|l ecture 5: Variational autoencoders

CS 5788: Introduction to Generative Models

Reminders

® PS1 due Feb. 10
® Make sure to enable GPU

® Questions?

Today

® Continue discussing Gaussian mixture models

® \/ariational autoencoders

Recall: Gaussian mixture model (GMM)

A usetful type of mixture model that mixes multiple Gaussian distributions.

0.25 -

K
Density function: py(x) = Z N (X; pys ;) A /\

0.20 -

i=1 -
0.15 A

0.10 -

where 7; is the probability of choosing mixture
component i, and /4 is the Gaussian pdf with o k

0.00

mixture-specific mean g and covariance . e

Recall: GMM as a latent variable model

® The variable zis the identity of the mixture component that

generated the example. We call it a latent variable because we
never directly observe it.

® | atent variables allow us to create more powerful generative
models.

® They allow us to capture complex dependencies between
variables.

o \We'll see many other types of latent variable models in this course.

Adapted from R. Grosse

Image denoising

- L:.“T, %45 ‘Aéﬁﬁy-":'?’?{."bé%‘; 3 _. ’.'-“'- AeBE Ly

L

e
1}5'%- ".

o
PG

Photo by Fredo Durand

Application: image denoising

Image noise NOISy Image

Goal: recover the original image

lmage denoising problem

pixels, etc.

q Image source: wikipedia

Denoising using a prior

By Bayes rule:

P (Xnoisy ‘ Xclean)p (Xclean)
P (Xnoisy)

P (Xclean ‘ Xnoisy) —

We're solving for X, which is equivalent to minimizing:

clean
L(Xclean) — = lOg P (Xnoisy | Xclean) - log P (Xclean)

What are good choices tor these two terms?

Denoising using a GMM image prior

LX)~ ||X=-X — AEPLL(X),

e Firstterm (the likelihood) equivalent to Gaussian centered on X

noisy | |

noisy:
® Since we don't have a full image prior, let's use the “expected log patch
ikelihood”: the average log likelihood our GMM assigns to each patch in

the image:

EPLL(X) = 1

How do we solve for X? Gradient descent!

Source: [Zoran & Weiss, 2012]

lmage denoising with a GMM

Input image Denoised image

Today

® Continue discussing Gaussian mixture models

e Variational autoencoders

lmage classification

—>| | — | Duck’

o classifier
image X label y

13

Adapted from Isola, Freeman, Torralba

Image synthesis

Duck’| = |=| |=| |=| |[=| |—

generator
label y image X

14

Adapted from Isola, Freeman, Torralba

Neural networks as distribution transformers

Source distribution Target distribution

p(x)

Source: Isola, Freeman, Torralba

Neural networks as distribution transformers

——.‘ ’
'4
'

Source: Isola, Freeman, Torralba

(Gaussian noise Synthesized
2~ N(D,1) mage

Neural networks as distribution transformers

(Gaussian noise Synthesized
2~ N(@,1) mage

Source: Isola, Freeman, Torralba

How can we learn this model?

Maximum likelihood learning:

N
argmax, Z log(pe(x;))
i=1

2
 J
.
 J
L 2
 J
.
 J
“
.

This integral is expensive to compute!

Fncoder-decoder models

Z = B —
— N -. "*H~ |

Encoder Decoder

Assign each image a vector z that can be decoded to
reconstruct the image.

20

#1: Autoencoder

compressed image code
(vector z)

QOOO000® OO
m
m<.......,
UL Joio1 I 1e

Reconstructed

Image

[e.g., Hinton & Salakhutdinov, Science 2000]

Adapted from Isola, Freeman, Torralba

Autoencoder

<
T
|

D
O
@
@
O
O
@
O

VOO0 00e OO
.QQ?.QQ
Q.?QQ

Reconstructed

| oss: 'mage

S 112
Lo = ||X = X]|

Adapted from Isola, Freeman, Torralba

& e x
- ¥,
£ i
A B
""‘",‘. N 3
[) s 3 ;
-t 3 - -
T iy L R
‘s, . S o 3
Dy W A e
> B - LR . 3)]
N i o 4 . g Y|
3 _-\ .
. ol N 3 © gt B
w P 3 B
o TP T ; A SR
“f,- - So . E p &gl
v \ . N i]
s oo . RS S
. ? 2 :
> 4 w3, - 1
vy f’ 4 ' YL
£y " "". ’ >:~ '»- .“.
5. AR : v \ X
AP SR A :
[. LR oy 1 %y <07 g Sy
, L -) - i e . W . 5
§ - /] v 2 ¥ & n ¢
7 3 - . ~ e A o ‘Yo > H
e LN I o _,.7!“ i o \
: Ror P o4 O IR S < e
VL > " 07h TR) D d
% < w. g RS ¢Sdke y EE D N . {

Image

’ “Coral”

Also hope that it learns a useful code that captures important things through compression.

Adapted from lIsola, Freeman, Torralba

Autoencoders as generative models”

What If we just plug In

Decoder
random Z vectors?

O@OOO

Sampled image

Autoencoders as generative models”

/

Decoder

<, \ Sampled image?

What If we just plug In
random Z vectors?

Sampled image?

by ' ¥
AR AT X 1 ...L‘_;
% ..M.,QM“UI G e R

BN R S 708 | R o S S e 3

Decoder | =>

O
O
O
O
O
//

).

lan

., Gaussi

9

icular source

e

(

1ON

Autoencoders as generative models”
tr |

No guarantee that the latent space z
dis

® (Coversthe space of examples.

® Follows a part
ibut

What if we force z to be from the source distribution?

Variational autoencoder

p—
—_—
—
o
—a
.

o —
- ——
’7 _—
e
—— ——— -
- e —
.~ =5 .
s"_
- =" A
- e -
< hei
1
'
_— e e
- i -
“ ek e

2~ N (). Z00) HH -

Encoder Decoder
(r(x), Z(x)) X = D(z)

® Encoder net defines a distribution overz: g(z | xX) = (ﬂ(x), E(x)).

.,
.

Gameat s .
N T .:.'5,7"":‘20.'; N —
e

> -

. SN -— .
> P ey A 3 TN W |
s ;.--—"'—_'_..‘42,, g e
M _ . fral>!
TR ek e L

/
/
p———
&
: - —~
= =
el
\ \ —
———
:_'_ ‘(

® Decoder net defines a distribution over x: p(x | z) = /V(}A(, I).

Encoder

(p(x), Z(x))

Variational autoencoder

z ~ N (p(x), X(x))

Reconstruction loss:

A 112
Lp= X — X||

Make z match source distribution

Decoder
X = D(z)

Why does this work?

Recall: maximum likelihood

N
argmax, Z log(pe(x;))
i=1

N
= argmaxy Zlog (/ Po (X, Z)dZ)
i=1 z

(we'll simplity notation a bit)

Fvidence lower bound

log/p(x, z) dz

the encoder, i.e., latent given image

“‘
.

log/q(z \ X) p(x.2) dz

q(z | x)

log p(x)

Fvidence lower bound

log p(x) log/p(x, z) dz Jensen’s inequality:

Since log is concave,

log/q(z | X) p(x,2) dz 1oglax + (1 - a)y) > alog(x) + (1 — a)log(y)
Q(Z ‘ X) tora € [0,1].

/ i(z | x) log P52 4,

q(z | x)

[V

log p(x)

[V

Fvidence lower bound
log/p(x, z) dz

log/q(z | X) 5((;" i)) dz

/ iz | x) log 252 4,

q(z | x)

by
~ '
N »
........
~ .
.......

Fvidence lower bound
log/p(x, z) dz
log/q(z | X) p(x.2) dz

q(z | x)

p(X,z)
/C](Z | x) log (2 | %) dz

/(J(Z | x) log px|2)pz)

q(z | x)

log p(x)

[V

/q(z ' x) logp(x | z)dz — /q(z %) log Q(;(|Z)X) 17

Fvidence lower bouna
log/p(x, z) dz
/q(z ' x) logp(x | z)dz — /q(z %) log q(z | x) 17

p(z)

log p(x)

[V

Ug(alx) log p(x | 2)] — Dkr(g(z | x) || p(2))

This is called the evidence lower bound (ELBO) or the variational lower bound.

The “variational” term comes from the fact that bounds like these were

optimized using variational calculus in other lines of work (whereas here,
we'll use gradient descent).

Fvidence lower bound

logp(x) = log / p(X,2) dz
> [t x) logp(x | 2)dz — [ata] %) log 222 a
p(2)
= Ey(zx)logp(x | z)] — Dkrlq(z | x) || p(2))
Reconstruction loss: KL divergence loss:

g — ||X — 5\(2 (up to scale tactor)
R=1 ” Zp =Dy (qz | x) || /O, D)
Equivalent to log likelihood of #/(Xx,1): i.e.,

how likely is x under a Gaussian with mean Xx? Make z to match our desired source distribution.

(when we negate this and minimize, rather than maximize)

A closer look

logp(x) = log/p(x, z) dz

> 4j’q(z\x) [lng(X ‘ Z)]

This term describes an autoencoder! It says:

] z ~ N (pu(x), Z(x)) B

B R H} ~~‘H‘ B

! | = 2. Sample z given x using the encoder, g(z | x)

Encoder Decoder

(r(x), Z(x)) % = D(z)

1. Choose a random example X from the dataset.

3. Decode X and compare it to X, which

corresponds to computing log p(x | z)

A closer look

> Dx1.(q(z | x) || p(2))

KL divergence. Assuming that p(z) is Gaussian:

zZ~N x), Z(x))]

i *H - e 1. How faris the latent space that our encoder

Encoder Decoder

(10, Z00) = D) 2. Analytical solution if p(z) is Gaussian (very
similar to PS11).

Re C a p : Prior dlstrlbutlon pe()

Z-Space

Encoder: q¢(2z|x) Decoder: pe(x|z)
A

.0
*
«*
.

X-space

Dataset: D

[Source: Kingma & Welling, 2019]

Pseudocode

loss = L _recons + L _kl

—
= O

—_
\V)

Perform an SGD update
loss.backward()

—
oy

1 for x in loader: X: minibatch of images

2 Encode/decode the image

3 (mu, sigma) = encoder.forward(x) # params
1+ z = sample_gaussian(mu, sigma) sample
5 x_recons = decoder.forward(z) recons
6

7 Compute losses

s L_recons = mean((x - x_recons)**2.) # co
o L_kl = KL_divergence_loss(mu, sigma) # co

for q(z | x)
from q(z | x)
truct 1nput 1image

pute logp(x | z)

pute DKL(Z || N(O,]))

Pseudocode

for x 1n loader:

Compute losses

© 00 N O Ot b= W N =

—
= O

p—t
\V,

—
W

loss.backward ()

X .

How do we backprop through this?

inibatch of images
Encode/decode the image

(mu, sigma) = encoder.forward(x)

z = sample_gaussian(
X_recons = decoder.forward(z)

u, sigma)

.. recons = mean((x - X _recons)*x2.) CO

L_k1 = KL_divergence_loss(mu, sigma) # co
loss = L_recons + L_kl

Perform an SGD update

S

recons

for q(z | x)

truct input image

pute logp(x | z)

pute DKL(Z || N(O,I))

Reparameterization trick

® Sampling process can be written as:

Z = g(€,X)

it we are given a sample e ~ A4(0,1).

® Forexample: Z; = O;€; T U;
for (o, u) output by the network,
assuming diagonal covariance for

network Z(X) — diag(dl, Oy, ...y Gd)
® \We can sample € in each SGD batch
and use it to compute g(€, X).

® Fasyto backprop through this.

z~ N (ﬂ(X) 2(x))
” A

® Can use other estimators (like
REINFORCE, which we will discuss

later), but they often have higher
variance.

© 00 J O Ot = W N =

O =
= O

p—
\V)

e e
NN O Ot R W

Reparameterization trick

for x 1n loader: # x: minibatch of i1mages
Encode/decode the image

(mu, sigma) = encoder.forward(x) # params for ¢(z | x)

epsilon = random_normal (len(mu))
z = mu + sigma * epsilon

x_recons = decoder.forward(z) # reconstruct input image

Compute losses
L_recons = mean((x - x_recons)**2.) # compute logp(x | z)

L_kl = KL_divergence_loss(mu, sigma) # compute Dg(z || N(0,1))
loss = L_recons + L_kl

Perform an SGD update
loss.backward ()

Original form

\f

~ qg(2z|x)

Reparameterized form

Backprop

- : Deterministic node

N
. : Random node

—— : Evaluation of t

=== : Differentiation of f

[Source: Kingma & Welling, 2019]

Generating faces with a VAE

Why is it blurry? Many X for each z.

[Source: K. Murphy, PML-AT book]

Weignhting the terms

4ﬂ
“q(z|x)

measures importance of KL

log p(x

z)

/

+ BDkL(q(z

x)

What happens when we change 7

p(z))

[Source: K. Murphy, PML-AT book]

Exploring the latent space

Encoder Decoder

(r(x), Z(x)) X = D(z)

Image Source: [White, 2016]

lmage resynthesis

Source: [White, 2016]

(a) Azimuth (rotation)

What does the latent code represent?

\ —

(b) emotion (smile)
(c) hair (fringe)

DQ’ ' i
* &

PELEREE

Manipulating one component of z.

Source: [Higgins et al., f-VAE, 2017]

Class-conditional VAE

- z~ N(p(x), 2(x))

y | y
Encoder Decoder

P(X), 2(X) X = D(z)

Adapted from R. Grosse

Sampling with fixed class 'y

PTIFITFTFTFITFTTFITFTTT
ST ITITIFTTITTYT
T ITIFTTTITTTY
ST I T TTTTTT
I T TTTTTTT

J J 1.... fy, " " e P Py iy
mmMmnpMmmMmmnm e
MMM MMM
MMM MmO o
MOMOMOMOMMOMMOMO M e o
GRS

3 T T T B B e B o B
NN NNNN
Y Oy Oy~
OOy N NN
Oy Oy Oy Oy NN NN N
A T A T A EaNaNale K.
A s N NaNaNaNaNa Es
R0 X2 X2 X2 Xa e Na Na Ko
N2 X2 Ba Ka K Xa Ka Ko
20 T2 s Ta Ta B N e

Slide source: R. Grosse

Sampling with fixed latent z

6)718)9)C

A
-

1213141516}718 ¢

, , __..T..H,
—_— _W *.,\
S EcEs

i ' ' 4 e

Be 00 B 00 Do Op N 00 0 oo
MOANASAESANC S
VOV OLCOVU\Y N9 9w
WoLubobyLunpwn
PTTEFEITTFINTITIT
MO MOMMN N 0o
NNNONY YN

VDAKROO0OVNNO0
TOELINANY—

11213)415

Slide source: R. Grosse

Architectures tor VAEs

Recall: encoder-decoder models

| L -
‘ —
¥ |
- . J |
- —y . 2y
"oyt -

, " 2
(5] ; L_ .
i u"'-*’)'r.t) . n
L

R ‘—"""‘?&:\
i

ICTTIR,

y
~—

-
/7

—_—
b
N

Decoder

— -y
i

B

Flattened z

Convolutions Deconvolutions

53 Source: Torralba, Freeman, Isola

Convolutional VAEs

N X N latents z ._ e

Decoder * B - a

Convolutions Deconvolutions

o4 Source: Torralba, Freeman, Isola

Vector-quantized VAE

® | ecarn a VAE with a discrete code.

® |n practice, often an N X N grid

® This is a useful low-dimensional representation tor other
generative models.

® |tis particularly useful for autoregressive models (which we'll
discuss in more depth later), since they usually work best with
discrete structures.

Vector quantization

€%, €k

Predict a real-valued vector, then
"snap” it to a nearest neighbor from
a codebook.

Codebook

E(x) |z —| Quantization = ey

Patch x

Quantize(F(x)) = e where k = argmin ||E(x) — e/,
J

Figure adapted from [van den Oord et al., “"VQ-VAE", 2017

Vector-quantized variational autoencoder (VQ-VAE)

Embedding
Space

e,

CNN

Encoder Decoder

Figure source: [van den Oord et al., "VQ-VAE", 2017]

Learning the VQ-VAE

Minimize the following (heuristically motivated) loss:
L(x,D(e)) = ||x — D(e)|[3 + [|sg[E(x)] - e|lz + Bl[sgle] — E(x)][3
where:

e ¢isthe quantized code for x
e E(x) and D(X) are the encoded and decoded images
e so[e]is “stop gradient” a.k.a. "detach”

VQ-VAE + autoregressive model for image generation

g™~
£

n
&

§
'
\.
|

Generated images (256 X 256)

Figure source: [van den Oord et al., “"VQ-VAE 2", 2017

Other architectures: hierarchical VAEs

h
Partition z into L groups: @Pgmﬂg

p(z) = [, p(zi|z<1)

EFncoders:
[—1
q(z<ilz) = [[;=1 9(zil®, 2<;)

[epouw umop-do} pareys

z variables arranged spatially and

multiscale (2x size each level)
Source: [Vahadt & Kautz, 2020]

Qualitative results

"‘
R
A 2
M

DAY

(d) CelebA HQ (¢ = 0.6) (e) FFHQ (t = 0.95)

Source: [Vahadt & Kautz, 2020]

Other architectures: recurrent net

Human Input

T

B &

00O

|

L

J

Reconstructions

O \] /@/\\) _'_\Q O),/ é o [© N\ | -
Q/& Lol Sl = S (s
g_'——f\/\ 4 ;ﬂ?— \ /\ ——— // —

74}"\%& s {// = J“ﬁ\?‘ e

RNN for sketch re-generation, predicting (x, y) points. Source: [Ha & Eck, “Sketch-RNN", 2018]

Next class: normalizing flows

