|l ecture 3: Gaussian mixture models

CS 5788: Introduction to Generative Models




Reminders

® PS1 out (due Feb. 10)
® Office hours start this week
® Due to travel, Thursday'’s lecture will be a recording.

® |t is a neural net review, for those who would like
to catch up.

® CNNs, MLPs, Backprop (not covered: transtormers
and attention).



Recall: Multivariate Gaussian

Probability density function (pdf):

I
27k det(X)

I Ty —1
Po(x) = eXp _E(X —p) X (X —p)

Parameters @: mean u, covariance matrix ..

Multivariate Normal Distribution
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Figure source: Wikipedia



Recall: maximum likelihood estimation (MLE)

Goal: Find best parameters 6.

How do we quantify this? One option is maximum likelihood estimation.

Suppose we have a sample of points x;, x,, . . ., x5 from the distribution. We can fina

6 by maximizing their likelihood under the model:

Assuming data is iid (independent ana

N
argmaxg Hpé’(xi) identically distributed).

N
= argmaxgy Z log(py(x))
=1 Al

Equivalent to minimizing the negative log likelihood: NLL(0) = — Z log(py(x)))
i=1



Recall: Fitting a multivariable Gaussian to image patches

Training image patches (16 X 16) Samples from Gaussian

el AN | | |
RAde ™ DENER

Flatten each patch to get a 256- (not so great!)
dimensional vector.




How can we improve this?



P(X)

Gaussian mixture model
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Gaussian mixture model

Mixing distributions:
(more generally)

— T X + 7, X

/\ +7T3 X

-

K
Po(X) = Z n.q,(X;0) for non-negative weights Z =1
=1 l.



Gaussian mixture model (GMM)

A usetful type of mixture model that mixes multiple Gaussian distributions.

0.25 -

© ;
Density function: py(x) = Z N (X; pys ;) A /\

0.20 -

l=1 M2
0.15 -

0.10 -

where 7; is the probability of choosing mixture

0.05 A

component i, and / is the Gaussian pdf with

0.00

mixture-specific mean g and covariance . e e



Sampling from a GMM

)\ A )\

® Step #1: select mixture component:

z ~ Categorical(z, m,, ..., 7g)

e, pz=1)=n, pz=2)=mn,, ..., p(2=K) = mp



Sampling from a GMM

J\

® Step #1: select mixture component:

z ~ Categorical(z, m,, ..., 7g)

® Step #2: sample from the chosen component
X~ N, =)



GMM as a latent variable model

® The variable zis the identity of the mixture component that

generated the example. We call it a latent variable because we
never directly observe it.

® | atent variables allow us to create more powerful generative
models.

® They allow us to capture complex dependencies between
variables.

o \We'll see many other types of latent variable models in this course.

Adapted from R. Grosse



How do we learn a GMM?



How do we learn a GMM?

® \We already know how to fit the parameters for a Gaussian.
Can we take advantage of that?
® |dea #1: let's use an alternating optimization (similar to k-

means).
do we want to make a hard assignment?

'

® Assign each point X; to a component z..

Loop:

® Fit parameters (y,, ;) using all examples assigned to

component k.



How do we learn a GMM?

® |dea #2: a more principled alternating optimization that
uses “soft” assignments.

Loop:
® For each point X, compute p(z; = k | X,).
® Fit parameters (U, ;) using all examples “softly

assigned” to component k using py(z; = k | X,)

Let's make this idea more precise.



L earning a GMM

® Consider the responsibility ot component k for example x.
7V (X5 B> 24¢)

ik = Po(g = K| X)) = —%

® | et's perform maximum likelihood estimation:

N
argmax, Z log(py(x;))

i=1
using these responsibilities as “soft assignments”.



L earning a GMM

Jensen’s inequality

K
log(pe(x;)) = log Z TV (X5 o 24 for concave functions:

k=1
N (X1, 2
log Z Tl ( lrl’lk k) log 2 WiCy. > Z Wi, log Cls
. ik

when Zwk = 1.

Hard to work with, since log is on outside of sum.



Jensen’s inequality for convex functions

(1 —=A)f(xo)
+ Af(z1)

f((l — )\)330
+ )\CEl)

Source: R. Grosse



| earning a GMM

0g(py(x;)) = log Z eV (X5 B> 24¢) Jensen'’s inequality:
k=1
Wk\{ /Ck lOg Z W,.Cp, > Z Wy lOg i,
lOg; kﬂk% when 2 we = 1.
> z r;. log ﬂkw
k=1 Fik

Works for any non-negative r; vector that sums up to 1!

But it can be shown that equality holds when r;, are the responsibilities p(z; = k | x,)!



x ). (z)%,) Learning a GMM
\ . This is called an

N (X;; 4y, 2,) evidence lower bound
log(pg(xi)) > L(r,0) = 2 Fik log Tk (we'll discuss this more
Fik .
k=1 in a future class)
How do we maximize L(r, 0) w.r.t. 67

— Basically just MLE estimation for Gaussian (but with some extra weights r;,).

— This gives us a new set of parameters 6’

How do we maximize L(r, ) w.r.t. r?
— Set r to be the responsibilities!



| earning a GMM

K K
N (X, 2 Z=kX;
log(py(x)) > L(r,0) = ) rylogm, (it 20 _ Y rylog P )
k=1 ik k=1 ik
How do we maximize L(r, 0) w.r.t. r?
K 7z =k, X, Z, X
L(r,0) = 2 po(Z =k | X;)log Pd ) using py(z | X) = PZ.X)
5 Pz = k | x) Pe(X)
= ) pyz = k| x)logp,(x) =logpyx)
k=1

This makes the bound tight. Setting to be the responsibilities maximizes L.



The EM algorithm tor GMMs

Goal: solve for the model parameters 6
Loop:

® Compute the responsibilities r') = Pon(Z =k | X)) E step]

e Solve 8D = argmax, L(r?", ) M step]

® Fach step increases (or doesn't decrease) the bound L.
® Thisis an example of the Expectation Maximization (EM) algorithm.

® E step: compute expected latent assignments.
® M step: maximize log likelihood using those latent assignments.

® \We won't discuss the fully general version in this class, but it is a very useful idea for
fitting probabilistic models.



| earning a GMM by gradient descent

® One alternative approach (closer to what we'll do in the rest of the
class) is to learn the GMM'’s parameters by gradient descent.

N

N
o /Nstead of maximizing Z log py(Xx:), minimize J(0) = Z — log py(X,).
i=1 i=1



Review: stochastic gradient descent



Recall: Learning parameters using gradient descent

AUt = 90 _ VvV J(0)

f* = arg min .J(6)
v

Source: Isola, Torralba, Freeman



Batch gradient descent

|l oss function: 'ts gradient is the sum of

gradients for eac:h example:

J(O) =— ) L(x,0) VJ(O) = Z V L(x, 0)

Problem: requires iterating over every training example each gradient step!

Can we speed this up?

26



Stochastic gradient descent

This is just an average'
VJ(0) = Z V L(x;, 6)

We know from statistics that we can estimate the average of a
full ”popu\ation” from a sample.

VJ(O VL
) ~ ‘Bllezg (x;,

where B is a minibatch: a random subset of examples.

This is called stochastic gradient descent (SGD).

27



Stochastic gradient descent

0

Batch gradient descent Stochastic gradient descent

)8 Source: R. Grosse



Learning rate

® Sensitive to the learning rate:  ¢'*t! = ¢* — ), V,J(6)

D)

'\

Small learning rate Large learning rate

29 Figure source: R. Grosse



Dealing with oscillations

Starting Point

Optimum

Solution

Source: https://distill.pub/201 7/momentum



https://distill.pub/2017/momentum

Momentum

® Also known as the "heavy ball momentum”

9
Tow
WED Wk L (kD)

VD gy(R) (W)

® Remember previous gradients and “build up speed”, setting
0<p<l

® Reduces oscillations in high curvature regions, and picks up speed in
when the loss surtace is nearly flat.



Dealing with oscillations (ho momentum)

Starting Point

Optimum

Solution

Source: https://distill.pub/201 7/momentum



https://distill.pub/2017/momentum

Dealing with oscillations (with momentum)

Starting Point

Optimum

O

Solution

B =0.99

Source: https://distill.pub/201 7/momentum



https://distill.pub/2017/momentum

| earning multivariate Gaussian using SGD

1 mu = randn(d)

> A = randn((d, d)) # Matrix representing the covariance
3

1+ for x 1n loader: X: single example

5 Create covariance matrix

s cov=A.T @ A

7 Add regularization

s cov = cov + eps * eye(d)

o log_Z = -0.5 % (d * log(2 * np.pi) + log(det(cov)))
10 mahalanobis_distance = (x - mu).T @ inv(cov) @ (x - mu)
11

12 Compute the NLL

13 loss = -(log_Z + -0.5 * mahalanobis_distance)

p—t
N

—
o)

Perform an SGD update
16 loss.backward()

34



Implementation notes for SGD with GMMs

® Represent covariance matrix X = AA ' to ensure it's
positive semidefinite.
® Reqularize the covariance matrix by adding a small value
to its diagonal: X' = X + ¢l
® This avoids numerical issues and degeneracies, e.qg.,
det(2) approaches O

® Represent the mixture weight logits w. Take a softmax to
exp(w;)

Z;il exp(w))

ensure that they sum to one: x; =



Case study: GMMs tor image patches

Based on paper by Zoran & Weiss, 2012.



Match the patches to the model:
1. Gaussian

2. Real patches
3. GMM

Source: [Zoran & Weiss, 2012]



What does this model learn?



Visualization tool: eigenvectors

For a zero-mean scalar Gaussian, you can sample points:
X = o0z, wherez ~ N0, 1)

Analogously, for a zero-mean multivariate Gaussian:

X = VD%Z, where z ~ A0, I)
and 2 = VDV ' is the eigendecomposition.

® Eigenvectors capture structure of image patches.
® The eigenvectors with high eigenvalues dominate the appearance
of the image patches.



Figenvectors for 2-component GMM
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Figenvectors for 2-component GMM

Discrete cosine transform

Eigenvectors for X (similar to Fourier transtorm)
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Used in JPEG compression

Source: Wikipedia



Eigenvectors tfor component k

Samples from component k

Source: [Zoran & Weiss, 2012]
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Dead leat image generation model
Ft? IIII| )|[::]
O
I

Source: [Zoran & Weiss, 2012]
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Scaling up GMMs to full images

Source: [Richardson & Weiss, 2018]



Scaling up GMMs to full images
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Learned mixture components
Source: [Richardson & Weiss, 2018]




Image denoising
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Photo by Fredo Durand



Application: image denoising

Image noise NOISy Image

Goal: recover the original image

51



lmage denoising problem

pixels, etc.

£5 Image source: wikipedia



Denoising using a prior

P (Xnoisy ‘ Xclean)p (Xclecm)
P (Xnoisy)

PX ctean | Xnoisy) = by Bayes rule

We're solving for X which is equivalent to minimizing:

clean’
L(Xclean) — = lOg P (Xnoisy | Xclean) - log P (Xclean)

What are good choices tor these two terms?



Denoising using a GMM image prior

LX)~ ||X=-X — AEPLL(X),

e Firstterm (the likelihood) is equivalent to Gaussian centered on X

noisy | |

noisy:
® Since we don't have a full image prior, let’s use the "expected log patch
ikelihood”: the average log likelihood our GMM assigns to each patch in

the image:

EPLL(X) = 1

How do we solve for X? Gradient descent!

Source: [Zoran & Weiss, 2012]



lmage denoising with a GMM

Input image Denoised image



Next class: recorded neural net review



