L ecture 4: Neural network review

CS 5788: Introduction to Generative Models

Today

e Neural net review
e MLPs, CNNs, and (very brietly) backprop
e \Won't discuss transformers (we'll save that tor later).

e You won't be tested on this, but you need it for
understanding and implementing deep generative models

‘Classic” recognition without neural nets

-dges

Texture

Colors

Feature extractors

Source: Isola, Torralba, Freeman

N/

Segments

Parts

\

Classifier

“clown fish”

Object recognition

| earned

“clown fish”

Source: Isola, Torralba, Freeman

Source: Isola, Torralba, Freeman

Neural net (for recognition)

Neural network

“clown fish”

Computation in a neural net

Input vector Qutput vector

Neuron
(a.k.a unit)

Adapted from: Isola, Torralba, Freeman 6

Computation in a neural net

Linear layer

Input Qutput
representation representation

Li
wij

elelelelelele
00000000

Source: Isola, Torralba, Freeman

Computation in a neural net

Linear layer

Input Qutput
representation representation
Li O

e weights
C /
Q
O Yj = szgflfz + b
O i
(O K bias
C

1C

Source: Isola, Torralba, Freeman 3

Computation in a neural net

Linear layer

Input Qutput
representation representation

/ weights

@
C —— A
O yj =X W; +b;
@
| C k bias
@
S) = {W,b)}
1 C k parameters of the model

Source: Isola, Torralba, Freeman 9

Computation in a neural net

Linear layer Full layer
Input Qutput
representation representation weights

C /
@
C y =Wx+Db
@

< @ k bias
@
g H={W,b}

1 C k parameters of the model

10

Computation in a neural net

Linear layer Full layer
Input Output
representation representation weights + bias

C /
@
@ Y — W x
@

X W -
: Can again simplify notation by
C appending a 1to X
@

1C

11

What’s the problem with this idea’”

Consider stacking multiple layers:

Can be expressed as
single linear layer

QO0OO0O0OOO

QOOO0OOO0O

OCOO0O0OO00OO

HWl- x = Wx

W, x W,W . x
Limited power.

12

INnput
representation

7..

Solution: simple nonlinearity

Qutput
representation

QO Q000
|

Source: Isola, Torralba, Freeman

O
y 9(y)
k Pointwise

1.0

0.8

Non-linearity

13

9(y)

|

1,

it y>0

otherwise

9(Y) .

0.2-

0.0

Computation in a neural net — nonlinearity

() = I, if y>0
Input Output I 0, otherwise
representation representation .
‘ 0.8
C
0.6
X 8x g(y) 0.4
O— W O
y 9(y)
@ b o —4 =2 0 2 4
1C 0 Y

Can’t use with gradient descent, —g = 0

14 y Source: Isola, Torralba, Freeman

Computation in a neural net — nonlinearity

Sigmoid
1
Input Output — (1) —
representation representation 9(y) (Y) 1+ e Y

‘ 1.0

(C 0.8-
A § ,W | O g(y) 0.4-

‘ y g(y) 0.2-

- b R R
1C v

15 Source: Isola, Torralba, Freeman

Computation in a neural net — nonlinearity

* Interpretation as firing rate of neuron
» Bounded between [0, 1]

 Saturation for large +/- iInputs

» Gradients go to zero

» Centered at 0.5. Better in practice to
use: tanh(y) = 2g(y) — 1

16

9(y)

Sigmoid
1
9y) =oly) = 1
Y

Source: Isola, Torralba, Freeman

Computation in a neural net — nonlinearity

» Unbounded output (Oﬂ positive Side) Rectified linear unit (ReLU)
» Efficient to implement: % — {O’ toy<t g9(y) = max(0, y)
y L it y=20

» Also seems to help convergence (6x
speedup vs. tanh in [Krizhevsky et al.

2012]) 3
g(y) -
» Drawback: if strongly in negative L
region, unit is dead forever (no gradient). N
—4 -2 O 2 4
» Default choice: widely used In current 3

models!

17 Source: Isola, Torralba, Freeman

Computation in a neural net — nonlinearity

| Leaky RelLU
» where a is small (e.g., 0.02) .
o(y) = {max((),y), if y>0
. , . 0g) —a, if y<O amin(0,y), if y <O
Efficient to Implement: 9y {17 £ >0)
» Has non-zero gradients everywhere (unlike 4
RGLU) 3-

18 Source: Isola, Torralba, Freeman

O
N\

) i

{ % .
Q)‘Zf ‘\\(\
S |

\A (c . 1)
— “clown fish

Source: Isola, Torralba, Freeman 19

20

How do we learn the parameters”

Yi
“clown fish”

X1

Loss

L earned

L(fo(x1),¥1)

Source: Isola, Torralba, Freeman

| earning parameters

21

—xample source: Roger Grosse

| earning parameters

Squared loss with single-variable network:

L = : (y — f(x))
=50 -/l — Y
|
[= E(y — G(WX + b))2
0L oL
Want: derivatives — , —
ow o0b

22

—xample source: Roger Grosse

23

| earning parameters

Writing out the layers explicitly: How do we do this”
Use the chain rule!
z=wx+b
—f(g(x)) - 4%
t = o0(2) 0g Ox
1
= (= 1)°
2 Y

—xample source: Roger Grosse

Computing derivatives with the chain rule

aL 0
6w ()w

oL 0

1 2
[(y — o(wx + b)) ab db

]
[(y — o(wx + b))?

0
— (y — o(wx + b))%(y (w4 b)) = (v = o(wx + b)) —~(y = o(wx + b))

= (y—owx+ b))o'(wx + b)ai(wx + b) =(y—o(wx+ b))o'(wx + b)a—ab(wx + D)
W

= (y—o(wx+ b))o'(wx + b)x = (y—o(wx+ b))o'(wx + b)

24 —xample source: Roger Grosse

|_earning parameters

Writing out the layers:

Z=wx+0b inear (affine) layer
t = 0(2) nonlinearity
|

J = — _t2 |0SS
2(y)

20

—Xample source:

Roger Grosse

|_earning parameters

Writing out the layers: Another way to write derivatives:

s =wx+b oL ey Fach step is easy to compute,
Ot and we can reuse computation.
t = o(z) oL OL ot OL @
—_— = —0(Z
1 oz Ot 07 Ot
2
L=Z0-1 oL OL OL OL

= ——X SN —
ow 07 ob 07

26 —xample source: Roger (Grosse

Computation graph: loss

Zi—» ti—»L

N

b Computation

EEE——

Adapted from: Roger Grosse

Computation graph: derivatives

Z<—t<—|L

b Computation

(rm—

28 Adapted from: Roger Grosse

BacKpropagation

Step #1: Compute loss and every value in computation graph.

Forward pass:

fori=0... N:

compute each node value v; using
E/ values from previous nodes

where N nodes v, vy, . .. V, are ordered topographically (i.e. inputs
always come before outputs).

29 Adapted from: Roger Grosse

Backpropagation

Step #2: Compute derivatives.

Backward pass:

4—.|L for1 =N-1..0:

P o,

J€Outputs(v;)

Starting from the loss, work your way to the inputs. Compute the
derivative of the loss w.r.t. each value.

Summary: compute derivatives efficiently using the chain rule.

30 Adapted from: Roger Grosse

Automatic differentiation

e Backpropagation: algorithm for computing derivatives

* An instance of reverse-mode automatic differentiation

o Usually implement backprop using autodifferentiation (“autodiff”) software
package.

e Build your program out of primitive operations, similar to numpy operations

e Benhind the scenes, the autodiff package builds the computation graph for youl!
e [t's not finite difference. Computes exact gradients using backprop!

Processing images with neural nets

EYIA ———

image X label y

32

Source: Isola, Torralba, Freemat

Processing images with neural nets
What should these be?

33

<~

— [

label y

Source: Isola, Torralba, Freeman

|[dea #1: Fully-connected network

<~ 00000

34

But X is really big!

\Say, 256 x 256 x 3 =197k

J

Can we use convolution in a neural network?

35 Source: Isola, Torralba, Freeman

Sparsely connected network

o OO Fach unitis c:onr.\ec:.ted to a
O O—O subset of the units in the
O OO .
O- O—O orevious layer.
X O W
O OO
O OO
O b O—O
y 9(y)

36 Source: Isola, Torralba, Freemat

Convolutional neural network

Conv layer
@ o¥e 4
S Tw Each ou’Fput unit is computea
O @O from an image patch.
@ @O
O O—0
O OO
O @O a.k.a. CNN or ConvNet
O O—0

37 Source: Isola, Torralba, Freemat

Conv layer

-

g

olele ?f?a
f

OO0
=00
=00
=00
=0—0O
=0
=0

O—0

y 9(

Weight sharing

Y)

38

We “share” weights for each
patch.

If a feature is usetul in one
position, it should be useful
in others, too.

Source: Isola, Torralba, Freemat

Multiple input channels

Conv layer

QNXC QNXl

g
oooooo\%

"
—_—
O
—
s
—
e
—"

39 Source: Isola, Torralba, Freemat

Multiple output channels

E.g.:
Conv layer n =
eOT >
00— W2
“% ‘2 QNXC(O) R %NXC(D
@O OX@,
OX OX _
OXT @O
OO O O

"
—_—
O
—

s
—
ek
—

40 Source: Isola, Torralba, Freemat

90000000
ool J9) 101 IO

VR
T
N—"’

Multiple input and output channels

Conv layer

Wc(l—l—l)

0000000 ®
O00000@O

(D)

41

QNXC(Z)

Source: Isola, Torralba, Freemat

lmage classification

Image X

-

\-

Problems with this idea:
1. No "global” processing,.

2. How do you get the tinal label?

42

— RelLU RelLU RelU ey, IIFiShII

label y

Source: Isola, Torralba, Freemat

Filter

00000000

N
Q

Pooling

Pool

Imax

5685506

N

@
N—"

43

2 00000000

Max pooling

<l — 1IllaX '
jeN(j)g(yJ)

Source: Isola, Torralba, Freemat

Filter

00000000

N
Q

Pooling

Pool

5685506

N

@
N—"

44

2 00000000

Max pooling
Zl — IMaXxX (g\Y;
JEN(J) (3)

Mean pooling

2k = Ifif\ > gy

JEN(5)

Blurring [Zhang 2019]

| I 2 1
z=conv(y, — |2 4 2])

1611 9 1

Adapted from: Isola, Torralba, Freeman

Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

Imax

45
Source: Isola, Torralba, Freemat

Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

same large response
regardless of exact
position of edge

46
Source: Isola, Torralba, Freemat

Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

however, it the
image is translated a
ot...

47
Source: Isola, Torralba, Freemat

Filter

00000000

Downsampling

Pool and downsample

5685506

N
Q
N\
@
N—"

2 00000000

Source: Isola, Torralba, Freemat

Filter

00000000

Py HO x W 5o

Downsampling

Downsample

O O
O
O O
O—0O

O
O—0
O—0O O
O
y 9(y) 2
s %H(l_l_l)XW(H_l)XC(H_l)

Source: Isola, Torralba, Freemat

Strided operations

Conv layer
Q
O W =0—0
O Stride 2
o @O
O
O =0
O
O

y 9(y)

50

Strided operations combine a
given operation (convolution or
pooling) and downsampling
into a single operation.

Strided convolution is an

alternative to pooling layers:
just do a strided convolution!

Source: Isola, Torralba, Freemat

Strided operations (2D)

stride

Xout

Source: Foundations of Computer Vision. Torralba, Isola, Freeman

Computation in a neural net

\::AII * 17
—"clown fish

Source: Isola, Torralba, Freemat

Computation in a neural net

~ /I . I
—"clown fish

Source: Isola, Torralba, Freemat

Receptive fields

54
Source: Isola, Torralba, Freemat

Receptive fields

Pool and 321 Fil Pool and

O downsample by 2 X1 iter downsample by 2

O

O

O

O O O

O O O

o O O O

® —@- O O

o —@— —— —@)- -4
' ?/’ —2 O
~ O 0

RF = RF*2 RF = RF + tloor(3/2)*2 RF = RF*2

O
O K kernel size K

[See also: http://fomoro.com/tools/receptive-fields/index.html] 55

scale factor

Source: Isola, Torralba, Freeman

http://fomoro.com/tools/receptive-fields/index.html

2016: ResNet

>100 conv. layers | ReSNet [He et a‘, 201 6]

Main developments

® |[ncreased depth possible

through residual blocks

weight layer
F (x) I relu .

weight layer

identity

SULUBBUUELU LS UUEULUULEEBUSLLVBEEELLEYY

SyLLYY

EI‘I‘Oi‘: 3.6% 56

Source: Isola, Torralba, Freeman

Residual Blocks

Problem: Hard to train very deep nets (50+ layers). This is an optimization issue, not
overtitting: shallow models often get higher training accuracy than deep ones!

|dea: Make it easy to represent for the network to implement the identity.

Normal convolution + relu: Residual connection

r;11 = relu(z; o f) r;11 = relu((x; o f) + x;)

More generally: do multiple convolutions (with nonlinearities) before summing:
r; 11 = relu(F(x;) + x;)

57

Residual Blocks

| Why do they work?
"y \
weight layer
F(x) jreld < ® Gradients can propagate faster
weight layer / identity (Via the |dent|ty mapp|ng)
F(x) +x

relu

® \Vithin each block, only small
residuals have to be learned

Source: Isola, Torralba, Freeman 58

Normalization layers

® Standardize activations by subtracting mean and dividing
by standard deviation (averaged over all spatial locations).

® This provides a constant “interface” tor later layers of the
networks. Ensures that the previous layer will have unit
variance and zero mean.

® Obtains invariance to mean and variance.

® Can allow you to train with larger learning rate and
signiticantly speed up training!

59

Normalization layers

N\

h h h,
Norm RelLU »Q
O
= /O O =
O
! O
il b=l

Source: Isola, Torralba, Freeman

Source: Isola, Torralba, Freeman

Normalization layers

RelLU

OO0O00OO0r

VH

Source: Isola, Torralba, Freeman

Normalization layers

RelLU

OO0O00OO0r

VH

62

Source: Isola, Torralba, Freeman

Normalization layers

RelLU

O@OO0F

VH

63

Network designs for generative models

Object recognition: what objects are in the image?

"Birds”

69

Source: Torralba, Freeman, Isol:

Predicting something at every pixel

(Colors represent categories)

General technique: predict something at every pixel!

Source: Torralba, Freeman, Isol:

ldea #1: Independently classity windows

Training data

X Y
oy e)
,
,

IIS kyll }
y

What's the object class of the center pixel?

D [

D[]

I\

) 5]

D 5]

Source: Torralba, Freeman, Isol:

|[dea #2: Fully convolutional networks

@\co
\
N
0
AQ
‘eCj
“&‘\
U

<<\ -.
— ~
- —

Classification problem with K classes

69

ldea #3: Encoder-decoder models

- ' -: * Decoder
W”i’l/ﬂlfilm

Convolutions Deconvolutions

/0 Source: Torralba, Freeman, Isola

Upsampling

1]1]2]2
1T 2 11122
3 | a4) 3/3/4/|4

3344

® Often using nearest-neighbor upsampling
® Can also use interpolation.
® Produces tewer “checkerboard” artitacts

/1

Transposed convolution

— +

14 | 10

17 | 12

N

W

w

=
oONO||O|w|=
®hOo||OBN
ololo||lo|lo|o
ololo||lo|lole
©|wo||o|w|=
o N
== I

® \Weight the filter by the image coefticient and sum.
® Also sometimes called “upconvolution” or “deconvolution”.

/2

Transposed convolution

1 1 1 2
2 3 3 4
/ F
Can lead to “checkerboard” artifacts. bonahue, et al,, 2016 (3]

[Odena et al. Distill article]

/3

https://distill.pub/2016/deconv-checkerboard/

EFncoder-decoder architectures

Skip connections

| L -
‘ —
¥ |
- . J |
— —y . 2y
"oyt -

| ™ ;.
(S] ' L_ :
) MTQ‘.() . -
-

'," \
l"” M
4 J ! i
"H .
Ml

T Ty

-
/7

Decoder

Convolutions Deconvolutions

/4 Source: Torralba, Freeman, Isol:

EFncoder-decoder architectures

Transposed convolution Early layers and late layers have
/ same shape. Concatenate channel-wise!

i

.................... >
T
...)
—

"Vanilla” encoder-decoder architecture U-Net

Figures from [Isola et al., “Image-to-Image Translation with Conditional Adversarial Networks”,

U-net

concat

r _> e o o _>

-~

= S
14 >
Ji‘ w 35
5 I
.“ 1 ! : ,"}" E
: g
. Y a — o
y Bty
»
1

T

WX H W H

U-net

concat
... >
g, concat
. g ~ [O N I i >
.a_-';“‘: !: _> e o o _>
’ "'iflt'iﬂl:*'l/ii?lfm'
wxH W « H 14 o H Wx H
4 4 4 4
W H W H
— X — — X —

Other uses for U-nets

Goal: recover the original image
Recall: denoising problem

/8

random noise

Denoising

/9

Next class: variational autoencoders

