
CS 5788: Introduction to Generative Models

Lecture 3: Gaussian mixture models



Reminders
• PS1 out (due Feb. 10) 
• Office hours start this week 
• Due to travel, Thursday’s lecture will be a recording. 

• It is a neural net review, for those who would like 
to catch up. 

• CNNs, MLPs, Backprop (not covered: transformers 
and attention).



Recall: Multivariate Gaussian

pθ(x) =
1

(2π)k det(Σ)
exp (−

1
2

(x − μ)⊤Σ−1(x − μ))
Parameters : mean , covariance matrix .θ μ Σ

Probability density function (pdf):

Figure source: Wikipedia



Recall: maximum likelihood estimation (MLE)

Goal: Find best parameters .  

How do we quantify this? One option is maximum likelihood estimation. 

Suppose we have a sample of points  from the distribution. We can find 
 by maximizing their likelihood under the model:

θ

x1, x2, . . . , xN
θ

argmaxθ

N

∏
i=1

pθ(xi)

= argmaxθ

N

∑
i=1

log(pθ(xi))

Assuming data is iid (independent and 
identically distributed).

NLL(θ) = −
N

∑
i=1

log(pθ(xi))Equivalent to minimizing the negative log likelihood:



Training image patches ( )16 × 16

x ∈ ℝ256

Flatten each patch to get a 256-
dimensional vector.

Samples from Gaussian

Recall: Fitting a multivariable Gaussian to image patches

𝒩(μ, Σ)

(not so great!)



How can we improve this?



Gaussian mixture model



Gaussian mixture model

= π1 × +π2 × +π3 ×

Mixing distributions: 
(more generally)

pθ(x) =
K

∑
i=1

πiqi(x; θ) for non-negative weights ∑
i

πi = 1



Gaussian mixture model (GMM)

Density function: pθ(x) =
K

∑
i=1

πi𝒩(x; μi, Σi)

where  is the probability of choosing mixture 
component , and  is the Gaussian pdf with 
mixture-specific mean  and covariance .

πi
i 𝒩

μ Σ

A useful type of mixture model that mixes multiple Gaussian distributions.



Sampling from a GMM

i.e., ,   , …,  p(z = 1) = π1 p(z = 2) = π2 p(z = K) = πK

• Step #1: select mixture component: 
        z ∼ Categorical(π1, π2, …, πK)



Sampling from a GMM

• Step #1: select mixture component: 
        z ∼ Categorical(π1, π2, …, πK)

• Step #2: sample from the chosen component 
        x ∼ 𝒩(μz, Σz)



GMM as a latent variable model

• The variable  is the identity of the mixture component that 
generated the example. We call it a latent variable because we 
never directly observe it. 

• Latent variables allow us to create more powerful generative 
models. 

• They allow us to capture complex dependencies between 
variables. 

• We’ll see many other types of latent variable models in this course.

z

Adapted from R. Grosse



How do we learn a GMM?



• We already know how to fit the parameters for a Gaussian. 
Can we take advantage of that? 

• Idea #1: let’s use an alternating optimization (similar to k-
means). 

How do we learn a GMM?

do we want to make a hard assignment?

• Assign each point  to a component . 
• Fit parameters  using all examples assigned to 

component .

xi zi
(μk, Σk)

k

Loop:



• Idea #2: a more principled alternating optimization that 
uses “soft” assignments. 

How do we learn a GMM?

Loop: 
• For each point , compute . 
• Fit parameters  using all examples “softly 

assigned” to component  using 

xi p(zi = k ∣ xi)
(μk, Σk)

k pθ(zi = k ∣ xi)

Let’s make this idea more precise.



• Consider the responsibility of component  for example 

 

• Let’s perform maximum likelihood estimation:

 

   using these responsibilities as “soft assignments”.

k xi

rik = pθ(zi = k ∣ xi) =
πk𝒩(xi; μk, Σk)

∑K
j=1 πj𝒩(xi; μj, Σj)

argmaxθ

N

∑
i=1

log(pθ(xi))

Learning a GMM



log(pθ(xi)) = log
K

∑
k=1

πk𝒩(xi; μk, Σk)

= log
K

∑
k=1

rikπk
𝒩(xi; μk, Σk)

rik

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

log
K

∑
k=1

wkck ≥
K

∑
k=1

wk log ck,

Jensen’s inequality 
for concave functions:

when .
K

∑
k=1

wk = 1

Learning a GMM

Hard to work with, since  is on outside of sum.log



Jensen’s inequality for convex functions

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

Source: R. Grosse



Learning a GMM

log(pθ(xi)) = log
K

∑
k=1

πk𝒩(xi; μk, Σk)

= log
K

∑
k=1

rikπk
𝒩(xi; μk, Σk)

rik

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

≥
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik

log
K

∑
k=1

wkck ≥
K

∑
k=1

wk log ck,

Jensen’s inequality:

when .
K

∑
k=1

wk = 1

ckwk

Works for any non-negative  vector that sums up to 1!  
But it can be shown that equality holds when  are the responsibilities !

rik
rik p(zi = k ∣ xi)



Learning a GMM

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

log(pθ(xi)) ≥ L(r, θ) =
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik

(π, {μi}K
i=1, {Σi}K

i=1)

How do we maximize  w.r.t. ?  L(r, θ) θ

 Basically just MLE estimation for Gaussian (but with some extra weights ).→ rik

 This gives us a new set of parameters → θ′￼

This is called an 
evidence lower bound 
(we’ll discuss this more 
in a future class)

 Set  to be the responsibilities!  → r
How do we maximize  w.r.t. ? L(r, θ) r



Learning a GMM

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

log(pθ(xi)) ≥ L(r, θ) =
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik
=

K

∑
k=1

rik log
pθ(z = k, xi)

rik

log(pθ(xi)) ≥ L(r, θ) =
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik

If we set , thenrik = pθ(z = k ∣ xi)

L(r, θ) =
K

∑
k=1

pθ(z = k ∣ xi)log
pθ(z = k, xi)
pθ(z = k ∣ xi)

=
K

∑
k=1

pθ(z = k ∣ xi)log pθ(xi) = log pθ(xi)

This makes the bound tight. Setting to be the responsibilities maximizes .L

How do we maximize  w.r.t. ? L(r, θ) r

using pθ(z ∣ x) =
pθ(z, x)
pθ(x)



The EM algorithm for GMMs

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

log(pθ(xi)) ≥ L(r, θ) =
K

∑
k=1

rik log πk
𝒩(xi; μk, Σk)

rik

• Compute the responsibilities   
• Solve                                       

r(t) = pθ(t)(z = k ∣ xi)
θ(t+1) = argmaxθ L(r(t), θ)

Loop:

Goal: solve for the model parameters θ

  [E step]
  [M step]

• This is an example of the Expectation Maximization (EM) algorithm. 
• E step: compute expected latent assignments. 
• M step: maximize log likelihood using those latent assignments. 
• We won’t discuss the fully general version in this class, but it is a very useful idea for 

fitting probabilistic models.

• Each step increases (or doesn’t decrease) the bound .L



Learning a GMM by gradient descent

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik

• One alternative approach (closer to what we’ll do in the rest of the 
class) is to learn the GMM’s parameters by gradient descent. 

• Instead of maximizing , minimize .
N

∑
i=1

log pθ(xi) J(θ) =
N

∑
i=1

− log pθ(xi)



Review: stochastic gradient descent

log
K

∑
k=1

rikcik ≥
K

∑
k=1

rik log cik
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Recall: Learning parameters using gradient descent
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θ(t+1) = θ(t) − η∇J(θ)
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Batch gradient descent

J(θ) =
1
N

N

∑
i=1

L(xi, θ)

Loss function:

∇J(θ) =
1
N

N

∑
i=1

∇L(xi, θ)

Its gradient is the sum of  
gradients for each example:

Problem: requires iterating over every training example each gradient step!

Can we speed this up?
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Stochastic gradient descent

∇J(θ) =
1
N

N

∑
i=1

∇L(xi, θ)

This is just an average!

We know from statistics that we can estimate the average of a 
full “population” from a sample.

∇J(θ) ≈
1

|B | ∑
i∈B

∇L(xi, θ)

where  is a minibatch: a random subset of examples.B

This is called stochastic gradient descent (SGD).
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Stochastic gradient descent

Source: R. Grosse

Batch gradient descent Stochastic gradient descent



29 Figure source: R. Grosse

Learning rate

• Sensitive to the learning rate:

Small learning rate Large learning rate

✓t+1 = ✓t � ⌘tr✓J(✓)

����
✓=✓t

<latexit sha1_base64="g91VbOGEMbQRosJjrCoyJisveTg="></latexit>



Dealing with oscillations

Source: https://distill.pub/2017/momentum 

β = 0

30

https://distill.pub/2017/momentum


Momentum

• Also known as the “heavy ball momentum” 

• Remember previous gradients and “build up speed”, setting 
 

• Reduces oscillations in high curvature regions, and picks up speed in 
when the loss surface is nearly flat.

0 ≤ β < 1

31
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Dealing with oscillations (no momentum)

Source: https://distill.pub/2017/momentum 

β = 0

32

https://distill.pub/2017/momentum


Source: https://distill.pub/2017/momentum 

β = 0.99

33

Dealing with oscillations (with momentum)

https://distill.pub/2017/momentum
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Learning multivariate Gaussian using SGD

1 mu = randn(d)
2 A = randn((d, d)) # Matrix representing the covariance
3

4 for x in loader: # x: single example
5 # Create covariance matrix
6 cov = A.T @ A
7 # Add regularization
8 cov = cov + eps * eye(d)
9 log_Z = -0.5 * (d * log(2 * np.pi) + log(det(cov)))

10 mahalanobis_distance = (x - mu).T @ inv(cov) @ (x - mu)
11

12 # Compute the NLL
13 loss = -(log_Z + -0.5 * mahalanobis_distance)
14

15 # Perform an SGD update
16 loss.backward()

1



Implementation notes for SGD with GMMs

• Represent covariance matrix  to ensure it’s 
positive semidefinite. 

• Regularize the covariance matrix by adding a small value 
to its diagonal:  
• This avoids numerical issues and degeneracies, e.g., 

 approaches 0 
• Represent the mixture weight logits . Take a softmax to 

ensure that they sum to one: 

Σ = AA⊤

Σ′￼ = Σ + ϵI

det(Σ)
w

πi =
exp(wi)

∑K
j=1 exp(wj)



Case study: GMMs for image patches

Based on paper by Zoran & Weiss, 2012.



Match the patches to the model: 
1. Gaussian  
2. Real patches  
3. GMM

A B C

Source: [Zoran & Weiss, 2012]



What does this model learn?



Visualization tool: eigenvectors

x = VD1
2z

x = VD1
2z

x = VD1
2z

For a zero-mean scalar Gaussian, you can sample points:  
, where x = σz z ∼ 𝒩(0, 1)

Analogously, for a zero-mean multivariate Gaussian: 
          , where x = VD1

2z z ∼ 𝒩(0, I)
and  is the eigendecomposition.Σ = VDV⊤

• Eigenvectors capture structure of image patches.  
• The eigenvectors with high eigenvalues dominate the appearance 

of the image patches.



Eigenvectors for 2-component GMM

Source: [Zoran & Weiss, 2012]



Eigenvectors for 2-component GMM
Discrete cosine transform 

(similar to Fourier transform)Eigenvectors for Σk

Source: Wikipedia

Used in JPEG compression



Samples from component k

Eigenvectors for component k

Source: [Zoran & Weiss, 2012]



Source: [Zoran & Weiss, 2012]









Dead leaf image generation model

Source: [Zoran & Weiss, 2012]



Scaling up GMMs to full images

Source: [Richardson & Weiss, 2018]



Source: [Richardson & Weiss, 2018]

Scaling up GMMs to full images

Learned mixture components



Photo by Fredo Durand

Image denoising

50



Application: image denoising

+

Goal: recover the original image

image noise

=

noisy image

51



 Image denoising problem

Image source: wikipedia

In practice: low light photography, “dead” pixels, etc. 
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Denoising using a prior

EPLL(X) =
1

|P(X) | ∑
x∈P(X)

log pθ(x)

L(X̂) = ∥X̂ − X∥2 − λ log pθ(X̂),

L(X̂) = log p(X̂ ∣ X) + log pθ(X̂)

by Bayes rulep(Xclean ∣ Xnoisy) =
p(Xnoisy ∣ Xclean)p(Xclean)

p(Xnoisy)

L(Xclean) = − log p(Xnoisy ∣ Xclean) − log p(Xclean)

We’re solving for , which is equivalent to minimizing:Xclean

What are good choices for these two terms?



Denoising using a GMM image prior

EPLL(X) =
1

|P(X) | ∑
x∈P(X)

log pθ(x)

L(X̂) ≈ ∥X̂ − Xnoisy∥2 − λ EPLL(X̂),
• First term (the likelihood) is equivalent to Gaussian centered on . 
• Since we don’t have a full image prior, let’s use the “expected log patch 

likelihood”: the average log likelihood our GMM assigns to each patch in 
the image:

Xnoisy

How do we solve for ? Gradient descent!X̂
Source: [Zoran & Weiss, 2012]



Image denoising with a GMM

Denoised imageInput image



Next class: recorded neural net review


