwise product

f(x | s,t) = x @ exp(s) +t

Adapted from M. Brubaker & Kothe

Coupling tlows (affine model)

f(x | s,t) = x @ exp(s) +t

Jacobian: Log determinant:

I 0

K
det(Df(x))) = exp (Z Sl-)
i=1

I 0

Df(x) = [a%]? <XB | Q(XA)) diag (exp(sl) €XP(SK)>]

Handling images

Multiscale flows

Normalizing flows force same dimension. But we can just stop using subsets of dimensions as we go!

Adapted from M. Brubaker & Kothe [Dinh et al 2016]

Masked convolution

Mask features before convolution

Source: [Dinh et al., "RealNVP"]

Masked convolution

Source: [Dinh et al., “"RealNVP"]

Masked convolution

binary mask

y=b®X+(1—b)@(X@exp(s(bé)x))+t(b®x))

Source: [Dinh et al., "RealNVP"]

Masked convolution

convolutional nets

y=b®X+(1—b)@(X@exp(s(bé)x))+t(b®x))

Source: [Dinh et al., "RealNVP"]

Generated images

Generated

Source: [Dinh et al., “RealNVP”]

Generated images

Improved model [Kingma and Dhariwal, “GLOW”, NeurlPS 2018] Source: M. Brubaker & Kothe

Normalizing flows vs. VAEs

® Normalizing flows give exact log likelihood, while VAEs
allow you to approximately estimate a lower bound.

® Architecture for VAE is much less constrained.
® Normalizing flow layers must be invertible

® Must also be efficient to compute determinant of
Jacobian

® \/AEs typically reduce dimensionality in encoder, whereas
normalizing tlow must preserve input size throughout.

Next class: Generative adversarial networks

