Lecture 2: Maximum likelihood estimation

CS 5788: Introduction to Generative Models




Reminders

PS1 out soon
Due on Feb. 10
Covers material from Lectures 2 and 3.

Links on webpage to linear algebra and probability reviews
from Kevin Murphy’s “Probabilistic Machine Learning” book.

New (still tentative!) midterm date: April 17, 2-5pm.
Lecture recordings should be available.

Ask questions on Ed Discussion.



Training a discriminative model

Training data
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Adapted from Isola, Torralba, Freeman



Training a discriminative model

Training data
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Adapted from Isola, Torralba, Freeman



Training a generative model

Training data

L.earner

Adapted from Isola, Torralba, Freeman



Training a conditional generative model|

Training data
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Learning simple generative models



Gaussian distribution

Probability density function (pdf):
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Parameters 8: mean u, standard

0.0

deviation o.

Example: u=0,0=1



Gaussian distribution

Probability density function (pdf): Integrates to 1:

0 J pyx)dx = 1
exp (_(x 2 ) X

20%

Pox) =

1
\/ 2762

Parameters 8: mean u, standard

Expected value:

=[X] = J Xpo(X)dx =

deviation o. .
Variance:

Var[X] = E[(X — p)*] = J (x — )*pyx)dx = 62

X




Maximum likelihood estimation (MLE)

Goal: Find best parameters 6.

How do we quantify this? One option is maximum likelihood estimation.

Suppose we have a sample of points x;, x,, . . ., x5 from the distribution. We can fina

6 by maximizing their likelihood under the model:

Assuming data is iid (independent ana

N
argmaxg Hpé’(xi) identically distributed).

N
= argmaxgy Z log(py(x))
=1 Al

Equivalent to minimizing the negative log likelihood: NLL(0) = — Z log(py(x)))
i=1



MLE for a Gaussian

N .
argmax, Z log(p(x,) Gaussian pdf

i=1 /
argmax,, , i log : exp| — Sl 5)2
i=1 V 271'02 20
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argmax, , E log( ) + ! 12 f)
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How do we solve for u and ¢? Take derivatives and set to O!



MLE for a Gaussian

9
Let's set — Z IOg(Pe(xi)) — () and solve for u
oy 4=

0 - ARy, 1 (x; — u)>
0=—) log(py(x)) = ) —log + ——
OH ; 9 Z} M \V2r0? 207

1
Similarly, can show ¢ = —Z (x; — p)”



Multivariate Gaussian
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Multivariate Gaussian

Probability density function (pdf): Mahalanobis distance

Normalizing constant /
1 e .
Po(X) = —————¢€xXp _E(X —p) X (X—p)

v/ 2r)k det(X)

Parameters 8: mean g, covariance matrix .



Fitting a multivariate Gaussian

3 |dentity:
0 1
1o x=_[__ )T x ] T
o g Pp(X) o 2(X p) X (X —p) o(u'Au) _ (A+AT)u
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2 Is symmetric
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Fitting a multivariate Gaussian

0
—logpy(x) = X7 '(x — p)
op

] « . .
— — V' x. i.e. average the training examples!
—> MU Nl-zzl ; 9 9 >



Example: fitting a multivariable Gaussian to image patches

Image patches (16 X 16)
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Images as arrays

An Image
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Images as arrays

How It's

represented

on the computer:
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How It's
represented
on the computer:

Images as arrays
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Fitting a multivariable Gaussian to image patches

Training image patches (16 X 16) Samples from Gaussian

el AN | | |
RAde S DENER

Flatten each patch to get a 256- (not so great!)
dimensional vector.

You'll do this in PS1!



KL divergence

Why use maximum likelihood estimation?

Consider the KL divergence, which measures how much a distribution ¢g differs
from a distribution p:

D (pllg) = J p)log (@) dx
. q(x)

® \What this quantifies: how many more bits would | need to code examples trom
p(x) it | used a code designed to minimize the length of codes drawn from g(x)?

® Not symmetric! Dy, (pllq) # Dx;(qllp)

® |deally, we assume that p is the true distribution and g is our approximation of p.



MLE <= minimizing KL divergence to true distribution

This new term doesn’t depend on 6,

N
algimaxy Z log(py(x;)) and scaling by % doesn’t change max!

=1
N N

1 . L
= argmaxy N [Z log(py(x;)) — Z log(p*(xi))] where p* is the true distribution
i=1 i=1
N N

1
= argminy, ~ lz log(p*(x;) — Z log(pe(xi))] multiply by -1
=1 =1

np ~ il ) Carl f d val
= argming — 0g Monte Carlo estimate ot expected value
" N 1 Po(X;) "

. p*x) \
~ argmin, | p*(x)log = Dy, (p* || py) forlarge N
. Po(x)



Discrete distributions



Discrete distributions

We'd also like to model discrete distributions, like sequences of words:
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Discrete distributions

Consider a sequence of N words:
pPX1, Xyy ooty Xy)

Can we store this as an N-dimensional table?

Problem: it's huge! It is D" entires where D is the
number of words in the dictionary.

Can't fill it, since each given sentence is rare.

26



Bag of words model

a |l
aardvark ||
apbsolve |}
accurate ||
Discard word order and count the number of adapt |}
times each word appears. Sample a sequence e
by sampling each word independently. aghast|
............................ 0 :
pex) = p(xM, x2, . xD) = HP ) where x® € Z is index of word i.
=1

What's the problem with this model?

Figure source: P. Isola



_earning a bag of words model|

pox) = px®,x@, .. xD) = T pyx®)

N N T
Z log py(x;) = Z z logpg(xl(.t))
i=1 i=1 =1

D

N
2. 2, 0" = wilog(py(x{” = w))

1 i=1 t=1

w

D
= Z C, log(pg(xl(.t) =w)) C, = word countin dataset

W
w=1

D
Z C,log(0,) 6, = probability we assign word w in BOW model

W=

(W



Lagrange multiplier  constraint

Constrained optimization: L

D D
J(O0,4) = Z C,log@, )+ 4 ( Z 0, — 1) Take derivative w.r.t. both 8 and !

—J(H/l)—ZH Y N 29 — 1

0 C,,
0= —J(H /1) =— 4+ = 6’ — & Now, let’s put these equations together
30, 0, 7
total words in dataset
S ¢ S : J h d
_ " — — — B — ust the wor
A : A 2 Cw NE 0 probability!

w=1 w=1




Bigram models

Problem with bag-of-words (unigram) models: no order to the sequence!

Consider pairs of words.

pex) = p (x1,x@, .. xDY) = pp (xD) pp (x@ [ xD) pp (x| xP) .. py (x| xT=D)
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Bigram models

Implement p(x;, | x;) asatable:

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 O 0 0 0.00079
want 0.0022 0O 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0O 0.0017 0.28 0.00083 0O 0.0025 0.087
eat 0 0 0.0027 O 0.021 0.0027 0.056 O
chinese 0.0063 0 0 0 0 0.52 0.0063 0O
food 0.014 0 0.014 O 0.00092 0.0037 0O 0
lunch 0.0059 0O 0 0 0 0.0029 0O 0
spend 0.0036 0O 0.0036 O 0 0 0 0

(in practice, “smooth” to assign non-zero probability to empty cells).

s this a valid probability distribution?
Source: Jurafsky & Martin SLP book
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Probability chain rule

Last class, we used the rule: p(d, b) = p(Cl | b)p(b)

Generalization:
T

p00 = [P | £, 50 x0-D)
i=1

Multiplying all conditionals evaluates the probability of a full joint
configuration of words.

32
Source: Torralba, Freeman, Isola



N-gram models

Generalization of bigrams. Consider n-tuples of words for more context.

Do (X) = Hp(x(‘) | x(! ) xth)y

I
~ H p (x® ] xG=D, | x(=D) x(=N+D)

1=

33



Large Language Models in Machine Translation

Thorsten Brants Ashok C. Popat

Peng Xu Franz J.Och Jeffrey Dean

Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94303, USA

{brants,popat,xp,och, jeff}@google.com

Abstract

This paper reports on the benefits of large-
scale statistical language modeling in ma-
chine translation. A distributed infrastruc-
ture is proposed which we use to train on
up to 2 trillion tokens, resulting in language
models having up to 300 billion n-grams. It
1s capable of providing smoothed probabil-
ities for fast, single-pass decoding. We in-
troduce a new smoothing method, dubbed
Stupid Backoff, that is inexpensive to train
on large data sets and approaches the quality
of Kneser-Ney Smoothing as the amount of
training data increases.

1 Introduction

Given a source-language (e.g., French) sentence f,
the problem of machine translation is to automati-
cally produce a target-language (e.g., English) trans-

How might one build a language model that allows
scaling to very large amounts of training data? (2)
How much does translation performance improve as
the size of the language model increases? (3) Is there
a point of diminishing returns in performance as a
function of language model size?

This paper proposes one possible answer to the
first question, explores the second by providing
learning curves in the context of a particular statis-
tical machine translation system, and hints that the
third may yet be some time in answering. In particu-
lar, it proposes a distributed language model training
and deployment infrastructure, which allows direct
and efficient integration into the hypothesis-search
algorithm rather than a follow-on re-scoring phase.
While it is generally recognized that two-pass de-
coding can be very effective in practice, single-pass
decoding remains conceptually attractive because it
eliminates a source of potential information loss.
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Sampling from N-gram models

N-gram models trained on Wall Street Journal articles

1 Months the my and i1ssue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives
gram

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram  point five percent of U. S. E. has already old M. X. corporation of living

on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram  Brazil on market conditions

Source: Jurafsky & Martin SLP book
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How do we choose hyperparameters?

Training Set Test Set

36




How do we choose hyperparameters?

choose best n

log likelihooad

Training Set Validation Set Test Set

/ Measures generalization

Choose hyperparameters like n, number of mixture components, etc.
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Next lecture: Gaussian mixture models



