
CS 5788: Introduction to Generative Models

Lecture 3: Gaussian mixture models

Reminders
• PS1 out (due Feb. 10)
• Office hours start this week
• Due to travel, Thursday’s lecture will be a recording.

• It is a neural net review, for those who would like
to catch up.

• CNNs, MLPs, Backprop (not covered: transformers
and attention).

Recall: Multivariate Gaussian

pθ(x) =
1

(2π)k det(Σ)
exp (−

1
2

(x − μ)⊤Σ−1(x − μ))
Parameters : mean , covariance matrix .θ μ Σ

Probability density function (pdf):

Figure source: Wikipedia

Recall: maximum likelihood estimation (MLE)

Goal: Find best parameters .

How do we quantify this? One option is maximum likelihood estimation.

Suppose we have a sample of points from the distribution. We can find
 by maximizing their likelihood under the model:

θ

x1, x2, . . . , xN
θ

argmaxθ

N

∏
i=1

pθ(xi)

= argmaxθ

N

∑
i=1

log(pθ(xi))

Assuming data is iid (independent and
identically distributed).

NLL(θ) = −
N

∑
i=1

log(pθ(xi))Equivalent to minimizing the negative log likelihood:

Training image patches ()16 × 16

x ∈ ℝ256

Flatten each patch to get a 256-
dimensional vector.

Samples from Gaussian

Recall: Fitting a multivariable Gaussian to image patches

𝒩(μ, Σ)

(not so great!)

How can we improve this?

Gaussian mixture model

Gaussian mixture model

= π1 × +π2 × +π3 ×

Mixing distributions:
(more generally)

pθ(x) =
K

∑
i=1

πiqi(x; θ) for non-negative weights ∑
i

πi = 1

Gaussian mixture model (GMM)

Density function: pθ(x) =
K

∑
i=1

πi𝒩(x; μi, Σi)

where is the probability of choosing mixture
component , and is the Gaussian pdf with
mixture-specific mean and covariance .

πi
i 𝒩

μ Σ

A useful type of mixture model that mixes multiple Gaussian distributions.

Sampling from a GMM

i.e., , , …, p(z = 1) = π1 p(z = 2) = π2 p(z = K) = πK

• Step #1: select mixture component:
 z ∼ Categorical(π1, π2, …, πK)

Sampling from a GMM

• Step #1: select mixture component:
 z ∼ Categorical(π1, π2, …, πK)

• Step #2: sample from the chosen component
 x ∼ 𝒩(μz, Σz)

GMM as a latent variable model

• The variable is the identity of the mixture component that
generated the example. We call it a latent variable because we
never directly observe it.

• Latent variables allow us to create more powerful generative
models.

• They allow us to capture complex dependencies between
variables.

• We’ll see many other types of latent variable models in this course.

z

Adapted from R. Grosse

How do we learn a GMM?

• We already know how to fit the parameters for a Gaussian.
Can we take advantage of that?

• Idea #1: let’s use an alternating optimization (similar to k-
means).

How do we learn a GMM?

do we want to make a hard assignment?

• Assign each point to a component .
• Fit parameters using all examples assigned to

component .

xi zi
(μk, Σk)

k

Loop:

• Idea #2: a more principled alternating optimization that
uses “soft” assignments.

How do we learn a GMM?

Loop:
• For each point , compute .
• Fit parameters using all examples “softly

assigned” to component using

xi p(zi = k ∣ xi)
(μk, Σk)

k pθ(zi = k ∣ xi)

Let’s make this idea more precise.

• Consider the responsibility of component for example

• Let’s perform maximum likelihood estimation:

 using these responsibilities as “soft assignments”.

k xi

rik = pθ(zi = k ∣ xi) =
πk𝒩(xi; μk, Σk)

∑K
j=1 πj𝒩(xi; μj, Σj)

argmaxθ

N

∑
i=1

log(pθ(xi))

Learning a GMM

log(pθ(xi)) = log
K

∑
k=1

πk𝒩(xi; μk, Σk)

= log
K

∑
k=1

rikπk
𝒩(xi; μk, Σk)

rik

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

log
K

∑
k=1

wkck ≥
K

∑
k=1

wk log ck,

Jensen’s inequality
for concave functions:

when .
K

∑
k=1

wk = 1

Learning a GMM

Hard to work with, since is on outside of sum.log

Jensen’s inequality for convex functions

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

Source: R. Grosse

Learning a GMM

log(pθ(xi)) = log
K

∑
k=1

πk𝒩(xi; μk, Σk)

= log
K

∑
k=1

rikπk
𝒩(xi; μk, Σk)

rik

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

≥
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik

log
K

∑
k=1

wkck ≥
K

∑
k=1

wk log ck,

Jensen’s inequality:

when .
K

∑
k=1

wk = 1

ckwk

Works for any non-negative vector that sums up to 1!
But it can be shown that equality holds when are the responsibilities !

rik
rik p(zi = k ∣ xi)

Learning a GMM

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

log(pθ(xi)) ≥ L(r, θ) =
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik

(π, {μi}K
i=1, {Σi}K

i=1)

How do we maximize w.r.t. ? L(r, θ) θ

 Basically just MLE estimation for Gaussian (but with some extra weights).→ rik

 This gives us a new set of parameters → θ′￼

This is called an
evidence lower bound
(we’ll discuss this more
in a future class)

 Set to be the responsibilities! → r
How do we maximize w.r.t. ? L(r, θ) r

Learning a GMM

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

log(pθ(xi)) ≥ L(r, θ) =
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik
=

K

∑
k=1

rik log
pθ(z = k, xi)

rik

log(pθ(xi)) ≥ L(r, θ) =
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik

If we set , thenrik = pθ(z = k ∣ xi)

L(r, θ) =
K

∑
k=1

pθ(z = k ∣ xi)log
pθ(z = k, xi)
pθ(z = k ∣ xi)

=
K

∑
k=1

pθ(z = k ∣ xi)log pθ(xi) = log pθ(xi)

This makes the bound tight. Setting to be the responsibilities maximizes .L

How do we maximize w.r.t. ? L(r, θ) r

using pθ(z ∣ x) =
pθ(z, x)
pθ(x)

The EM algorithm for GMMs

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

log(pθ(xi)) ≥ L(r, θ) =
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik

• Compute the responsibilities
• Solve

r(t) = pθ(t)(z = k ∣ xi)
θ(t+1) = argmaxθ L(r(t), θ)

Loop:

Goal: solve for the model parameters θ

 [E step]
 [M step]

• This is an example of the Expectation Maximization (EM) algorithm.
• E step: compute expected latent assignments.
• M step: maximize log likelihood using those latent assignments.
• We won’t discuss the fully general version in this class, but it is a very useful idea for

fitting probabilistic models.

• Each step increases (or doesn’t decrease) the bound .L

Learning a GMM by gradient descent

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

• One alternative approach (closer to what we’ll do in the rest of the
class) is to learn the GMM’s parameters by gradient descent.

• Instead of maximizing , minimize .
N

∑
i=1

log pθ(xi) J(θ) =
N

∑
i=1

− log pθ(xi)

Review: stochastic gradient descent

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

2
1

0
-1

x
-2

Peaks

-3-3

-2
y

-1

0

1

2

Recall: Learning parameters using gradient descent

✓1
<latexit sha1_base64="dRSr4rXm+n73Ts3IpBaIU3XH5Gg=">AAACh3icfVHbbhMxEHWWS9twa+GRlxUREkIorBGifSyXB14QRSJppHgVzTqzG6u+rOxZIFrtT/AKP8bf4E2DRFvESJaOz5zxzPEUtVaBsuzXILl2/cbNnd294a3bd+7e2z+4Pw2u8RIn0mnnZwUE1MrihBRpnNUewRQaT4uzt33+9Av6oJz9TOsacwOVVaWSQJGaCVohwYIv9kfZONtEehXwLRixbZwsDgZKLJ1sDFqSGkKY86ymvAVPSmrshqIJWIM8gwrnEVowGPJ2M3CXPo7MMi2dj8dSumH/rmjBhLA2RVQaoFW4nOvJf+XmDZVHeats3RBaed6obHRKLu3dp0vlUZJeRwDSqzhrKlfgQVL8o+GFNkVhusi8w2jP44fY6mONHsj5p60AXxn41kW7lXjWo/8Jlf0jjCg+afGrdMaAXbbCOm+6Oc9bobEkoafoacSFV9WKhO9v3TAuh19exVUwfTHm2Zh/ejk6frNd0y57yB6xJ4yzQ3bM3rMTNmGSafad/WA/k73kefIqOTqXJoNtzQN2IZLXvwEsI8cl</latexit><latexit sha1_base64="dRSr4rXm+n73Ts3IpBaIU3XH5Gg=">AAACh3icfVHbbhMxEHWWS9twa+GRlxUREkIorBGifSyXB14QRSJppHgVzTqzG6u+rOxZIFrtT/AKP8bf4E2DRFvESJaOz5zxzPEUtVaBsuzXILl2/cbNnd294a3bd+7e2z+4Pw2u8RIn0mnnZwUE1MrihBRpnNUewRQaT4uzt33+9Av6oJz9TOsacwOVVaWSQJGaCVohwYIv9kfZONtEehXwLRixbZwsDgZKLJ1sDFqSGkKY86ymvAVPSmrshqIJWIM8gwrnEVowGPJ2M3CXPo7MMi2dj8dSumH/rmjBhLA2RVQaoFW4nOvJf+XmDZVHeats3RBaed6obHRKLu3dp0vlUZJeRwDSqzhrKlfgQVL8o+GFNkVhusi8w2jP44fY6mONHsj5p60AXxn41kW7lXjWo/8Jlf0jjCg+afGrdMaAXbbCOm+6Oc9bobEkoafoacSFV9WKhO9v3TAuh19exVUwfTHm2Zh/ejk6frNd0y57yB6xJ4yzQ3bM3rMTNmGSafad/WA/k73kefIqOTqXJoNtzQN2IZLXvwEsI8cl</latexit><latexit sha1_base64="dRSr4rXm+n73Ts3IpBaIU3XH5Gg=">AAACh3icfVHbbhMxEHWWS9twa+GRlxUREkIorBGifSyXB14QRSJppHgVzTqzG6u+rOxZIFrtT/AKP8bf4E2DRFvESJaOz5zxzPEUtVaBsuzXILl2/cbNnd294a3bd+7e2z+4Pw2u8RIn0mnnZwUE1MrihBRpnNUewRQaT4uzt33+9Av6oJz9TOsacwOVVaWSQJGaCVohwYIv9kfZONtEehXwLRixbZwsDgZKLJ1sDFqSGkKY86ymvAVPSmrshqIJWIM8gwrnEVowGPJ2M3CXPo7MMi2dj8dSumH/rmjBhLA2RVQaoFW4nOvJf+XmDZVHeats3RBaed6obHRKLu3dp0vlUZJeRwDSqzhrKlfgQVL8o+GFNkVhusi8w2jP44fY6mONHsj5p60AXxn41kW7lXjWo/8Jlf0jjCg+afGrdMaAXbbCOm+6Oc9bobEkoafoacSFV9WKhO9v3TAuh19exVUwfTHm2Zh/ejk6frNd0y57yB6xJ4yzQ3bM3rMTNmGSafad/WA/k73kefIqOTqXJoNtzQN2IZLXvwEsI8cl</latexit><latexit sha1_base64="dRSr4rXm+n73Ts3IpBaIU3XH5Gg=">AAACh3icfVHbbhMxEHWWS9twa+GRlxUREkIorBGifSyXB14QRSJppHgVzTqzG6u+rOxZIFrtT/AKP8bf4E2DRFvESJaOz5zxzPEUtVaBsuzXILl2/cbNnd294a3bd+7e2z+4Pw2u8RIn0mnnZwUE1MrihBRpnNUewRQaT4uzt33+9Av6oJz9TOsacwOVVaWSQJGaCVohwYIv9kfZONtEehXwLRixbZwsDgZKLJ1sDFqSGkKY86ymvAVPSmrshqIJWIM8gwrnEVowGPJ2M3CXPo7MMi2dj8dSumH/rmjBhLA2RVQaoFW4nOvJf+XmDZVHeats3RBaed6obHRKLu3dp0vlUZJeRwDSqzhrKlfgQVL8o+GFNkVhusi8w2jP44fY6mONHsj5p60AXxn41kW7lXjWo/8Jlf0jjCg+afGrdMaAXbbCOm+6Oc9bobEkoafoacSFV9WKhO9v3TAuh19exVUwfTHm2Zh/ejk6frNd0y57yB6xJ4yzQ3bM3rMTNmGSafad/WA/k73kefIqOTqXJoNtzQN2IZLXvwEsI8cl</latexit> ✓2

<latexit sha1_base64="NpiJT5/KEODczN77QRTuqpv3m44=">AAACh3icfVFNb9NAEN2YFtpQaAvHXqxGSFWFgl0h6LF8HLhUFImkkbJWNN6MnVX3w9odA5HlP8EV/hj/hnUaJNoiRlrp7Zs3O/N28kpJT0nyqxfd29i8/2Bru/9w59Hj3b39J2NvaydwJKyybpKDRyUNjkiSwknlEHSu8DK/etflL7+g89Kaz7SsMNNQGllIARSoCacFEsxOZnuDZJisIr4L0jUYsHVczPZ7ks+tqDUaEgq8n6ZJRVkDjqRQ2PZ57bECcQUlTgM0oNFnzWrgNn4WmHlcWBeOoXjF/l3RgPZ+qfOg1EALfzvXkf/KTWsqTrNGmqomNOK6UVGrmGzcuY/n0qEgtQwAhJNh1lgswIGg8Ef9G23yXLeBeY/BnsPz0OpjhQ7IuuOGgys1fGuD3ZI/79D/hNL8EQYUnjT4VVitwcwbbqzT7TTNGq6wIK7G6GiQcifLBXHX3dp+WE56exV3wfhkmCbD9NPLwdnb9Zq22AE7ZEcsZa/ZGfvALtiICabYd/aD/Yy2oxfRq+j0Whr11jVP2Y2I3vwGLj/HJg==</latexit><latexit sha1_base64="NpiJT5/KEODczN77QRTuqpv3m44=">AAACh3icfVFNb9NAEN2YFtpQaAvHXqxGSFWFgl0h6LF8HLhUFImkkbJWNN6MnVX3w9odA5HlP8EV/hj/hnUaJNoiRlrp7Zs3O/N28kpJT0nyqxfd29i8/2Bru/9w59Hj3b39J2NvaydwJKyybpKDRyUNjkiSwknlEHSu8DK/etflL7+g89Kaz7SsMNNQGllIARSoCacFEsxOZnuDZJisIr4L0jUYsHVczPZ7ks+tqDUaEgq8n6ZJRVkDjqRQ2PZ57bECcQUlTgM0oNFnzWrgNn4WmHlcWBeOoXjF/l3RgPZ+qfOg1EALfzvXkf/KTWsqTrNGmqomNOK6UVGrmGzcuY/n0qEgtQwAhJNh1lgswIGg8Ef9G23yXLeBeY/BnsPz0OpjhQ7IuuOGgys1fGuD3ZI/79D/hNL8EQYUnjT4VVitwcwbbqzT7TTNGq6wIK7G6GiQcifLBXHX3dp+WE56exV3wfhkmCbD9NPLwdnb9Zq22AE7ZEcsZa/ZGfvALtiICabYd/aD/Yy2oxfRq+j0Whr11jVP2Y2I3vwGLj/HJg==</latexit><latexit sha1_base64="NpiJT5/KEODczN77QRTuqpv3m44=">AAACh3icfVFNb9NAEN2YFtpQaAvHXqxGSFWFgl0h6LF8HLhUFImkkbJWNN6MnVX3w9odA5HlP8EV/hj/hnUaJNoiRlrp7Zs3O/N28kpJT0nyqxfd29i8/2Bru/9w59Hj3b39J2NvaydwJKyybpKDRyUNjkiSwknlEHSu8DK/etflL7+g89Kaz7SsMNNQGllIARSoCacFEsxOZnuDZJisIr4L0jUYsHVczPZ7ks+tqDUaEgq8n6ZJRVkDjqRQ2PZ57bECcQUlTgM0oNFnzWrgNn4WmHlcWBeOoXjF/l3RgPZ+qfOg1EALfzvXkf/KTWsqTrNGmqomNOK6UVGrmGzcuY/n0qEgtQwAhJNh1lgswIGg8Ef9G23yXLeBeY/BnsPz0OpjhQ7IuuOGgys1fGuD3ZI/79D/hNL8EQYUnjT4VVitwcwbbqzT7TTNGq6wIK7G6GiQcifLBXHX3dp+WE56exV3wfhkmCbD9NPLwdnb9Zq22AE7ZEcsZa/ZGfvALtiICabYd/aD/Yy2oxfRq+j0Whr11jVP2Y2I3vwGLj/HJg==</latexit><latexit sha1_base64="NpiJT5/KEODczN77QRTuqpv3m44=">AAACh3icfVFNb9NAEN2YFtpQaAvHXqxGSFWFgl0h6LF8HLhUFImkkbJWNN6MnVX3w9odA5HlP8EV/hj/hnUaJNoiRlrp7Zs3O/N28kpJT0nyqxfd29i8/2Bru/9w59Hj3b39J2NvaydwJKyybpKDRyUNjkiSwknlEHSu8DK/etflL7+g89Kaz7SsMNNQGllIARSoCacFEsxOZnuDZJisIr4L0jUYsHVczPZ7ks+tqDUaEgq8n6ZJRVkDjqRQ2PZ57bECcQUlTgM0oNFnzWrgNn4WmHlcWBeOoXjF/l3RgPZ+qfOg1EALfzvXkf/KTWsqTrNGmqomNOK6UVGrmGzcuY/n0qEgtQwAhJNh1lgswIGg8Ef9G23yXLeBeY/BnsPz0OpjhQ7IuuOGgys1fGuD3ZI/79D/hNL8EQYUnjT4VVitwcwbbqzT7TTNGq6wIK7G6GiQcifLBXHX3dp+WE56exV3wfhkmCbD9NPLwdnb9Zq22AE7ZEcsZa/ZGfvALtiICabYd/aD/Yy2oxfRq+j0Whr11jVP2Y2I3vwGLj/HJg==</latexit>

x

Source: Isola, Torralba, Freeman

−
∂J
∂θ

J(✓)
<latexit sha1_base64="a/Lk8rEB5YqTpm5iqH/sBpa7bWw=">AAACiHicfVHbahRBEO0db3G8JfqYl8FFiCLLjAjRtxB9kIAkgewmsj2Emt6a2SZ9Gbpr1GWYr/BVP8y/sWezgdywoOH0qVNddbqKWklPafp3EN25e+/+g7WH8aPHT54+W994PvG2cQLHwirrTgrwqKTBMUlSeFI7BF0oPC7OPvX54+/ovLTmiBY15hoqI0spgAL1bW+L0xwJXp+uD9NRuozkJshWYMhWcXC6MZB8ZkWj0ZBQ4P00S2vKW3AkhcIu5o3HGsQZVDgN0IBGn7fLibvkVWBmSWldOIaSJXu5ogXt/UIXQamB5v56ridvy00bKj/krTR1Q2jEeaOyUQnZpLefzKRDQWoRAAgnw6yJmIMDQeGT4ittikJ3gfmMwZ7Dr6HVfo0OyLo3LQdXafjZBbsVf9uj/wmluRAGFJ40+ENYrcHMWm6s0900y1uusCSuJuhomHEnqzlx19+6OCwnu76Km2DybpSlo+zw/XBnd7WmNbbJXrItlrFttsO+sAM2ZoJp9ov9Zn+iOEqj7ejjuTQarGpesCsR7f4DaXjHOg==</latexit><latexit sha1_base64="a/Lk8rEB5YqTpm5iqH/sBpa7bWw=">AAACiHicfVHbahRBEO0db3G8JfqYl8FFiCLLjAjRtxB9kIAkgewmsj2Emt6a2SZ9Gbpr1GWYr/BVP8y/sWezgdywoOH0qVNddbqKWklPafp3EN25e+/+g7WH8aPHT54+W994PvG2cQLHwirrTgrwqKTBMUlSeFI7BF0oPC7OPvX54+/ovLTmiBY15hoqI0spgAL1bW+L0xwJXp+uD9NRuozkJshWYMhWcXC6MZB8ZkWj0ZBQ4P00S2vKW3AkhcIu5o3HGsQZVDgN0IBGn7fLibvkVWBmSWldOIaSJXu5ogXt/UIXQamB5v56ridvy00bKj/krTR1Q2jEeaOyUQnZpLefzKRDQWoRAAgnw6yJmIMDQeGT4ittikJ3gfmMwZ7Dr6HVfo0OyLo3LQdXafjZBbsVf9uj/wmluRAGFJ40+ENYrcHMWm6s0900y1uusCSuJuhomHEnqzlx19+6OCwnu76Km2DybpSlo+zw/XBnd7WmNbbJXrItlrFttsO+sAM2ZoJp9ov9Zn+iOEqj7ejjuTQarGpesCsR7f4DaXjHOg==</latexit><latexit sha1_base64="a/Lk8rEB5YqTpm5iqH/sBpa7bWw=">AAACiHicfVHbahRBEO0db3G8JfqYl8FFiCLLjAjRtxB9kIAkgewmsj2Emt6a2SZ9Gbpr1GWYr/BVP8y/sWezgdywoOH0qVNddbqKWklPafp3EN25e+/+g7WH8aPHT54+W994PvG2cQLHwirrTgrwqKTBMUlSeFI7BF0oPC7OPvX54+/ovLTmiBY15hoqI0spgAL1bW+L0xwJXp+uD9NRuozkJshWYMhWcXC6MZB8ZkWj0ZBQ4P00S2vKW3AkhcIu5o3HGsQZVDgN0IBGn7fLibvkVWBmSWldOIaSJXu5ogXt/UIXQamB5v56ridvy00bKj/krTR1Q2jEeaOyUQnZpLefzKRDQWoRAAgnw6yJmIMDQeGT4ittikJ3gfmMwZ7Dr6HVfo0OyLo3LQdXafjZBbsVf9uj/wmluRAGFJ40+ENYrcHMWm6s0900y1uusCSuJuhomHEnqzlx19+6OCwnu76Km2DybpSlo+zw/XBnd7WmNbbJXrItlrFttsO+sAM2ZoJp9ov9Zn+iOEqj7ejjuTQarGpesCsR7f4DaXjHOg==</latexit><latexit sha1_base64="a/Lk8rEB5YqTpm5iqH/sBpa7bWw=">AAACiHicfVHbahRBEO0db3G8JfqYl8FFiCLLjAjRtxB9kIAkgewmsj2Emt6a2SZ9Gbpr1GWYr/BVP8y/sWezgdywoOH0qVNddbqKWklPafp3EN25e+/+g7WH8aPHT54+W994PvG2cQLHwirrTgrwqKTBMUlSeFI7BF0oPC7OPvX54+/ovLTmiBY15hoqI0spgAL1bW+L0xwJXp+uD9NRuozkJshWYMhWcXC6MZB8ZkWj0ZBQ4P00S2vKW3AkhcIu5o3HGsQZVDgN0IBGn7fLibvkVWBmSWldOIaSJXu5ogXt/UIXQamB5v56ridvy00bKj/krTR1Q2jEeaOyUQnZpLefzKRDQWoRAAgnw6yJmIMDQeGT4ittikJ3gfmMwZ7Dr6HVfo0OyLo3LQdXafjZBbsVf9uj/wmluRAGFJ40+ENYrcHMWm6s0900y1uusCSuJuhomHEnqzlx19+6OCwnu76Km2DybpSlo+zw/XBnd7WmNbbJXrItlrFttsO+sAM2ZoJp9ov9Zn+iOEqj7ejjuTQarGpesCsR7f4DaXjHOg==</latexit>

✓⇤ = argmin
✓

J(✓)
<latexit sha1_base64="AYItQoyunNkE46+v9OudQ3G4+AY=">AAACpnicfZFtaxNBEMc3Vx9qfErrS98shkIsEu6KYN8UivpCBLWCSQrZM+5t5i5L9+HYnbMNx30CP41v9ZP4bdxLIthWHFj47X9mdnZmslJJj3H8qxNt3bh56/b2ne7de/cfPOzt7I69rZyAkbDKutOMe1DSwAglKjgtHXCdKZhkZ69a/+QrOC+t+YTLElLNCyNzKTgGadbbY7gA5J/36RFl3BVamlm91hr6drCmp7NePx7GK6PXIdlAn2zsZLbTkWxuRaXBoFDc+2kSl5jW3KEUCpouqzyUXJzxAqYBDdfg03rVT0P3gjKnuXXhGKQr9e+MmmvvlzoLkZrjwl/1teK/fNMK88O0lqasEIxYF8orRdHSdjh0Lh0IVMsAXDgZ/krFgjsuMIywe6lMlukmKK8htOfgXSj1oQTH0br9ejVIftGEdgv2rKX/BUrzJzBQeNLAubBaczOvmbFON9MkrZmCHJkag8N+wpwsFshce2u6YTnJ1VVch/HBMImHycfn/eOXmzVtk8fkCRmQhLwgx+QNOSEjIsg38p38ID+jQfQ+GkWTdWjU2eQ8Ipcs+vIbi5PSvQ==</latexit><latexit sha1_base64="AYItQoyunNkE46+v9OudQ3G4+AY=">AAACpnicfZFtaxNBEMc3Vx9qfErrS98shkIsEu6KYN8UivpCBLWCSQrZM+5t5i5L9+HYnbMNx30CP41v9ZP4bdxLIthWHFj47X9mdnZmslJJj3H8qxNt3bh56/b2ne7de/cfPOzt7I69rZyAkbDKutOMe1DSwAglKjgtHXCdKZhkZ69a/+QrOC+t+YTLElLNCyNzKTgGadbbY7gA5J/36RFl3BVamlm91hr6drCmp7NePx7GK6PXIdlAn2zsZLbTkWxuRaXBoFDc+2kSl5jW3KEUCpouqzyUXJzxAqYBDdfg03rVT0P3gjKnuXXhGKQr9e+MmmvvlzoLkZrjwl/1teK/fNMK88O0lqasEIxYF8orRdHSdjh0Lh0IVMsAXDgZ/krFgjsuMIywe6lMlukmKK8htOfgXSj1oQTH0br9ejVIftGEdgv2rKX/BUrzJzBQeNLAubBaczOvmbFON9MkrZmCHJkag8N+wpwsFshce2u6YTnJ1VVch/HBMImHycfn/eOXmzVtk8fkCRmQhLwgx+QNOSEjIsg38p38ID+jQfQ+GkWTdWjU2eQ8Ipcs+vIbi5PSvQ==</latexit><latexit sha1_base64="AYItQoyunNkE46+v9OudQ3G4+AY=">AAACpnicfZFtaxNBEMc3Vx9qfErrS98shkIsEu6KYN8UivpCBLWCSQrZM+5t5i5L9+HYnbMNx30CP41v9ZP4bdxLIthWHFj47X9mdnZmslJJj3H8qxNt3bh56/b2ne7de/cfPOzt7I69rZyAkbDKutOMe1DSwAglKjgtHXCdKZhkZ69a/+QrOC+t+YTLElLNCyNzKTgGadbbY7gA5J/36RFl3BVamlm91hr6drCmp7NePx7GK6PXIdlAn2zsZLbTkWxuRaXBoFDc+2kSl5jW3KEUCpouqzyUXJzxAqYBDdfg03rVT0P3gjKnuXXhGKQr9e+MmmvvlzoLkZrjwl/1teK/fNMK88O0lqasEIxYF8orRdHSdjh0Lh0IVMsAXDgZ/krFgjsuMIywe6lMlukmKK8htOfgXSj1oQTH0br9ejVIftGEdgv2rKX/BUrzJzBQeNLAubBaczOvmbFON9MkrZmCHJkag8N+wpwsFshce2u6YTnJ1VVch/HBMImHycfn/eOXmzVtk8fkCRmQhLwgx+QNOSEjIsg38p38ID+jQfQ+GkWTdWjU2eQ8Ipcs+vIbi5PSvQ==</latexit><latexit sha1_base64="AYItQoyunNkE46+v9OudQ3G4+AY=">AAACpnicfZFtaxNBEMc3Vx9qfErrS98shkIsEu6KYN8UivpCBLWCSQrZM+5t5i5L9+HYnbMNx30CP41v9ZP4bdxLIthWHFj47X9mdnZmslJJj3H8qxNt3bh56/b2ne7de/cfPOzt7I69rZyAkbDKutOMe1DSwAglKjgtHXCdKZhkZ69a/+QrOC+t+YTLElLNCyNzKTgGadbbY7gA5J/36RFl3BVamlm91hr6drCmp7NePx7GK6PXIdlAn2zsZLbTkWxuRaXBoFDc+2kSl5jW3KEUCpouqzyUXJzxAqYBDdfg03rVT0P3gjKnuXXhGKQr9e+MmmvvlzoLkZrjwl/1teK/fNMK88O0lqasEIxYF8orRdHSdjh0Lh0IVMsAXDgZ/krFgjsuMIywe6lMlukmKK8htOfgXSj1oQTH0br9ejVIftGEdgv2rKX/BUrzJzBQeNLAubBaczOvmbFON9MkrZmCHJkag8N+wpwsFshce2u6YTnJ1VVch/HBMImHycfn/eOXmzVtk8fkCRmQhLwgx+QNOSEjIsg38p38ID+jQfQ+GkWTdWjU2eQ8Ipcs+vIbi5PSvQ==</latexit>

θ(t+1) = θ(t) − η∇J(θ)

26

Batch gradient descent

J(θ) =
1
N

N

∑
i=1

L(xi, θ)

Loss function:

∇J(θ) =
1
N

N

∑
i=1

∇L(xi, θ)

Its gradient is the sum of
gradients for each example:

Problem: requires iterating over every training example each gradient step!

Can we speed this up?

27

Stochastic gradient descent

∇J(θ) =
1
N

N

∑
i=1

∇L(xi, θ)

This is just an average!

We know from statistics that we can estimate the average of a
full “population” from a sample.

∇J(θ) ≈
1

|B | ∑
i∈B

∇L(xi, θ)

where is a minibatch: a random subset of examples.B

This is called stochastic gradient descent (SGD).

28

Stochastic gradient descent

Source: R. Grosse

Batch gradient descent Stochastic gradient descent

29 Figure source: R. Grosse

Learning rate

• Sensitive to the learning rate:

Small learning rate Large learning rate

✓t+1 = ✓t � ⌘tr✓J(✓)

����
✓=✓t

<latexit sha1_base64="g91VbOGEMbQRosJjrCoyJisveTg=">AAACQXicbZBLSwMxFIUzPmt9VV26CRZBEcuMCroRRDfiqoLVQqcOd9K0DWYyQ3JHKEP/mhv/gTv3blwo4taNaTvg80Lgyzn35nHCRAqDrvvojI1PTE5NF2aKs3PzC4ulpeVLE6ea8RqLZazrIRguheI1FCh5PdEcolDyq/DmZOBf3XJtRKwusJfwZgQdJdqCAVopKNV97HKE6wy3vD49pPkW6Tb1LQRIfQWhhGBk0LONEWxSPxSdjq/t4Rhkufs13w9KZbfiDov+BS+HMsmrGpQe/FbM0ogrZBKMaXhugs0MNAomeb/op4YnwG6gwxsWFUTcNLNhAn26bpUWbcfaLoV0qH6fyCAypheFtjMC7Jrf3kD8z2uk2D5oZkIlKXLFRhe1U0kxpoM4aUtozlD2LADTwr6Vsi5oYGhDL9oQvN9f/guXOxVvt+Ke75WPjvM4CmSVrJEN4pF9ckROSZXUCCN35Im8kFfn3nl23pz3UeuYk8+skB/lfHwC6ZWv8g==</latexit>

Dealing with oscillations

Source: https://distill.pub/2017/momentum

β = 0

30

https://distill.pub/2017/momentum

Momentum

• Also known as the “heavy ball momentum”

• Remember previous gradients and “build up speed”, setting

• Reduces oscillations in high curvature regions, and picks up speed in
when the loss surface is nearly flat.

0 ≤ β < 1

31

<latexit sha1_base64="RRovIl8pvz7GksLjmTRDDeQIFa4=">AAACYHicbVFNSyNBEO0Z3TVmdY1600tjWIgsG2ZE1KPoRTwpGCNksqGmU6NNej7orlHCMH/Smwcv/hJ7kogaLWh4vA+q+3WYKWnI854cd2Hxx8+l2nL918rq77XG+sa1SXMtsCNSleqbEAwqmWCHJCm8yTRCHCrshqPTSu/eozYyTa5onGE/httERlIAWWrQeCiCGOgujPh9+b9ojf76uyUPFEYEWqcPPAiRgPM5l/X840GlBJEGUQQZaJKg+Hn5jt8i3bJVvONpfHfQaHptbzL8K/BnoMlmczFoPAbDVOQxJiQUGNPzvYz6RbVLKCzrQW4wAzGCW+xZmECMpl9MCir5H8sMeZRqexLiE/ZjooDYmHEcWmd1UTOvVeR3Wi+n6KhfyCTLCRMxXRTlilPKq7b5UGoUpMYWgNDS3pWLO7CVkf2Tui3Bn3/yV3C91/YP2vuX+83jk1kdNbbNdliL+eyQHbMzdsE6TLBnZ8FZcVadF7fmrrnrU6vrzDKb7NO4W68Bc7VP</latexit>

v(k+1) �v(k) � ⌘
@J

@W
(W(k))

<latexit sha1_base64="5Q7DdEA8atKfYMqV4fqd8czAL8A=">AAACL3icbVBbS8MwGE29znmr+uhLcAiTwWhlqI9DQXyc4C6w1pFm6RaWpiVJJ6PsH/niX9mLiCK++i9Mt+Jl80DgcM53yPcdL2JUKst6MZaWV1bX1nMb+c2t7Z1dc2+/IcNYYFLHIQtFy0OSMMpJXVHFSCsSBAUeI01vcJX6zSERkob8To0i4gaox6lPMVJa6pjXiRMg1fd82BzfJ8VByT4ZQ4cRXyEhwgc4Z2uz9KMNvyMds2CVrSngIrEzUgAZah1z4nRDHAeEK8yQlG3bipSbIKEoZmScd2JJIoQHqEfamnIUEOkm03vH8FgrXeiHQj+u4FT9nUhQIOUo8PRkuqmc91LxP68dK//CTSiPYkU4nn3kxwyqEKblwS4VBCs20gRhQfWuEPeRQFjpivO6BHv+5EXSOC3bZ+XKbaVQvczqyIFDcASKwAbnoApuQA3UAQaPYAJewZvxZDwb78bHbHTJyDIH4A+Mzy9wvagR</latexit>

W(k+1) W(k) + v(k+1)

Dealing with oscillations (no momentum)

Source: https://distill.pub/2017/momentum

β = 0

32

https://distill.pub/2017/momentum

Source: https://distill.pub/2017/momentum

β = 0.99

33

Dealing with oscillations (with momentum)

https://distill.pub/2017/momentum

34

Learning multivariate Gaussian using SGD

1 mu = randn(d)
2 A = randn((d, d)) # Matrix representing the covariance
3

4 for x in loader: # x: single example
5 # Create covariance matrix
6 cov = A.T @ A
7 # Add regularization
8 cov = cov + eps * eye(d)
9 log_Z = -0.5 * (d * log(2 * np.pi) + log(det(cov)))

10 mahalanobis_distance = (x - mu).T @ inv(cov) @ (x - mu)
11

12 # Compute the NLL
13 loss = -(log_Z + -0.5 * mahalanobis_distance)
14

15 # Perform an SGD update
16 loss.backward()

1

Implementation notes for SGD with GMMs

• Represent covariance matrix to ensure it’s
positive semidefinite.

• Regularize the covariance matrix by adding a small value
to its diagonal:
• This avoids numerical issues and degeneracies, e.g.,

 approaches 0
• Represent the mixture weight logits . Take a softmax to

ensure that they sum to one:

Σ = AA⊤

Σ′￼ = Σ + ϵI

det(Σ)
w

πi =
exp(wi)

∑K
j=1 exp(wj)

Case study: GMMs for image patches

Based on paper by Zoran & Weiss, 2012.

Match the patches to the model:
1. Gaussian
2. Real patches
3. GMM

A B C

Source: [Zoran & Weiss, 2012]

What does this model learn?

Visualization tool: eigenvectors

x = VD1
2z

x = VD1
2z

x = VD1
2z

For a zero-mean scalar Gaussian, you can sample points:
, where x = σz z ∼ 𝒩(0, 1)

Analogously, for a zero-mean multivariate Gaussian:
 , where x = VD1

2z z ∼ 𝒩(0, I)
and is the eigendecomposition.Σ = VDV⊤

• Eigenvectors capture structure of image patches.
• The eigenvectors with high eigenvalues dominate the appearance

of the image patches.

Eigenvectors for 2-component GMM

Source: [Zoran & Weiss, 2012]

Eigenvectors for 2-component GMM
Discrete cosine transform

(similar to Fourier transform)Eigenvectors for Σk

Source: Wikipedia

Used in JPEG compression

Samples from component k

Eigenvectors for component k

Source: [Zoran & Weiss, 2012]

Source: [Zoran & Weiss, 2012]

Dead leaf image generation model

Source: [Zoran & Weiss, 2012]

Scaling up GMMs to full images

Source: [Richardson & Weiss, 2018]

Source: [Richardson & Weiss, 2018]

Scaling up GMMs to full images

Learned mixture components

Photo by Fredo Durand

Image denoising

50

Application: image denoising

+

Goal: recover the original image

image noise

=

noisy image

51

 Image denoising problem

Image source: wikipedia

In practice: low light photography, “dead” pixels, etc.

52

Denoising using a prior

EPLL(X) =
1

|P(X) | ∑
x∈P(X)

log pθ(x)

L(X̂) = ∥X̂ − X∥2 − λ log pθ(X̂),

L(X̂) = log p(X̂ ∣ X) + log pθ(X̂)

by Bayes rulep(Xclean ∣ Xnoisy) =
p(Xnoisy ∣ Xclean)p(Xclean)

p(Xnoisy)

L(Xclean) = − log p(Xnoisy ∣ Xclean) − log p(Xclean)

We’re solving for , which is equivalent to minimizing:Xclean

What are good choices for these two terms?

Denoising using a GMM image prior

EPLL(X) =
1

|P(X) | ∑
x∈P(X)

log pθ(x)

L(X̂) ≈ ∥X̂ − Xnoisy∥2 − λ EPLL(X̂),
• First term (the likelihood) is equivalent to Gaussian centered on .
• Since we don’t have a full image prior, let’s use the “expected log patch

likelihood”: the average log likelihood our GMM assigns to each patch in
the image:

Xnoisy

How do we solve for ? Gradient descent!X̂
Source: [Zoran & Weiss, 2012]

Image denoising with a GMM

Denoised imageInput image

Next class: recorded neural net review

