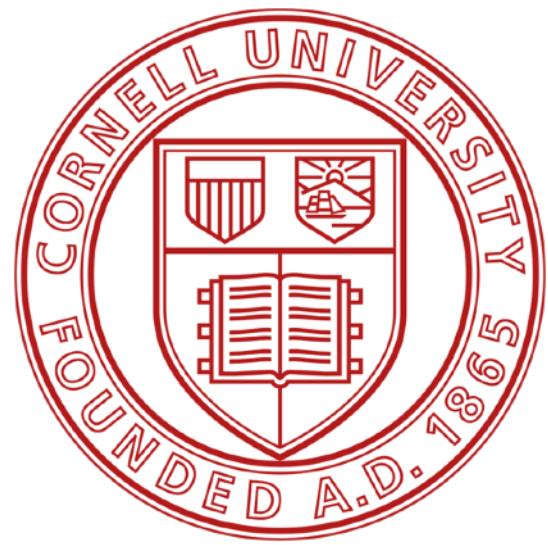


Lecture 1: Introduction

CS 5788: Introduction to Generative Models



Includes material adapted from Stefano Ermon and Kaiming He

Course staff

Jeongsoo Park

TA

Zhaolin Gao

TA

Yiming Dou

TA

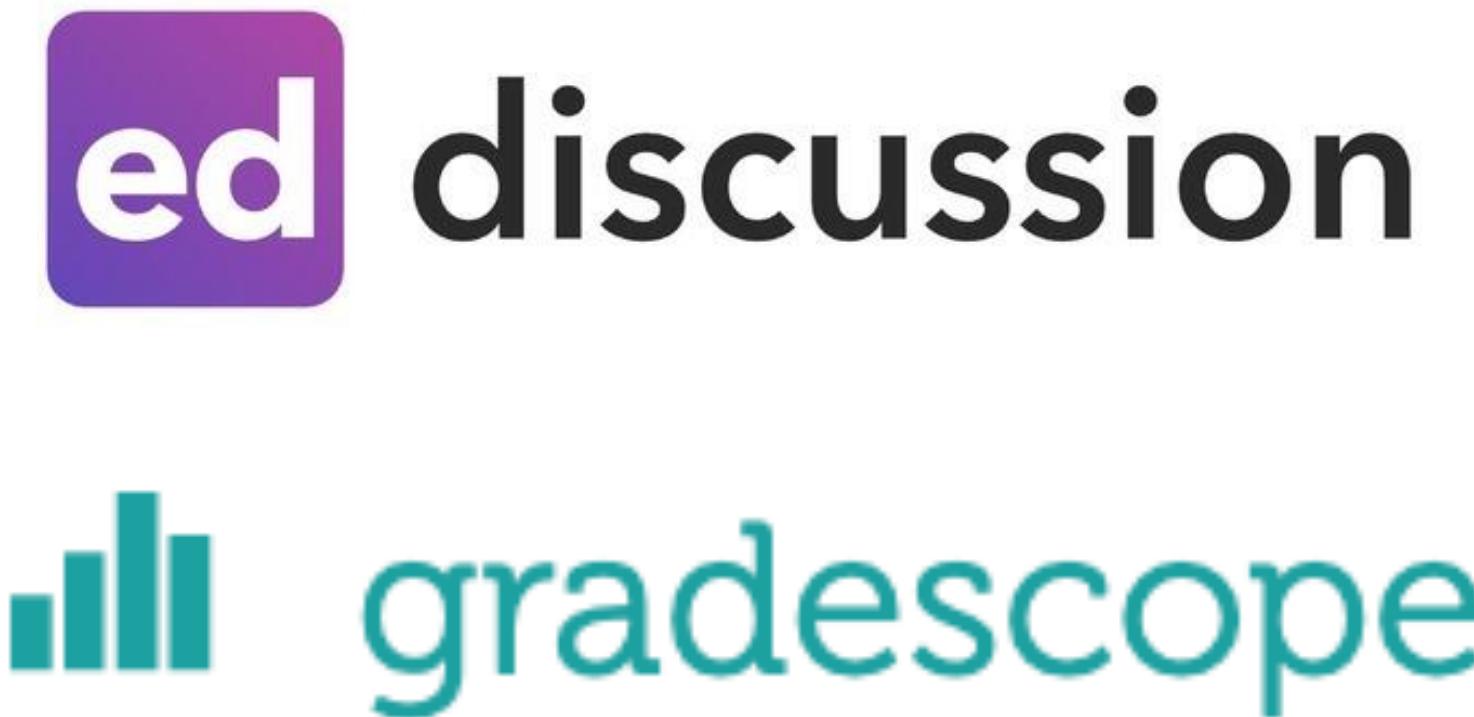
Adnan Armouti

TA

Course policies

Interacting with us

- In person office hours
- Ask homework and class questions on Ed Discussion
- Homework submission via Gradescope



Course website

CS 5788: Introduction to Generative Models

Instructor: Andrew Owens Spring 2026

Schedule Staff Course info Ed Discussion Canvas Gradescope Recordings

Tentative Schedule

Lecture	Date	Topic	Materials	Assignments
Lec. 1	Tue, Jan. 20	Introduction Course policies What is generative modeling?		optional review of PyTorch and probability ps1 out (simple probabilistic models)
Lec. 2	Thu, Jan. 22	Maximum likelihood Gaussian distribution Maximum likelihood		
Lec. 3	Tue, Jan 27	Gaussian mixture models Stochastic gradient descent Gaussian mixture models Variational inference		
Lec. 4	Thu, Jan 29	Neural network review (recorded lecture) Transformers Image translation networks Backpropagation		
Lec. 5	Tue, Feb 3	Variational autoencoders Autoencoders		

<https://www.cs.cornell.edu/courses/cs5788/2026sp>

Lectures

- Lecture recordings available on Canvas (see link on course webpage). Sometimes there is a delay in releasing them.
- Next Thursday's lecture will be recorded (it's a neural net review).
- Some guest lectures (by TAs and other faculty) in middle of course

What you'll be doing

- Assignments (40%)
- Midterm exam (30%)
- Final project (30%)

Assignments

- There will be 4 assignments
- Equally weighted
- Mix of programming and theoretical questions
- PS1 available this week. Covers material from first 3 lectures.

Assignments

- PS1 out later this week
- You'll have **120 late hours** (5 late days)
 - Distribute any way as you want, charged by the hour.
 - No need to notify us when you use them.
 - Once they're used up, 1% penalty for that homework per hour.
 - If you edit your assignment after the deadline, this will count as a late submission.
- Assignments be done independently. It's OK to discuss them with classmates, but programming/writing should all be yours.
- Unless stated otherwise, LLMs only allowed for testing code and as an API reference (the same way that you would use Stack Overflow).

Midterm exam

- Will be scheduled in early April (exact date pending, approximately Friday, April 10)
- In person, one-page front and back hand-written “cheat sheet” allowed with formulas, notes, etc.
- You’ll have 3 hours.
- If you have accommodation requests, let the course staff know as soon as possible.

GPU computing

- Problem sets require GPUs
- GPUs are very expensive.
- Recommend using Google Colab
 - Colab Pro sometimes available for free to Cornell students (though not necessary!)
 - Let us know if you want Pro, can't get it for free or afford it, and we can see what we can do.
 - Make sure to start early to avoid usage limits

Final project

- Choose from a list of project topics.
- Can also pitch your own project idea for us to approve, e.g.:
 - Implement a recent paper
 - A research project
- Small groups (1 to 3 people) suggested.
 - Under exceptional circumstances, we can consider larger groups
- Deliverables:
 - Project proposal midway through semester
 - Short in-class presentation (last week of class)
 - Writeup (due during finals period)

Background

- We assume you've taken an "machine learning adjacent" class!
 - E.g., deep learning, machine learning, NLP, computer vision, etc.
- Python numerical computing and programming
- PyTorch knowledge strongly encouraged
- Numpy and PyTorch refreshers on website
- Linear algebra, multi-variable calculus, probability
- Math review on webpage.

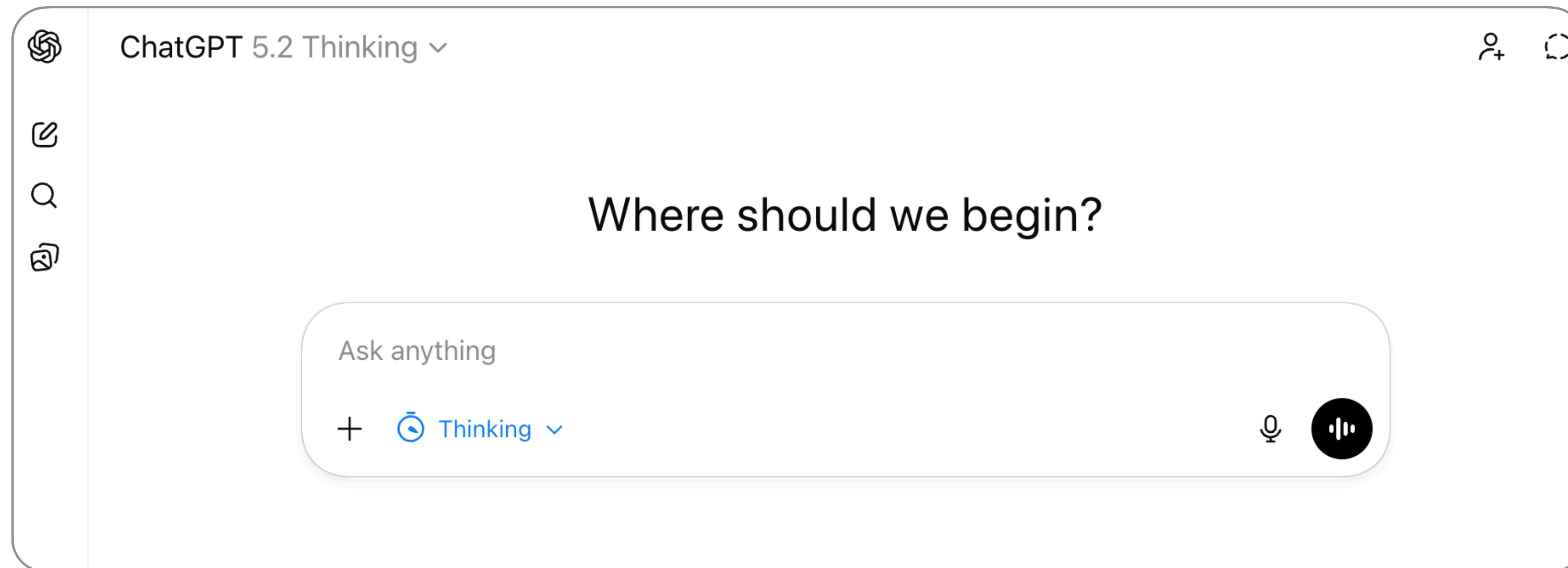
Questions?

Today

1. Class logistics
- 2. Generative models today**
3. What are generative models?
4. What makes generative modeling hard?

Generative models are everywhere

Language



Generating and editing images

Generated image

Edited image

Speech

Video

“The scene explodes with the raw, visceral, and unpredictable energy of a hardcore off-road rally, captured with a dynamic, almost found-footage or embedded sport...”, Veo 3.

User-controllable generation

Source: [Geng et al., "Motion Prompting", CVPR 2025]

Multimodal models

This is a picture of two teddy bears on the moon.

What are they doing?

They are having a conversation.

What object are they using?

It looks like a computer.

Is this surprising?

Yes, it is surprising.

Why is this picture surprising to you?

I think it is surprising because teddy bears are not usually found on the moon.

What is the common thing about these three images?

They are all flamingos.

What is the difference between these three images?

The first one is a cartoon, the second one is a real flamingo, and the third one is a 3D model of a flamingo.

This is an apple with a sticker on it.

What does the sticker say?

The sticker says "iPod".

Where is the photo taken?

It looks like it's taken in a backyard.

Do you think it is printed or handwritten?

It looks like it's handwritten.

What color is the sticker?

It's white.

Adapting generative models to other tasks

Question: If $a > 1$, then the sum of the real solutions of $\sqrt{a - \sqrt{a + x}} = x$ is equal to

Response: <think>

To solve the equation $\sqrt{a - \sqrt{a + x}} = x$, let's start by squaring both ...

$$(\sqrt{a - \sqrt{a + x}})^2 = x^2 \implies a - \sqrt{a + x} = x^2.$$

Rearrange to isolate the inner square root term:

$$(a - x^2)^2 = a + x \implies a^2 - 2ax^2 + (x^2)^2 = a + x \implies x^4 - 2ax^2 - x + (a^2 - a) = 0$$

...

Wait, wait. Wait. That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be ...

We started with the equation:

$$\sqrt{a - \sqrt{a + x}} = x$$

First, let's square both sides:

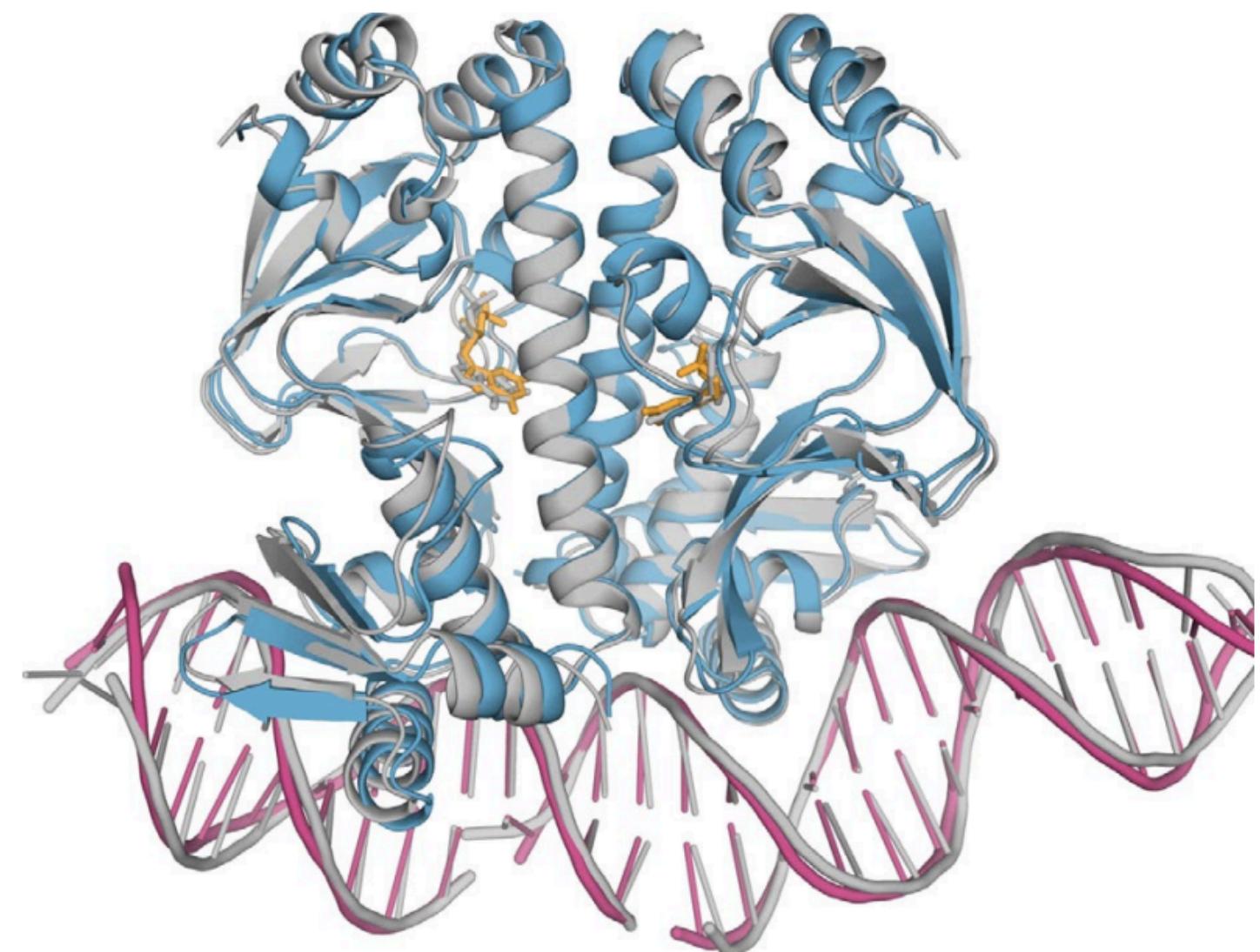
$$a - \sqrt{a + x} = x^2 \implies \sqrt{a + x} = a - x^2$$

Next, I could square both sides again, treating the equation: ...

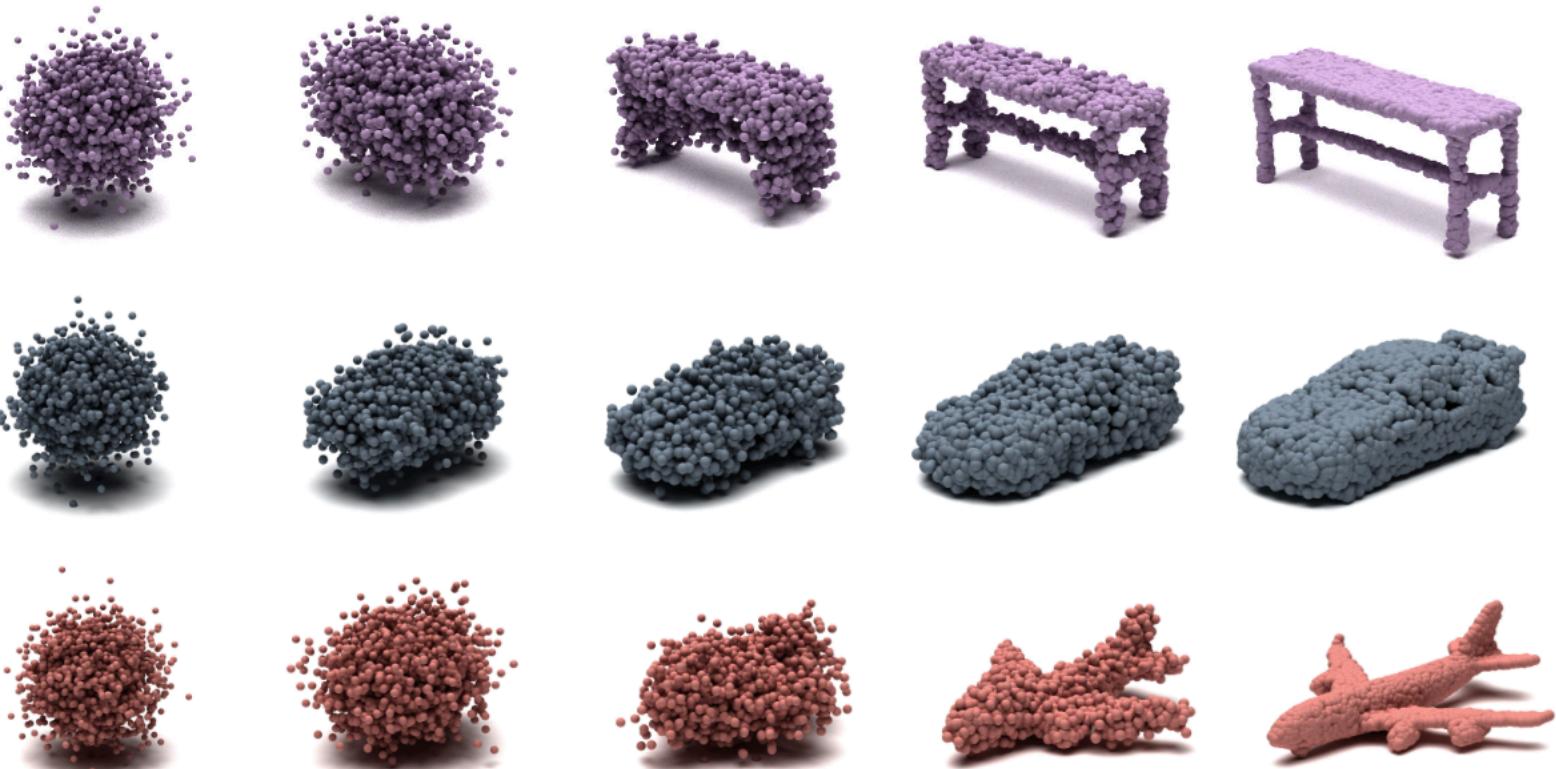
Reasoning and math [DeepSeek "R1"]

3D video generation [Wu et al., "CAT4D", 2025]

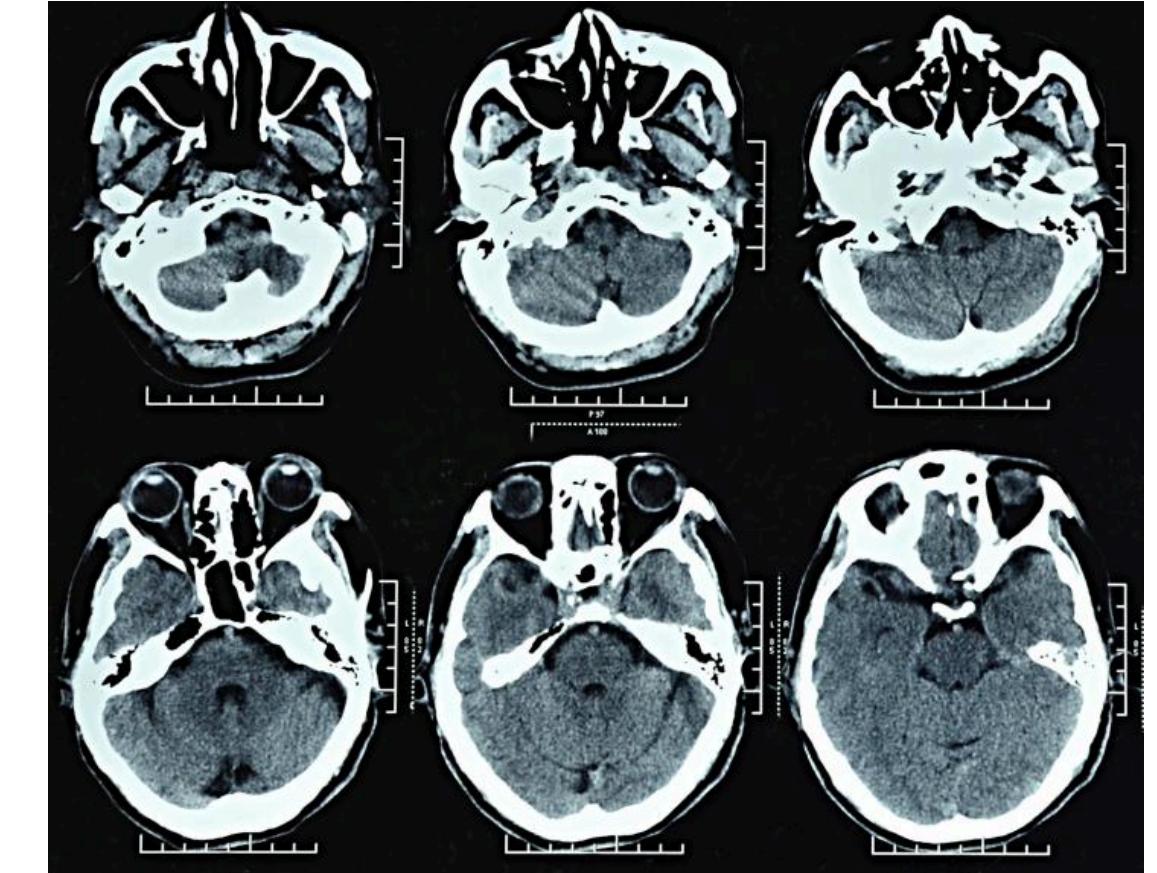
And many other domains...



Proteins [Abramson et al.,
"AlphaFold3", 2024]



3D shapes
[Zhou et al., 2021]



Medical images
[Song, Shen et al., 2022]

Robotics
[Zhao et al., 2024]

What applications do you have in mind?

Today

1. Class logistics
2. Generative models today
- 3. What are generative models?**
4. What makes generative modeling hard?

Rule-based (or physical) models for generating data

Generating images using traditional computer graphics:

High level
description

```
Cube(color=blue, position=(x,y,z), size=...)  
Cylinder(color=red, position=(x',y',z'), size=..)
```

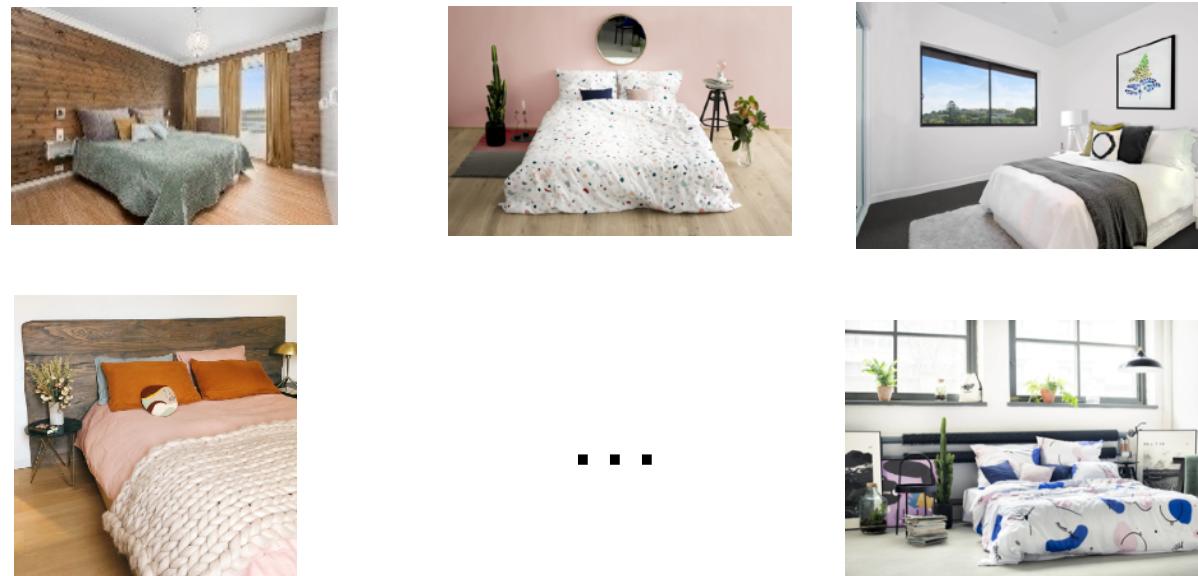
Generation (graphics)

Inference (vision as
inverse graphics)

Raw sensory
outputs

Statistical generative models

Statistical generative models are learned from data!

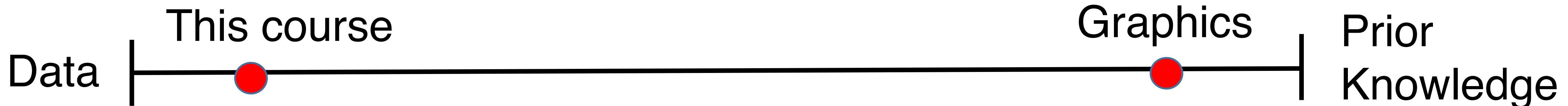


Data
(e.g., images of bedrooms)

+

Prior Knowledge
(e.g., physics, materials, ..)

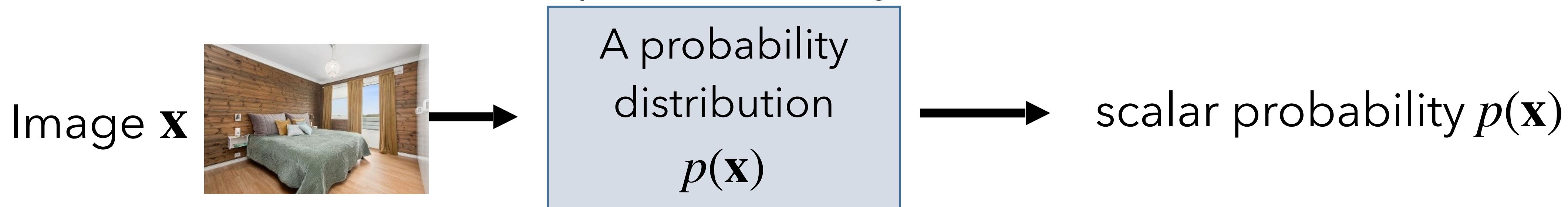
Priors are always necessary, but there is a spectrum.



Statistical generative models

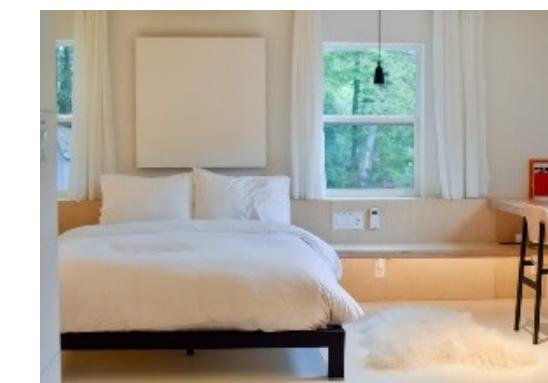
A statistical generative model is a **probability distribution** $p(\mathbf{x})$

- **Data:** samples (e.g., images of bedrooms)
- **Prior knowledge:** parametric form (e.g., Gaussian?), loss function (e.g., maximum likelihood?), optimization algorithm, etc.

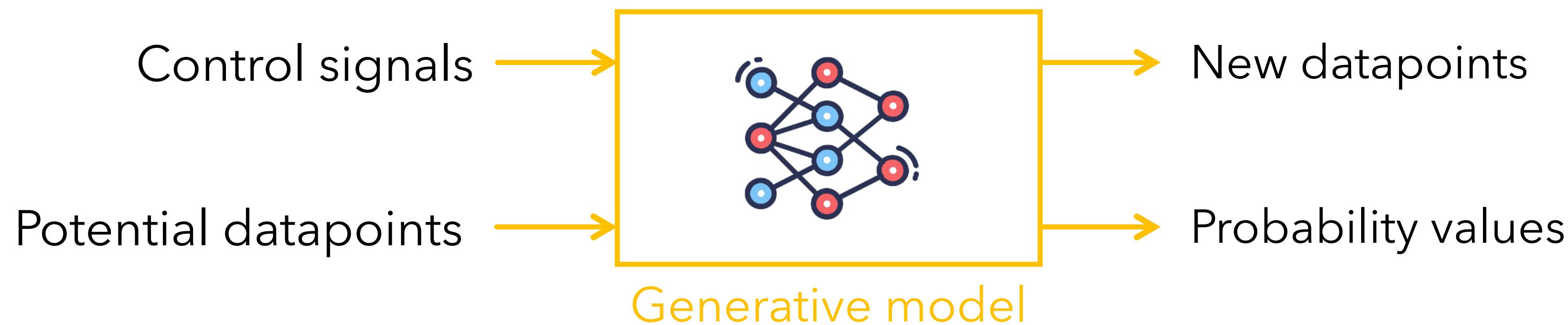


It is generative because sampling from $p(\mathbf{x})$ generates new images

...



Some goals of generative modeling

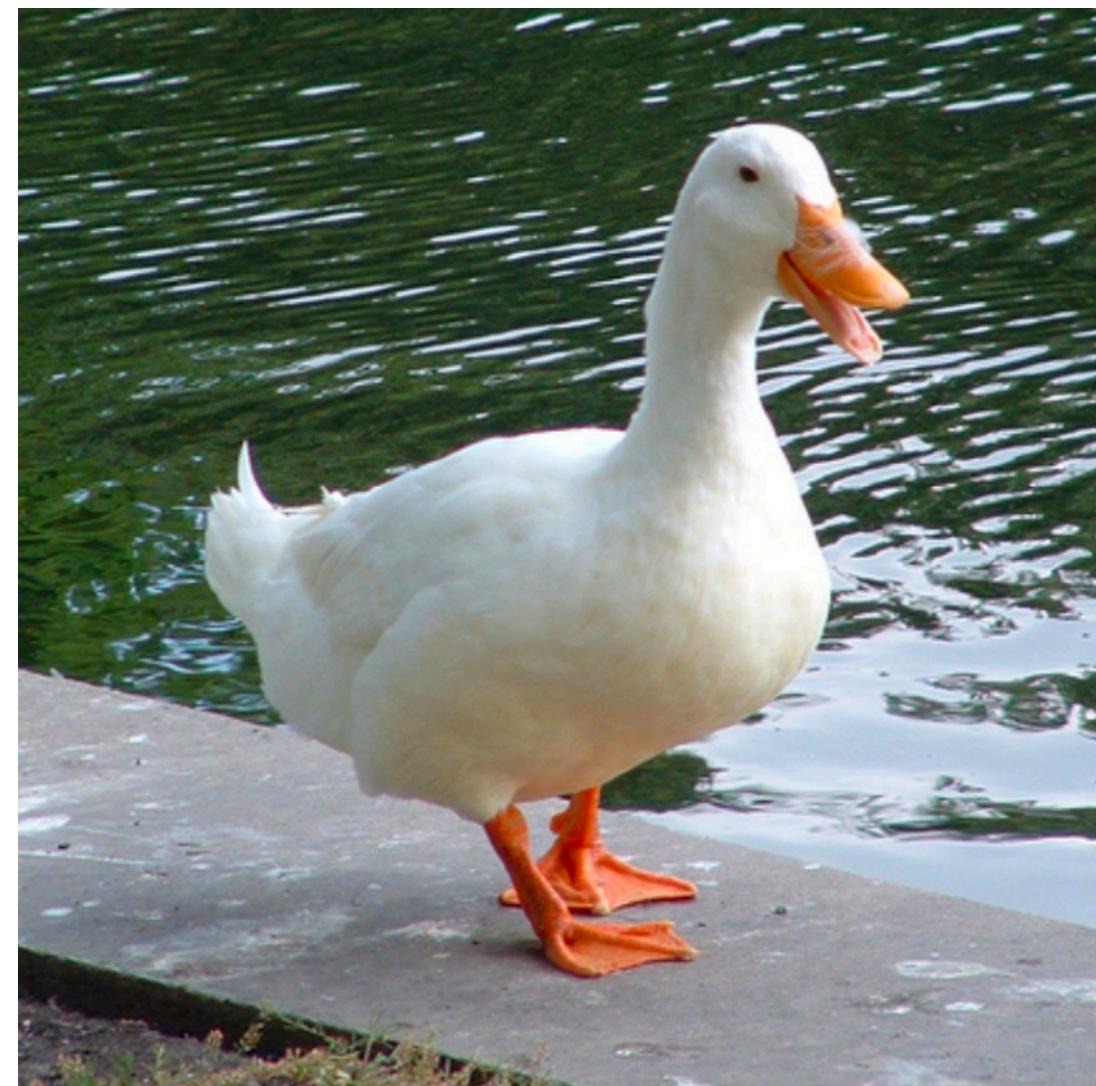
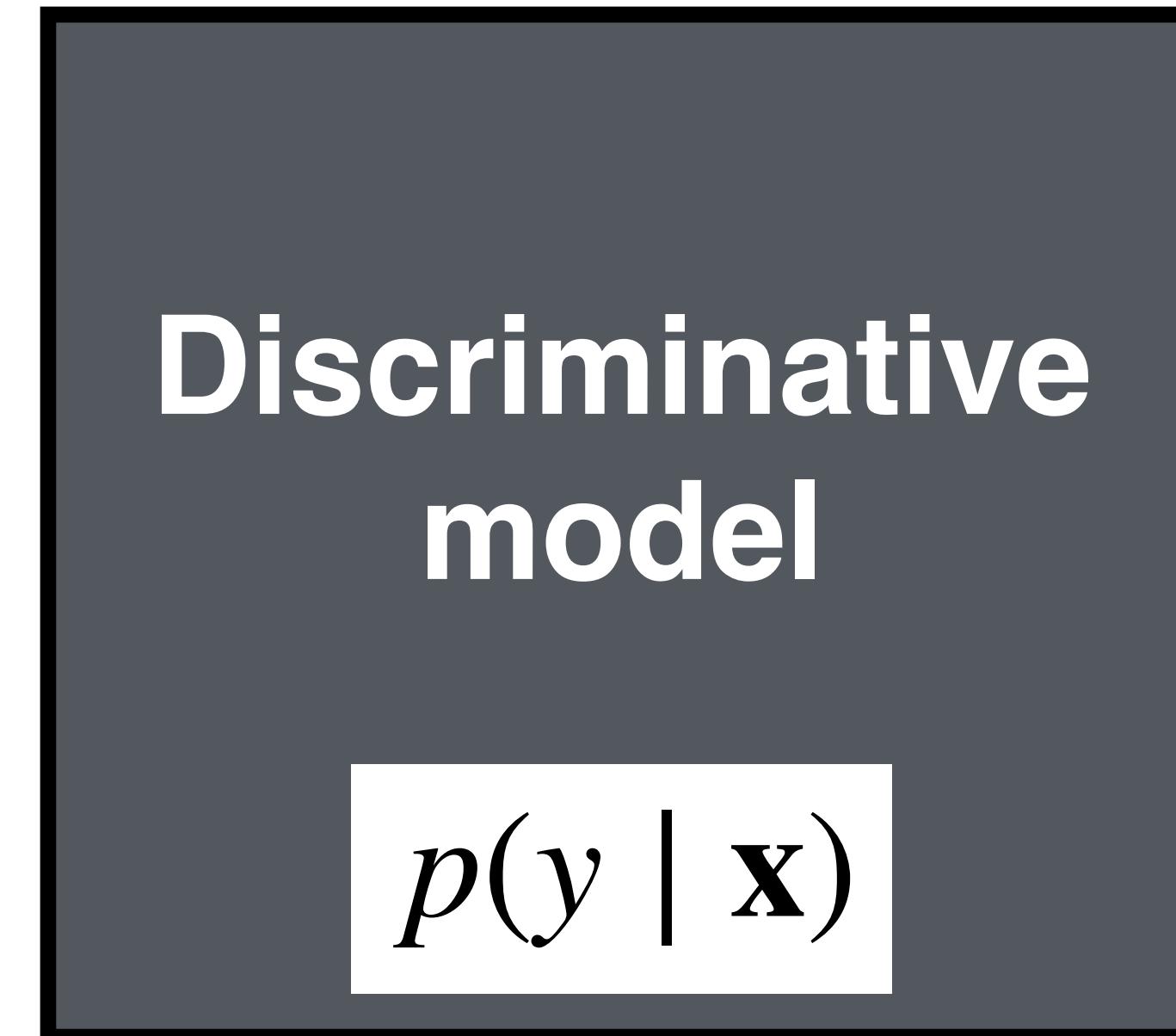


Some of the things we'd like from a generative model:

- A “data simulator”: generating data as an end in itself.
- Get probability density estimates from $p(\mathbf{x})$.
- Adapt the underlying model for other tasks.

Discriminative vs. generative models

Probabilistic interpretation $p(y | x)$



“Duck”

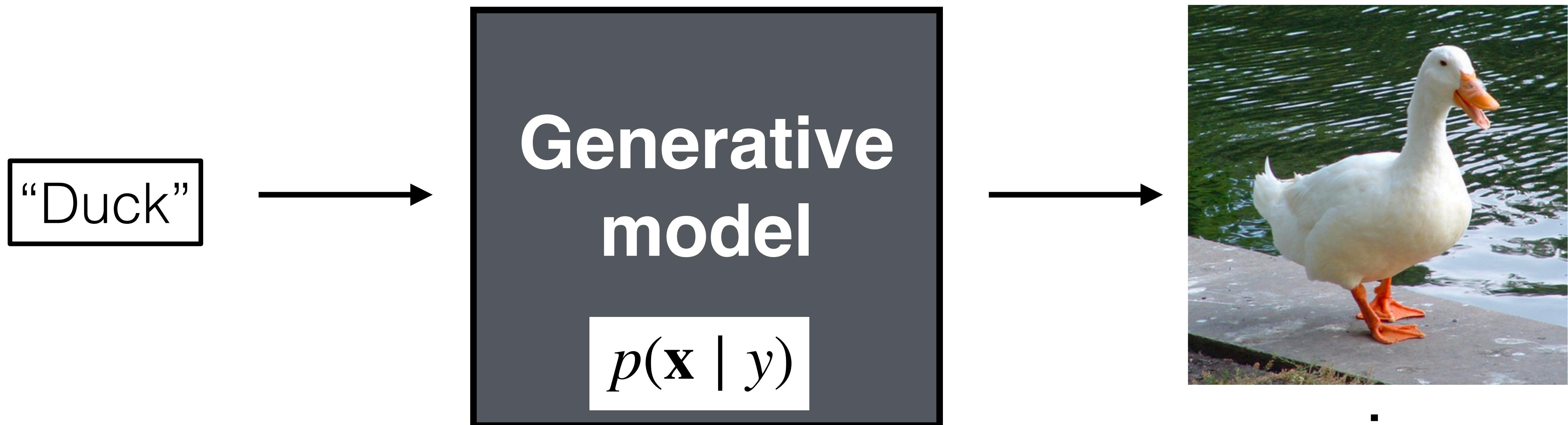
:

image x

label y

Discriminative vs. generative models

Probabilistic interpretation $p(\mathbf{x} | y)$



label y
“control signal”

⋮
image \mathbf{x}

Converting a generative model into a classifier

But if we have a generative model, we can convert it into a discriminative model using Bayes rule:

classifier

↓

$$p(y | x)$$

Converting a generative model into a classifier

But if we have a generative model, we can convert it into a discriminative model using Bayes rule:

$$p(y | x) = \frac{p(x | y)p(y)}{p(x)}$$

classifier

generative model

$p(x | y)$

$p(y)$

$p(x)$

base rate of label

doesn't depend on y

Converting a generative model into a classifier

But if we have a generative model, we can convert it into a discriminative model using Bayes rule:

Pick the label that is most likely to produce the data:

$$y^* = \operatorname{argmax}_y p(\mathbf{x} \mid y)p(y)$$

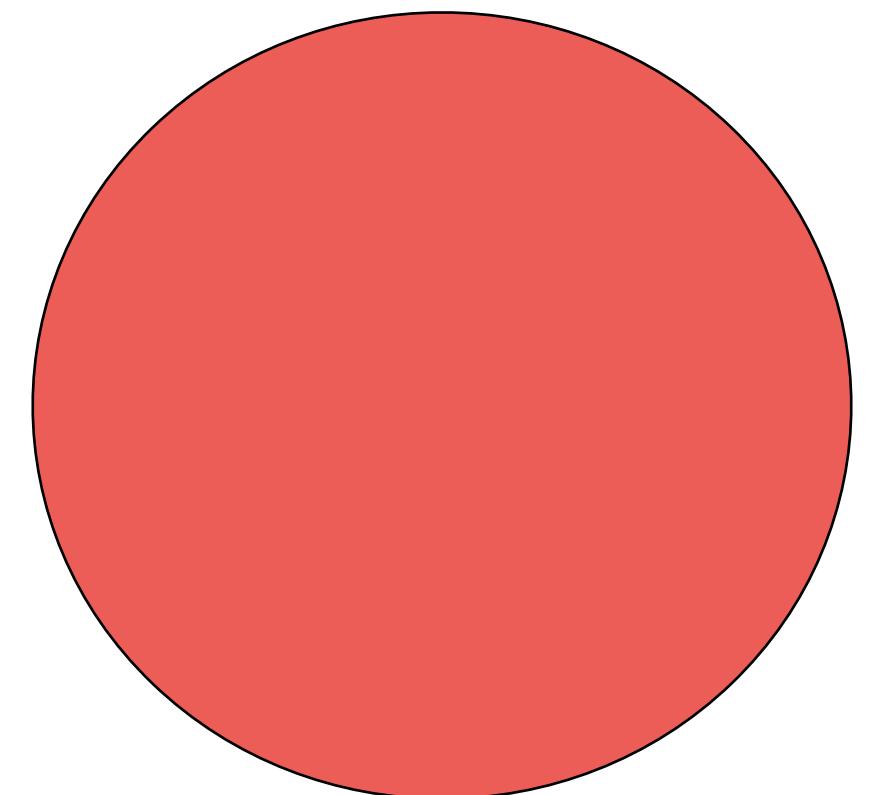
Deep generative models

Source distribution

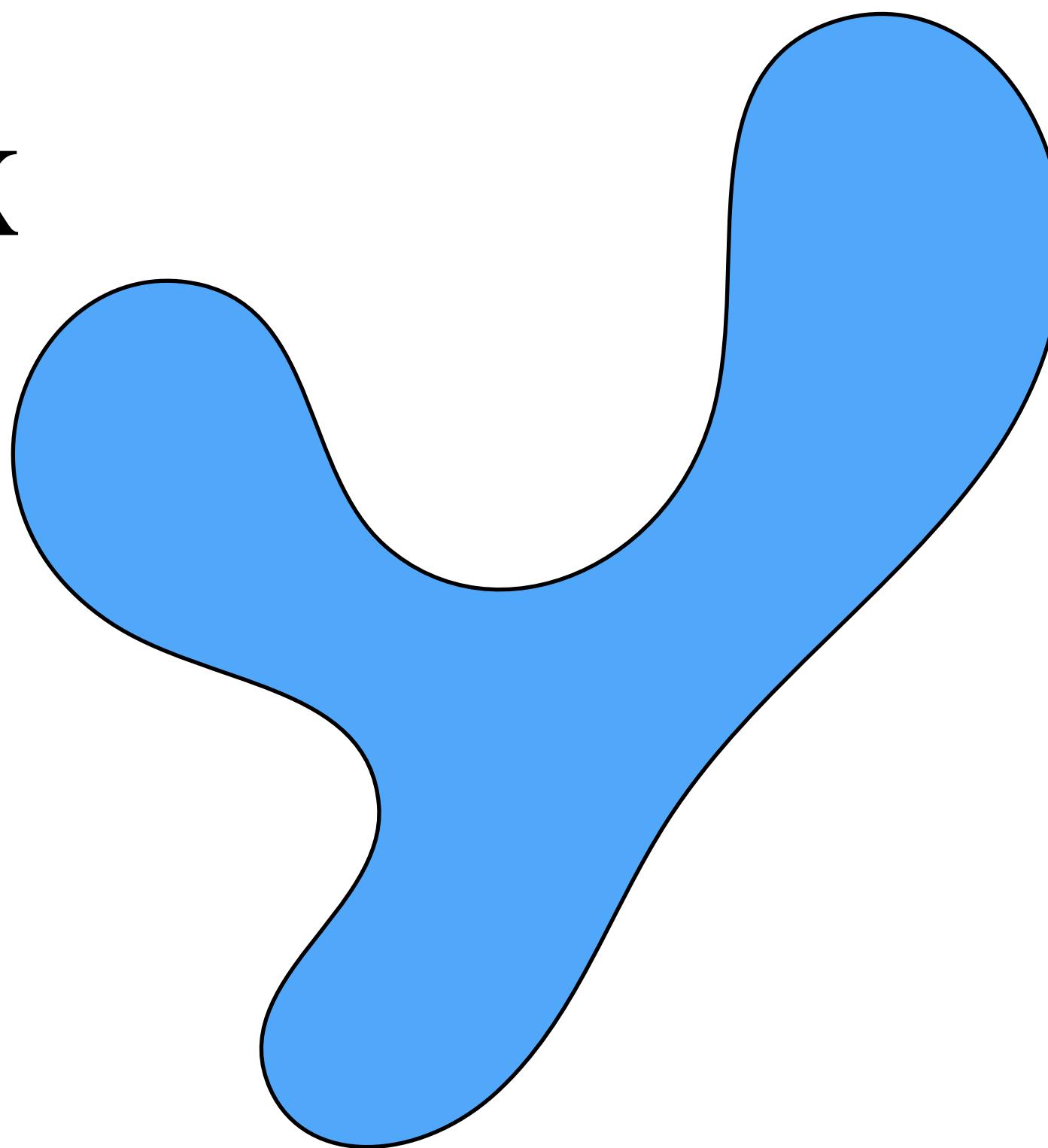
Target distribution

Network:

$$f_{\theta} : \mathbf{Z} \rightarrow \mathbf{X}$$

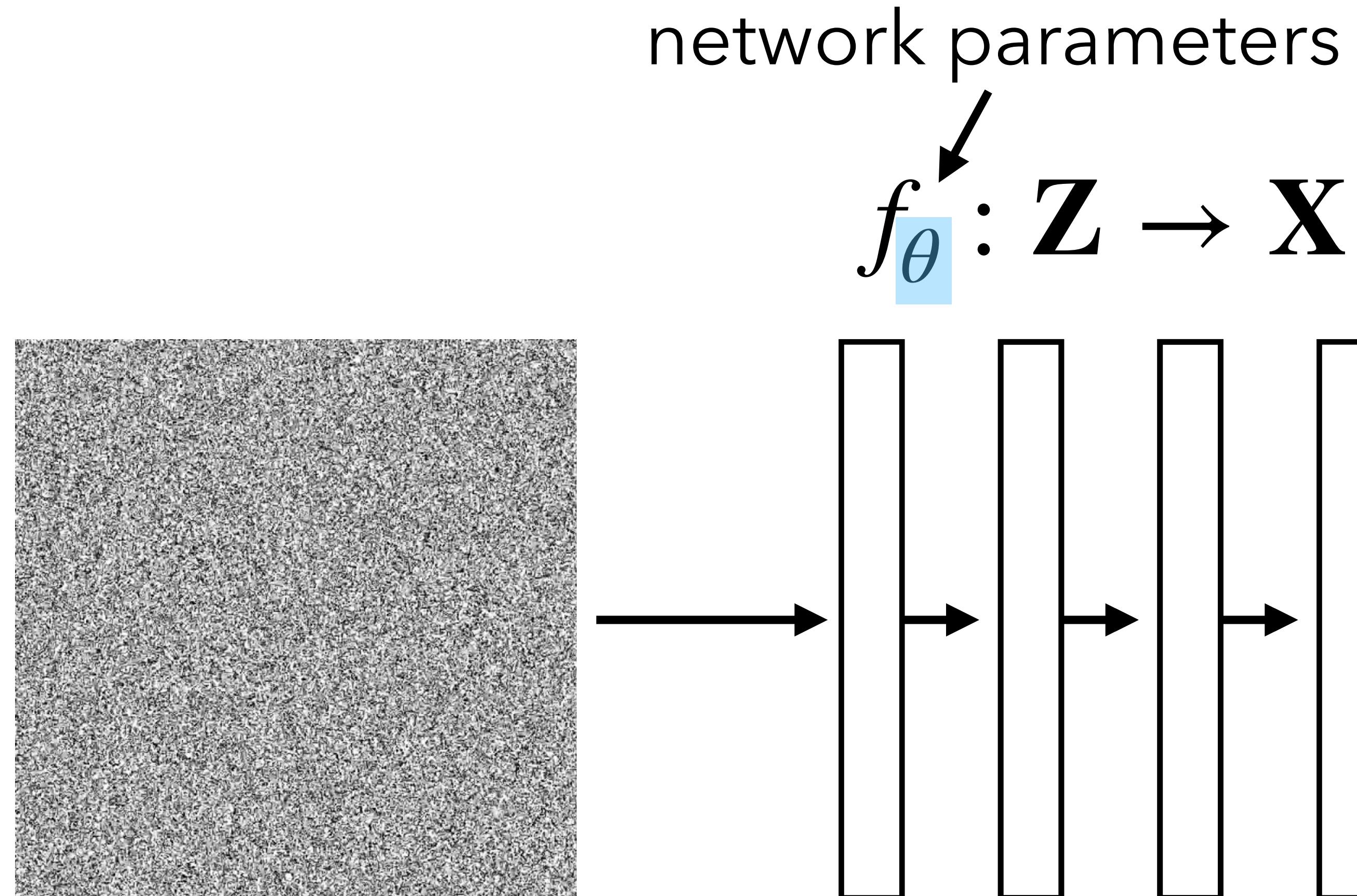


$$p(z)$$



$$p(x)$$

Deep generative models



Learning the parameters:

$$\theta^* = \operatorname{argmin}_{\theta} L(\theta, \{\mathbf{X}_i\}_{i=1}^N)$$

$$\mathbf{Z} \sim \mathcal{N}(0, I)$$

$$\mathbf{X} = f_{\theta}(\mathbf{Z})$$

e.g., normalizing flow

What makes this challenging?

State of the art generation 10+ years ago

Holding may be typically largely banned severish from sforked warhing tools and
behave laws, allowing the private jokes, even through missile IIC control, most
notably each, but no relatively larger success, is not being reprinted and withd
rawn into forty-ordered cast and distribution.

Besides these markets (notably a son of humor).

Sometimes more or only lowed " to force a suit for <http://news.bbc.co.uk/1/sid9kcid/web/9960219.html> "[#10:82-14]" .
<blockquote>

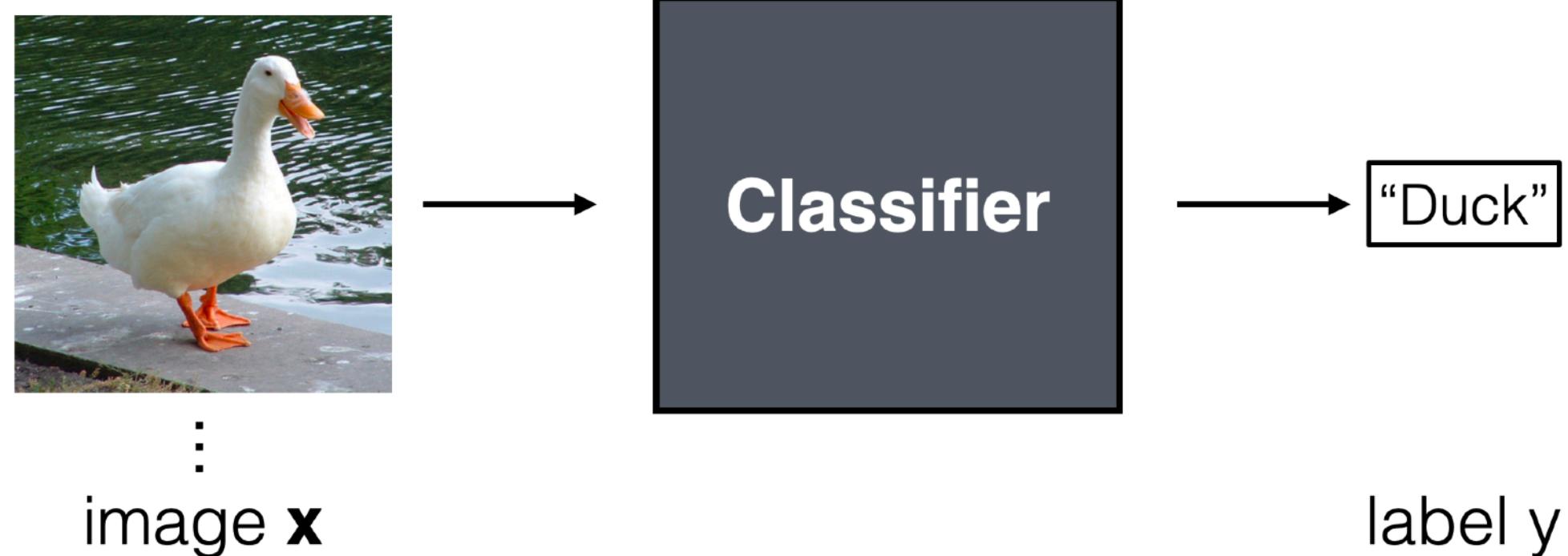
Generated Wikipedia text from [Graves, "Generating Sequences With Recurrent Neural Networks", 2014]

Generated images from [Goodfellow et al., "Generative Adversarial Nets", 2014]

Many possible outputs

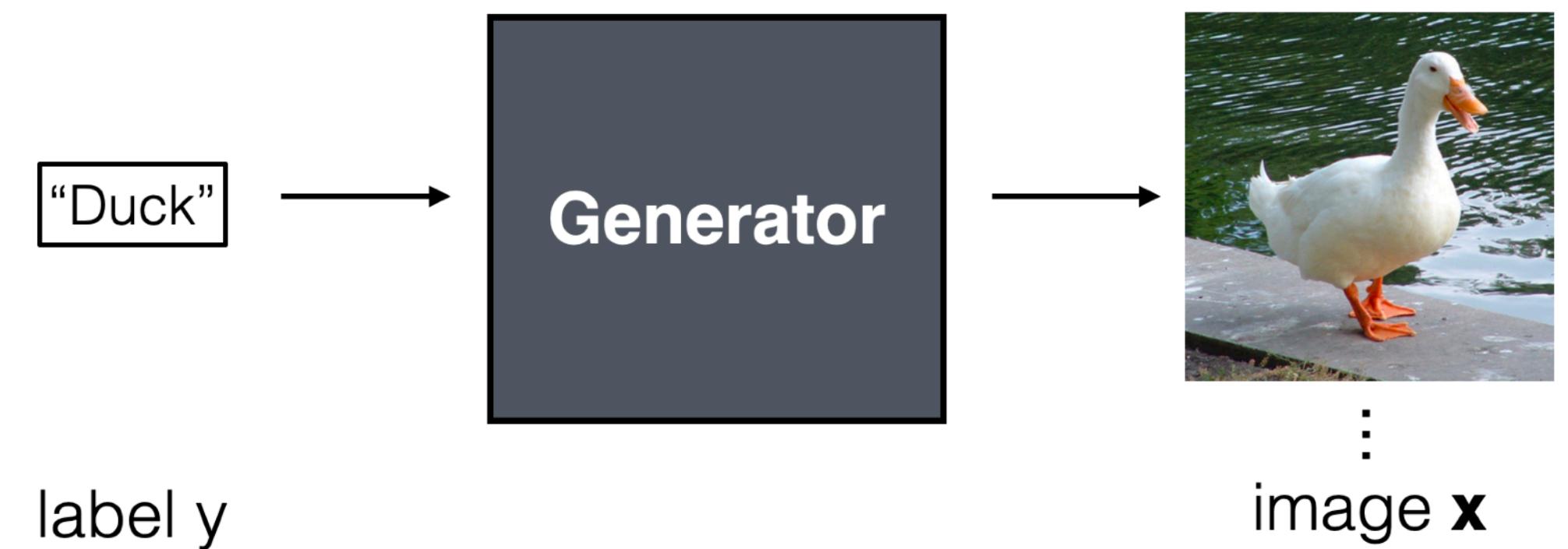
Discriminative model

One true y value.

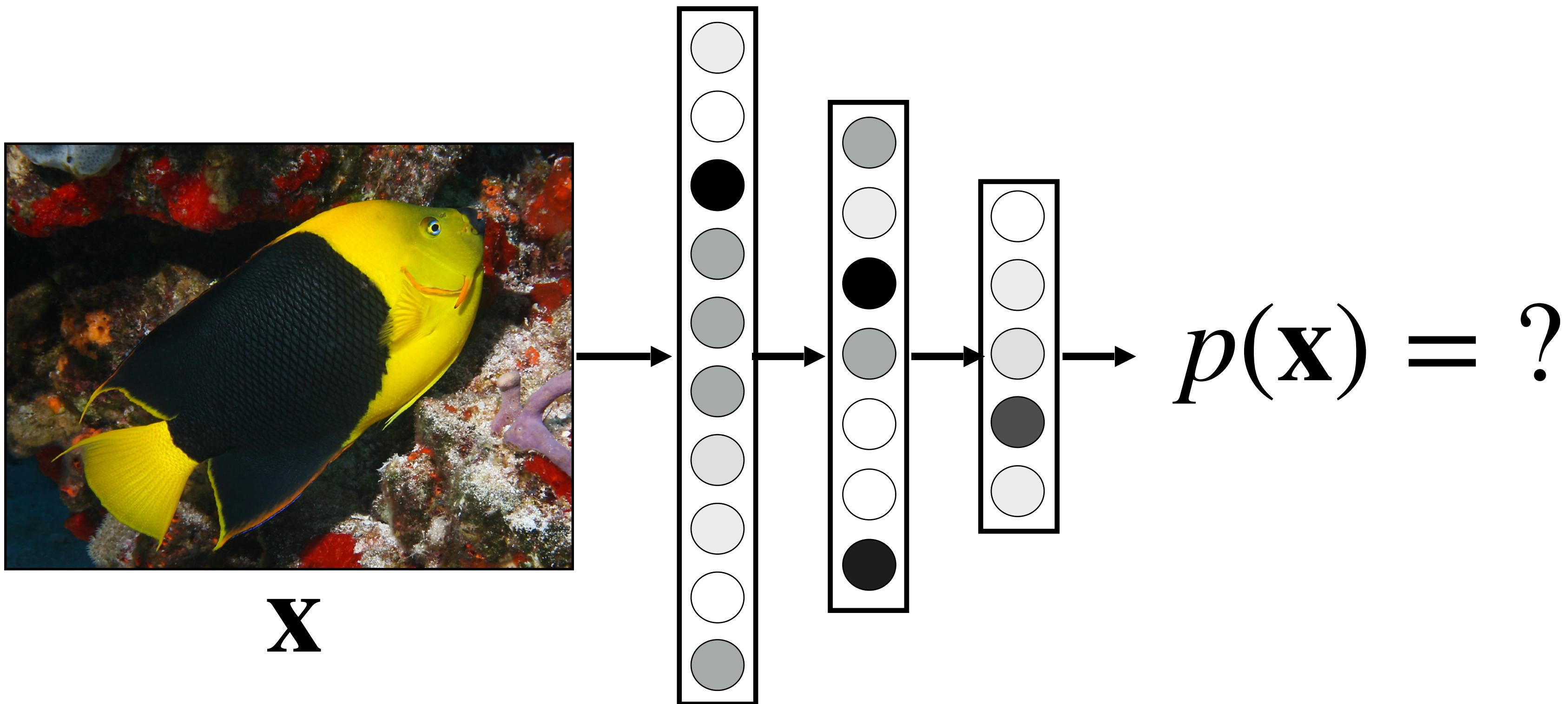


Generative model

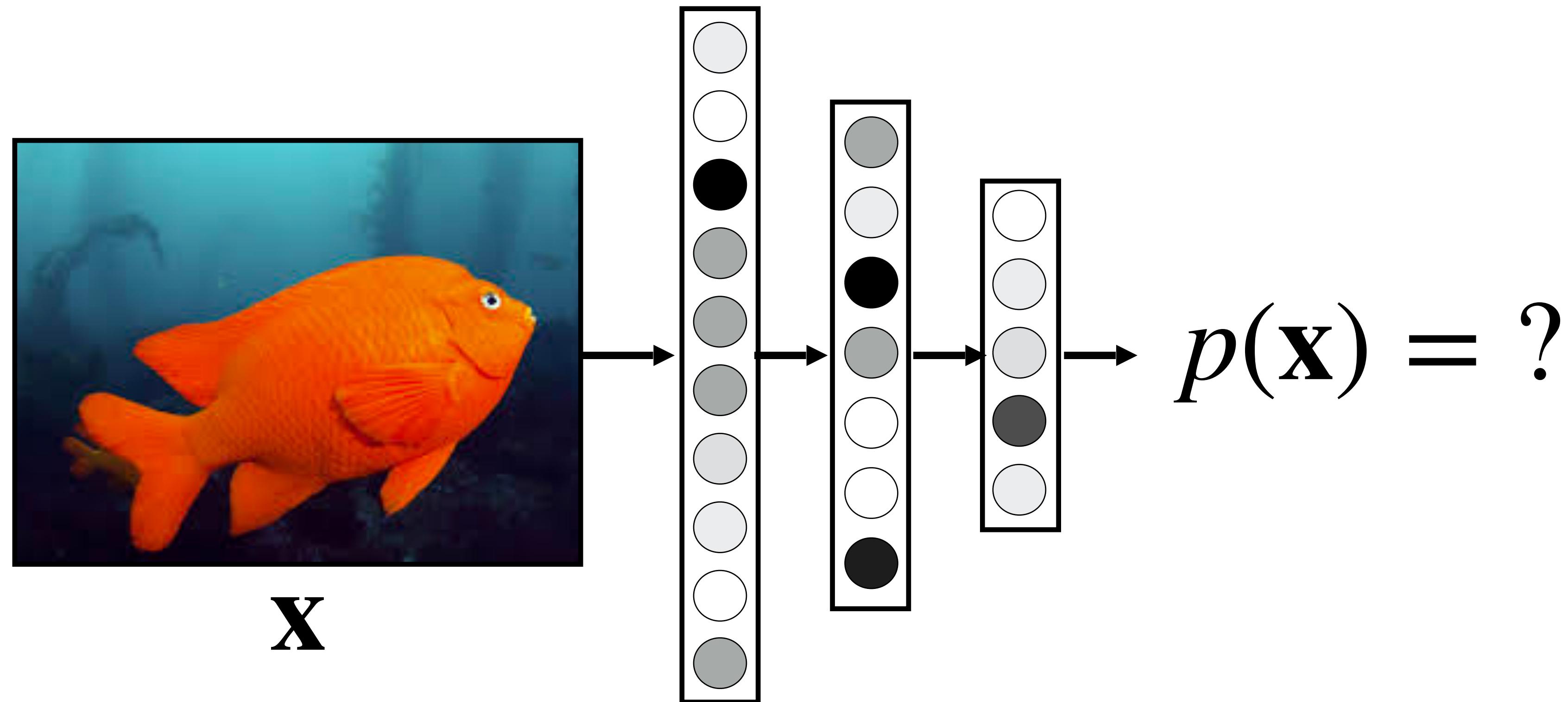
Many values of x .



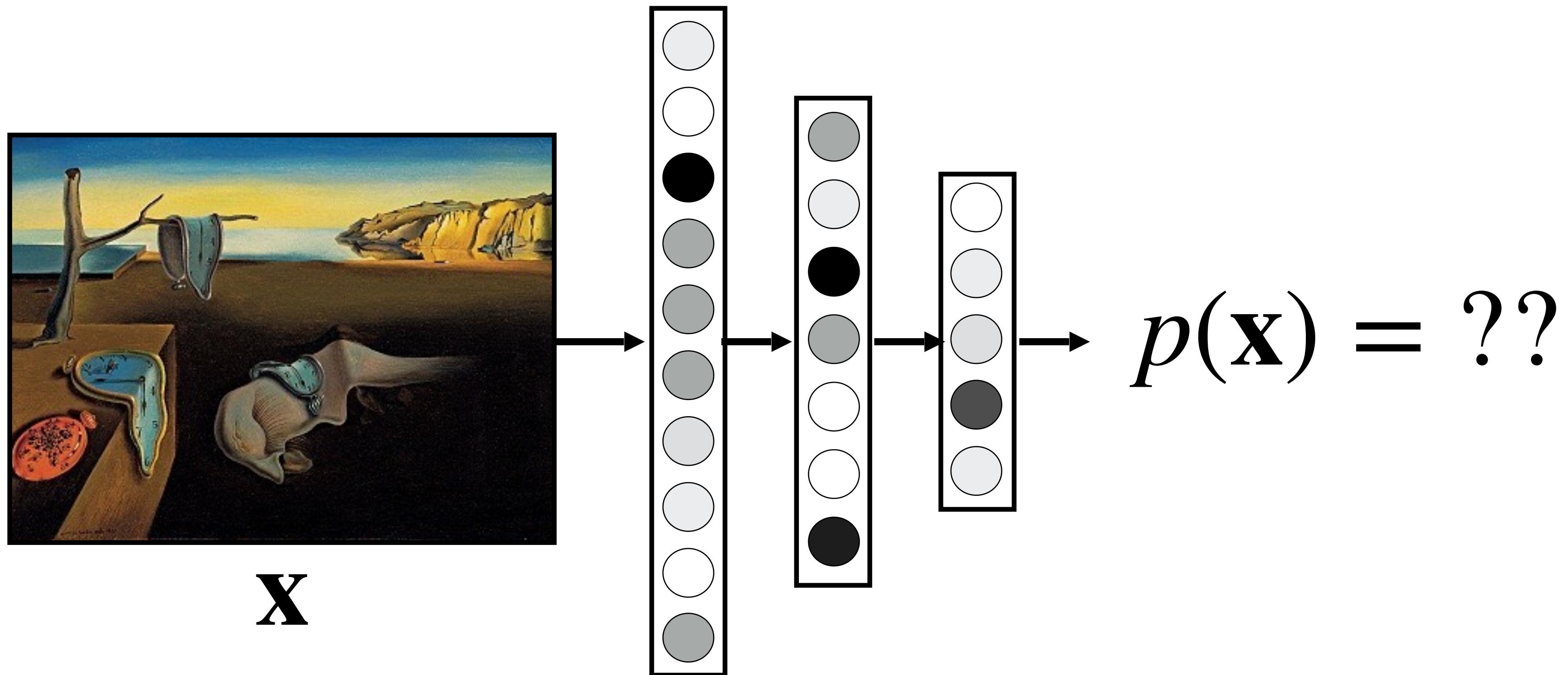
The need to model everything



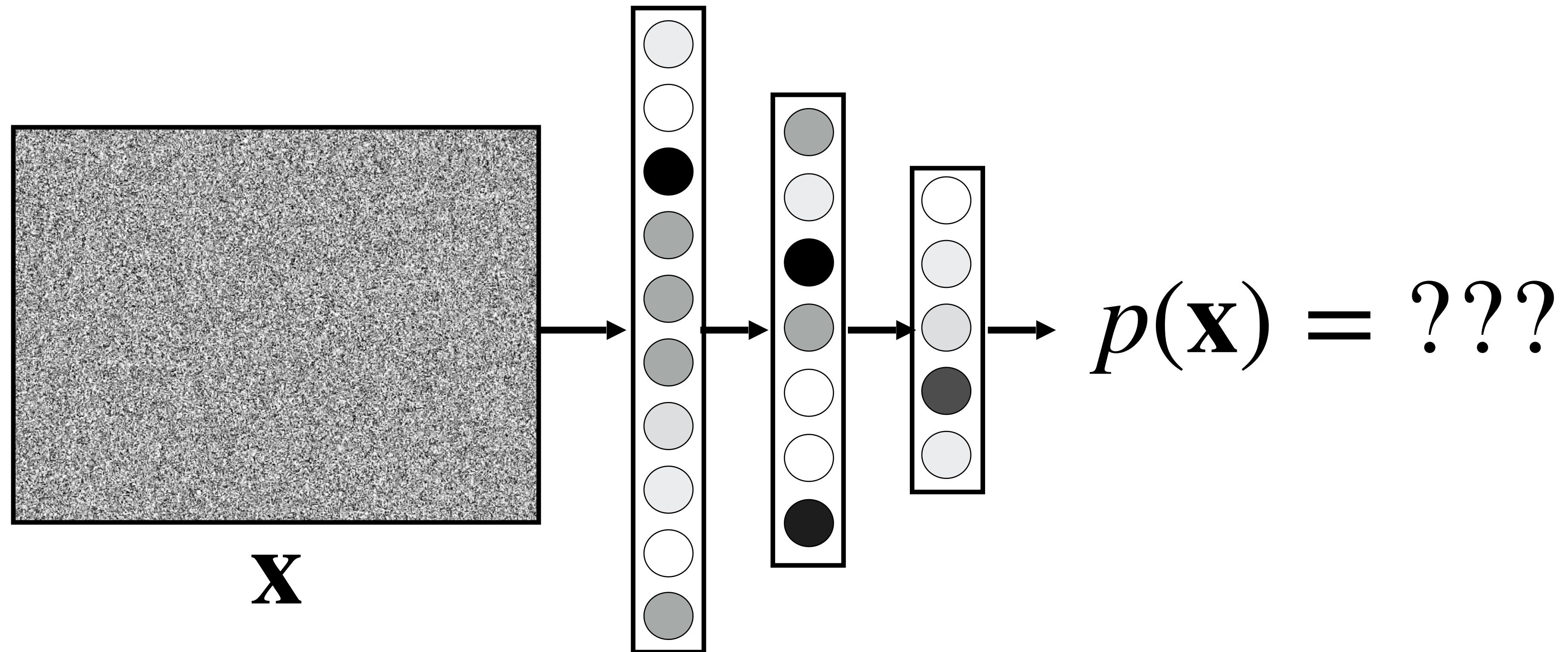
The need to model everything



The need to model everything

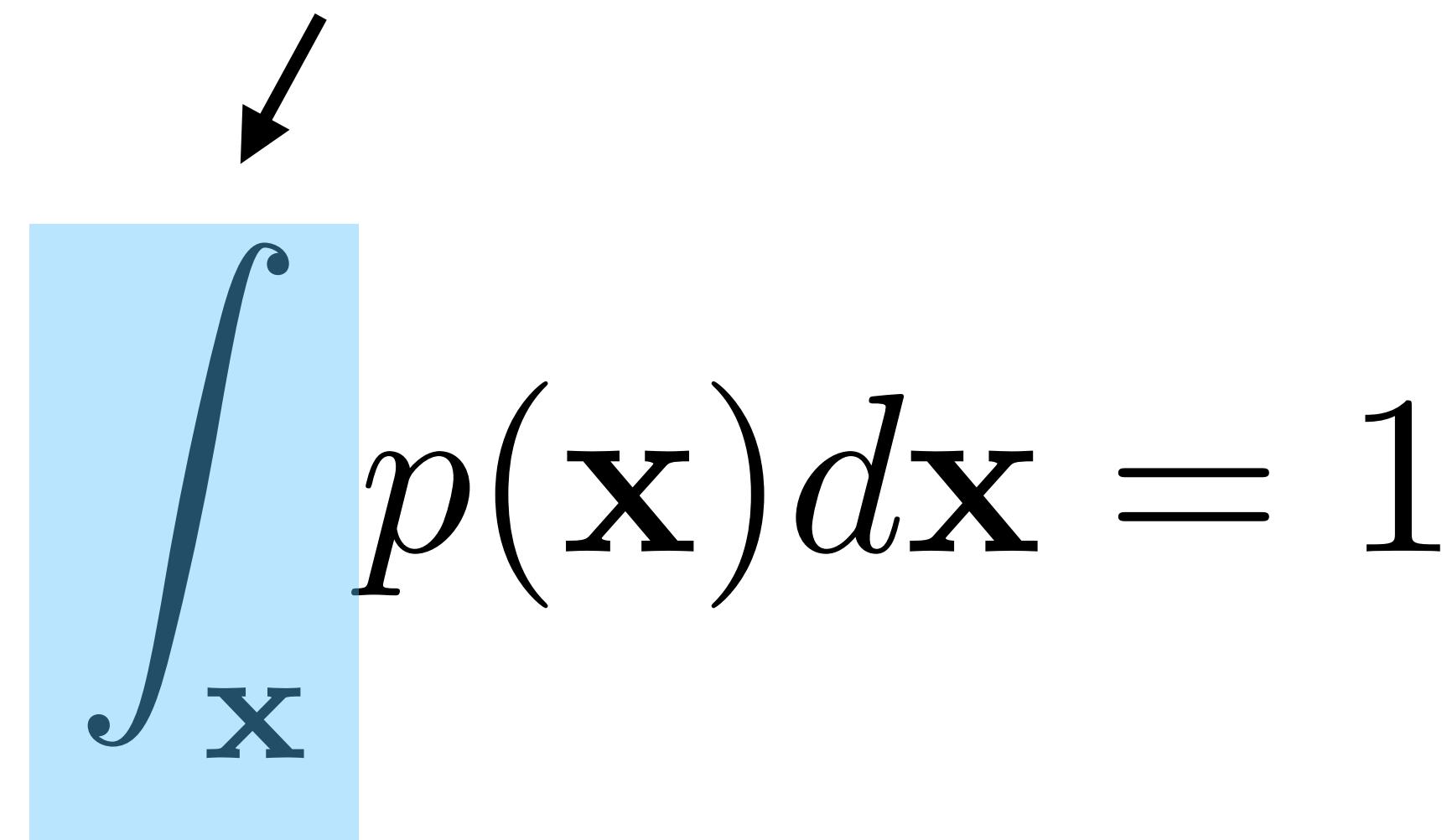


The need to model everything

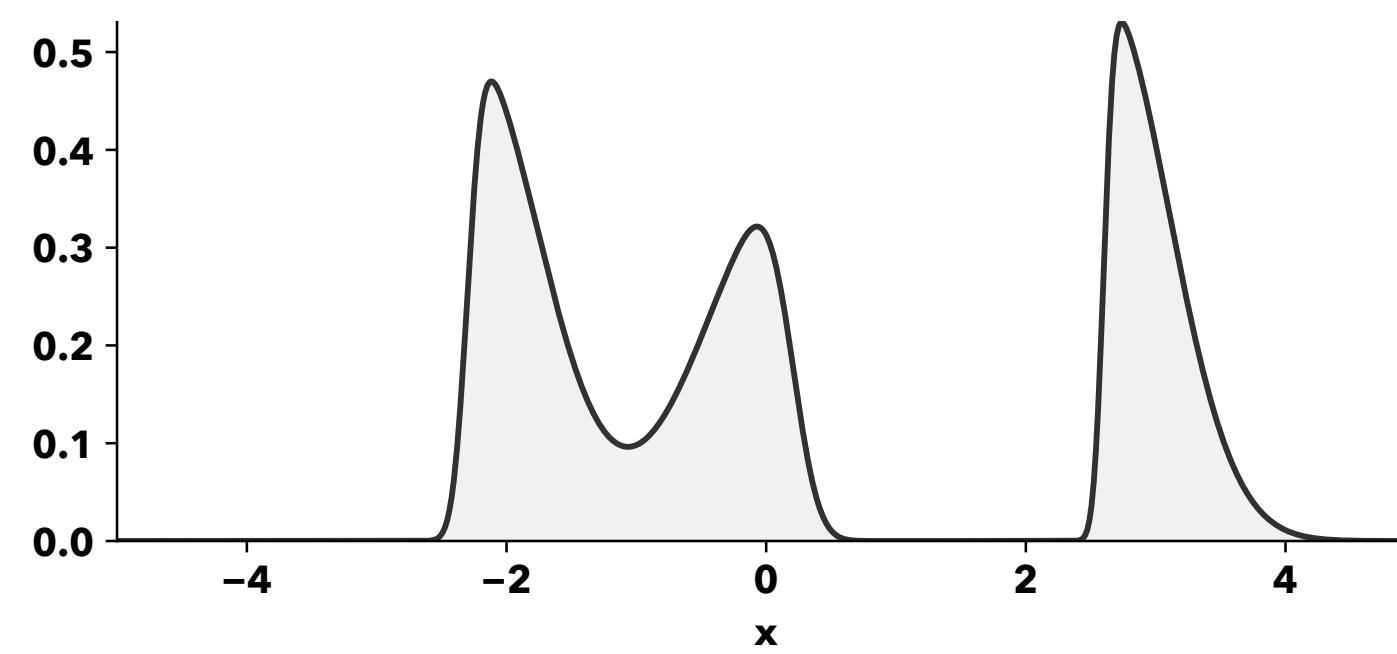


The need to model everything

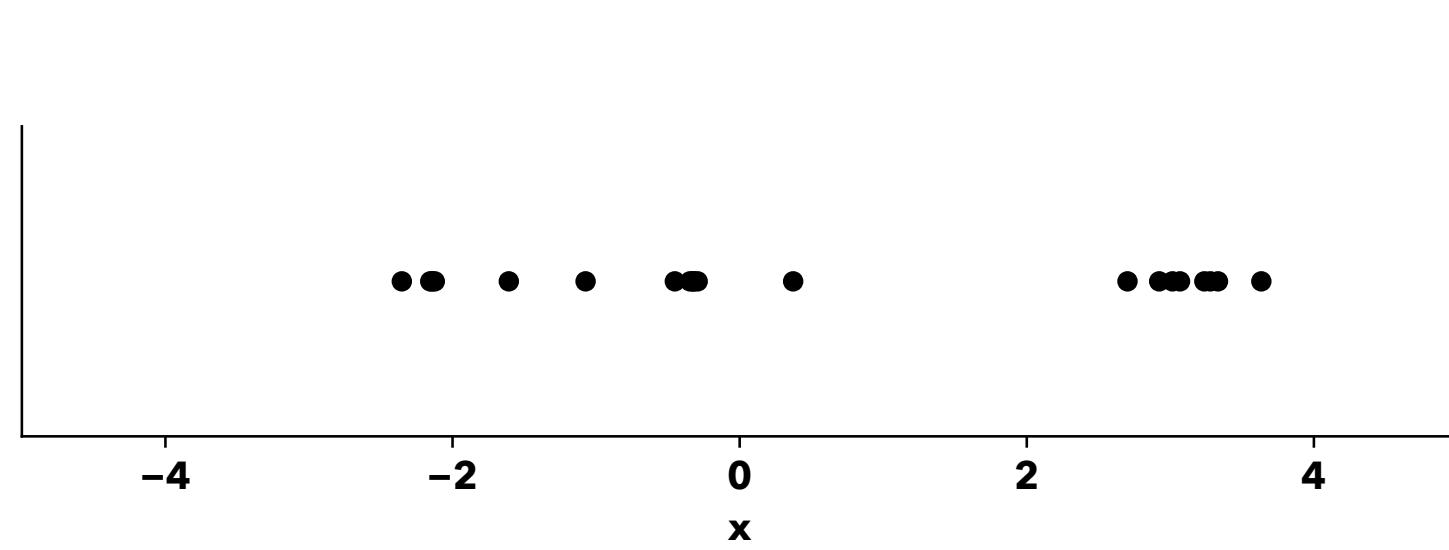
integration over high dimensional space


$$\int_{\mathbf{x}} p(\mathbf{x}) d\mathbf{x} = 1$$

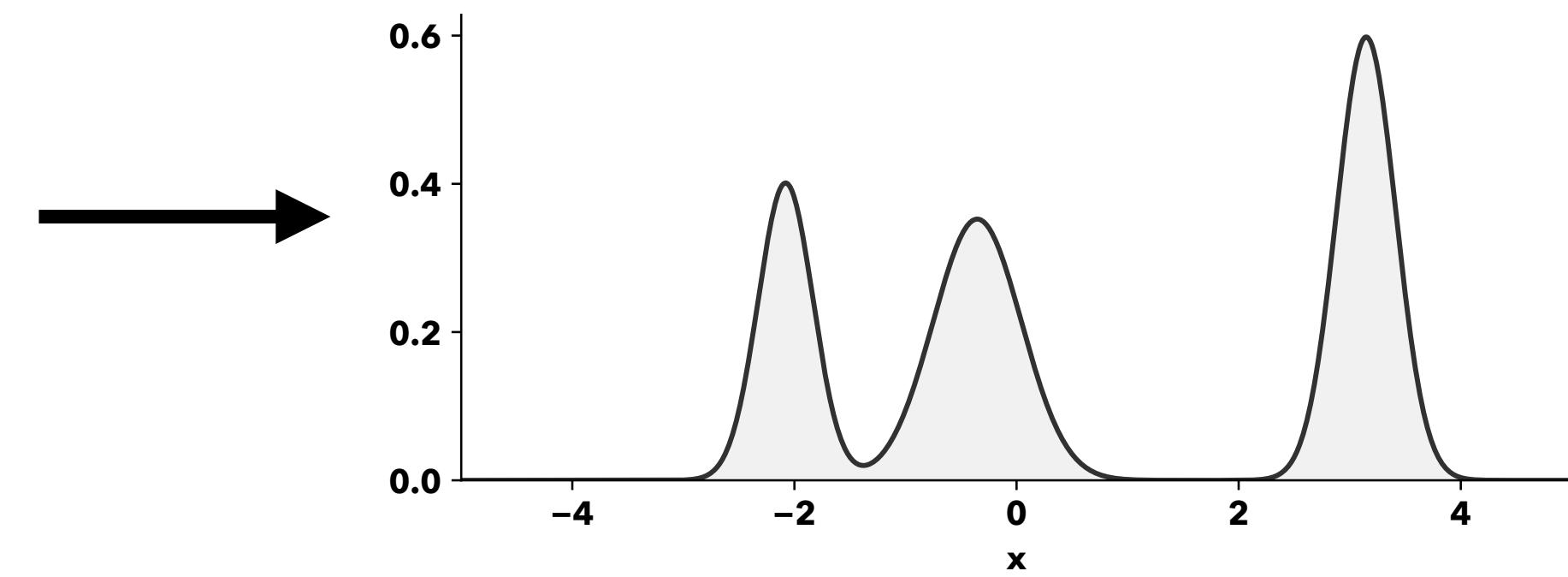
Learning from samples



True distribution



Samples

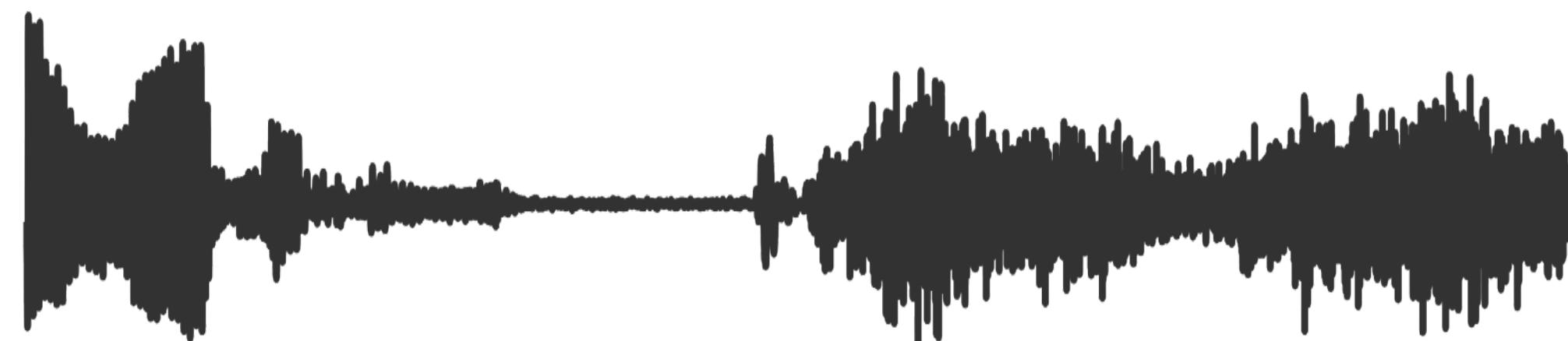


Fit distribution

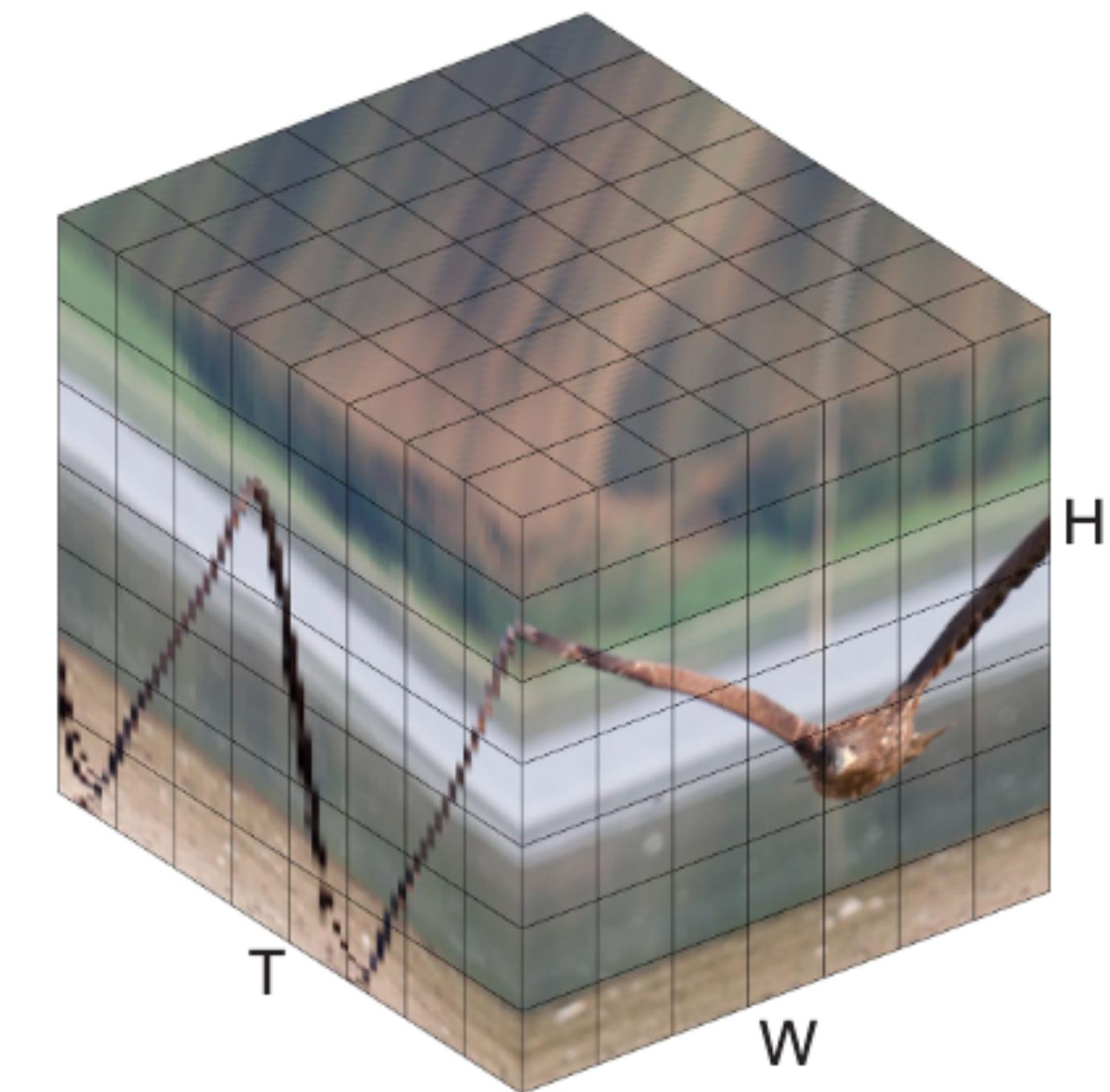
Diversity of different inputs

“it was the best of times,
it was the worst of times”

Discrete sequences



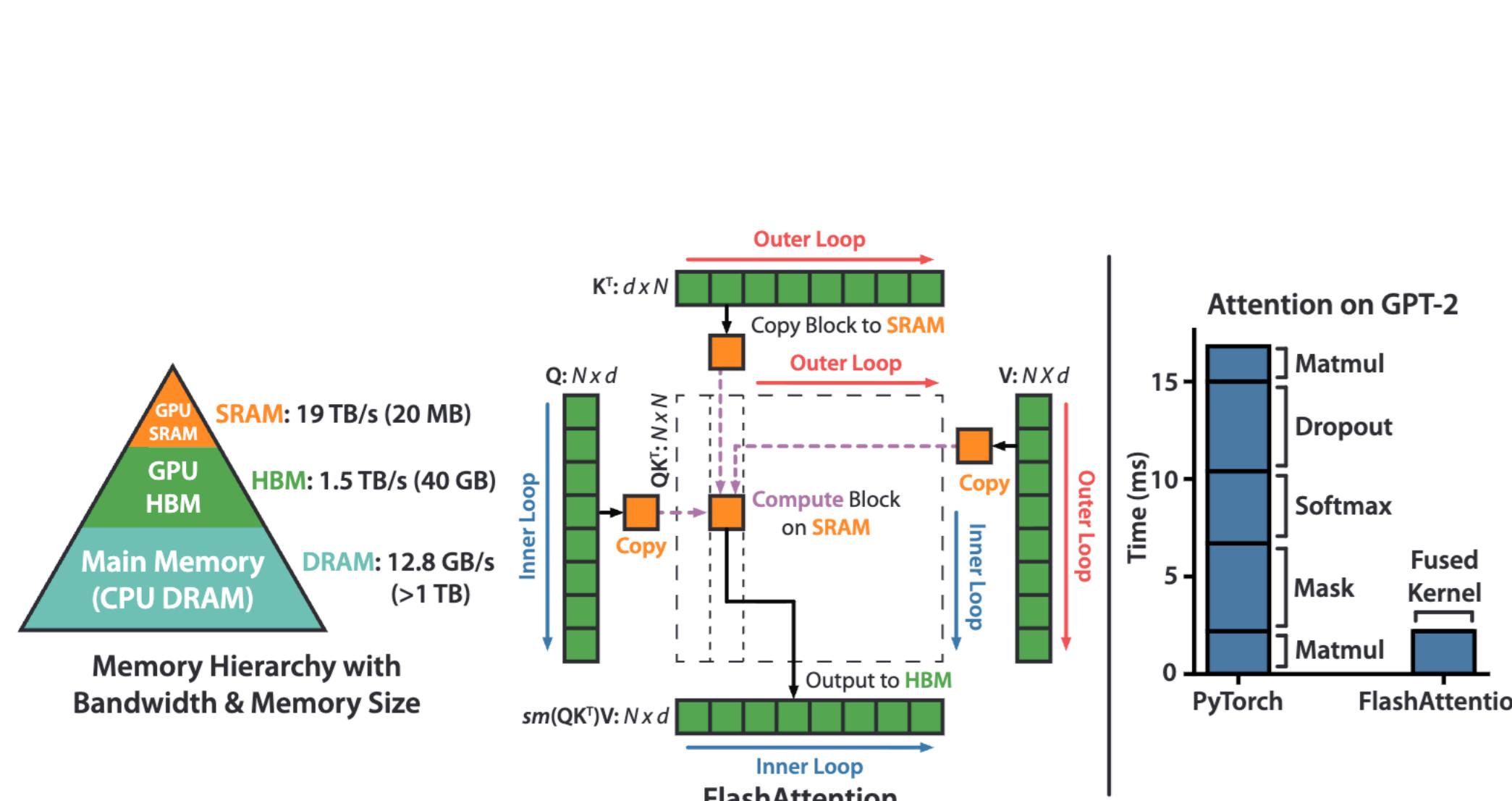
Continuous sequences



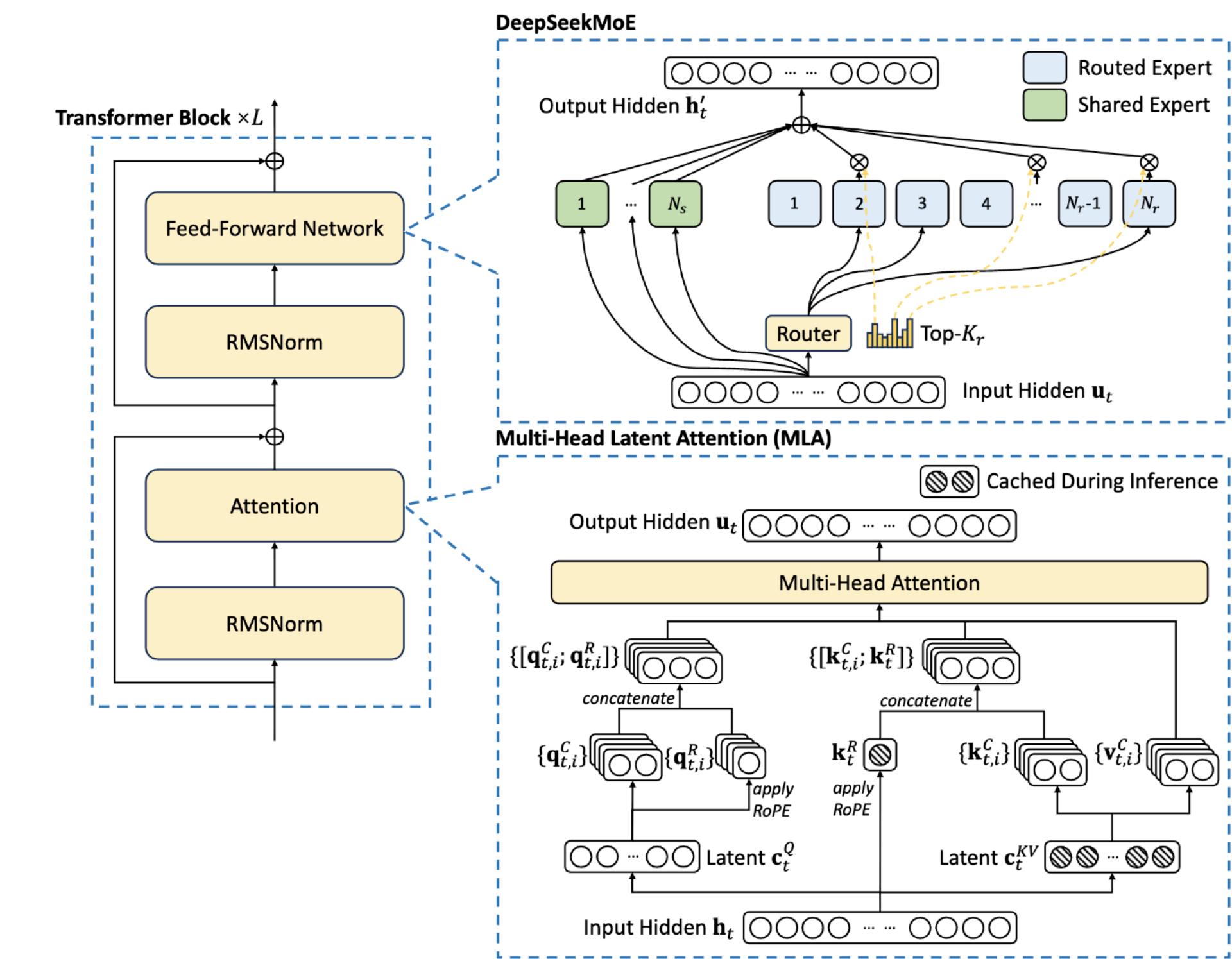
Continuous grids

Computation

Need architectures and learning methods that are efficient and scalable.



Source: [Dao et al., "FlashAttention", 2022]



Source: [DeepSeek V3, 2024]

And many other challenges

For example:

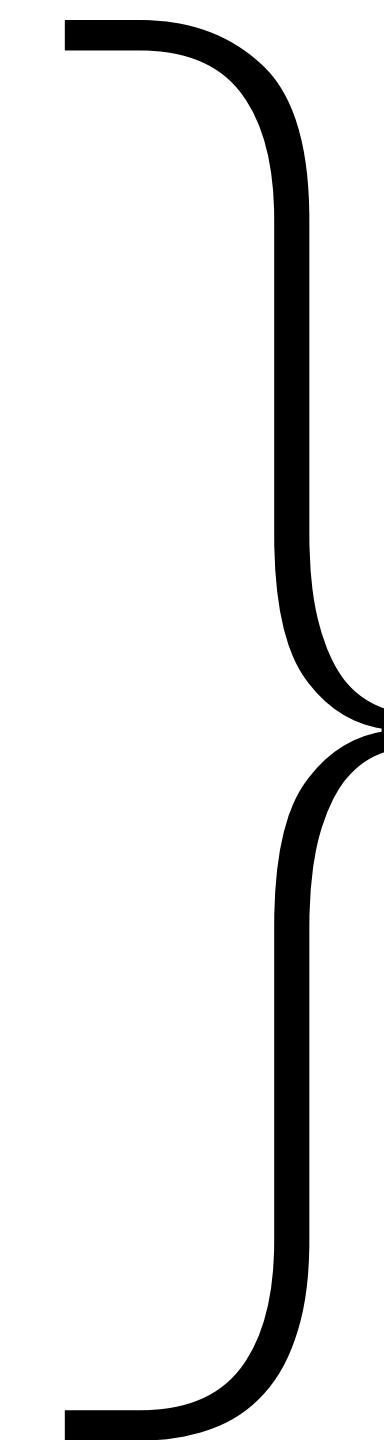
- Updating the model over time
- Adapting the model to other tasks
- Handling a computation budget
- Aligning model behavior with user preferences
- Dealing with very large inputs
- Learning from multimodal data
- Learning useful feature representations

In this course, we'll cover:

- Some technical foundations of generative modeling
- Learning algorithms and architectures of deep generative models.
- Some applications of generative models

What's ahead:

Lecture	Date	Topic
Lec. 1	Tue, Jan. 20	Introduction Course policies What is generative modeling?
Lec. 2	Thu, Jan. 22	Maximum likelihood Gaussian distribution Maximum likelihood
Lec. 3	Tue, Jan 27	Gaussian mixture models Stochastic gradient descent Gaussian mixture models Variational inference
Lec. 4	Thu, Jan 29	Neural network review (recorded lecture) Transformers Image translation networks Backpropagation
Lec. 5	Tue, Feb 3	Variational autoencoders Autoencoders Variational inference for VAEs Reparameterization trick VQ-VAEs

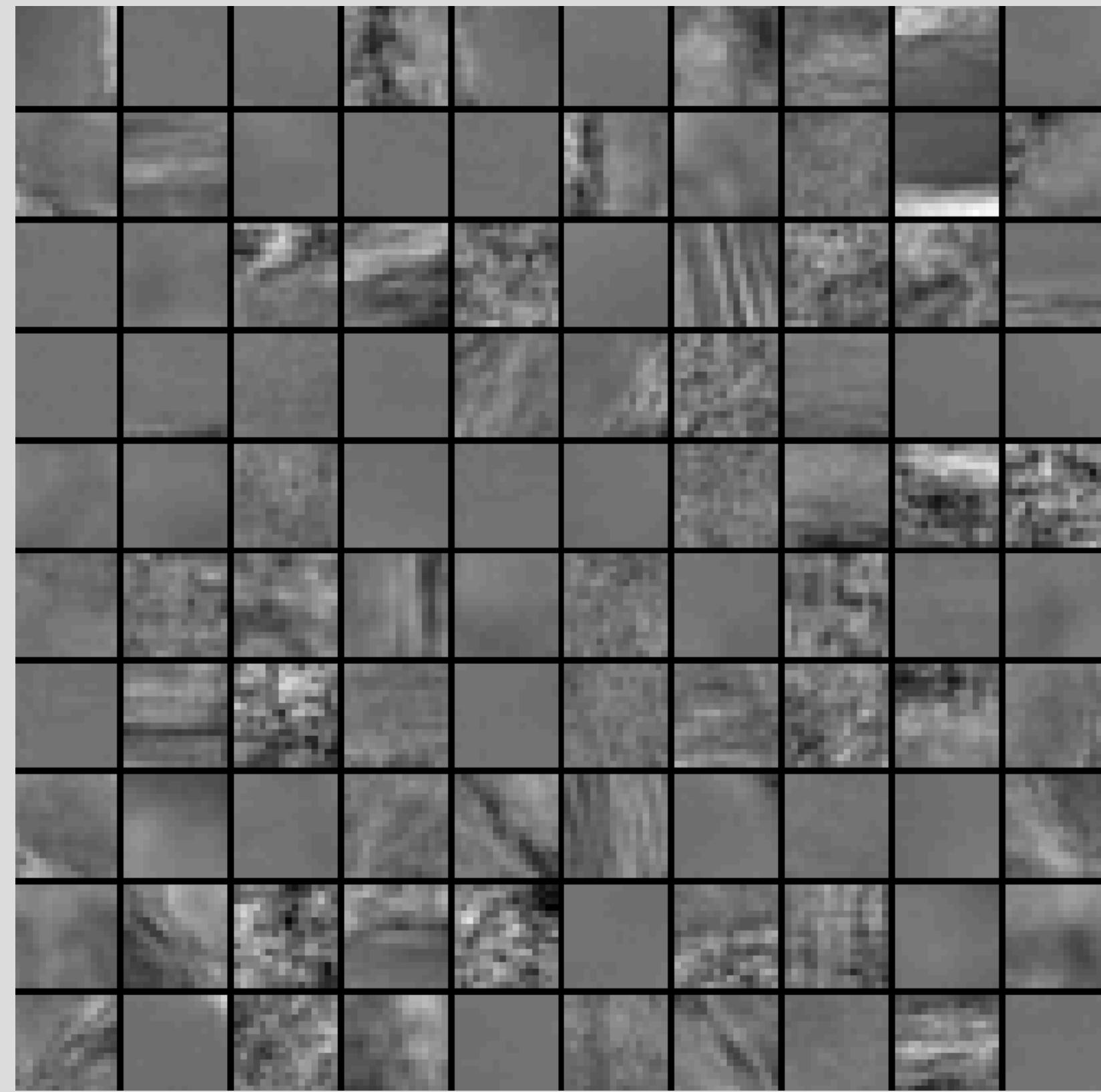


Generative models basics

Neural net review (recorded lecture)

Lecture	Date	Topic
Lec. 1	Tue, Jan. 20	Introduction Course policies What is generative modeling?
Lec. 2	Thu, Jan. 22	Maximum likelihood Gaussian distribution Maximum likelihood
Lec. 3	Tue, Jan 27	Gaussian mixture models Stochastic gradient descent Gaussian mixture models Variational inference
Lec. 4	Thu, Jan 29	Neural network review (recorded lecture) Transformers Image translation networks Backpropagation
Lec. 5	Tue, Feb 3	Variational autoencoders Autoencoders Variational inference for VAEs Reparameterization trick VQ-VAEs

PS1: Simple probabilistic models



Gaussian mixture model for image patches

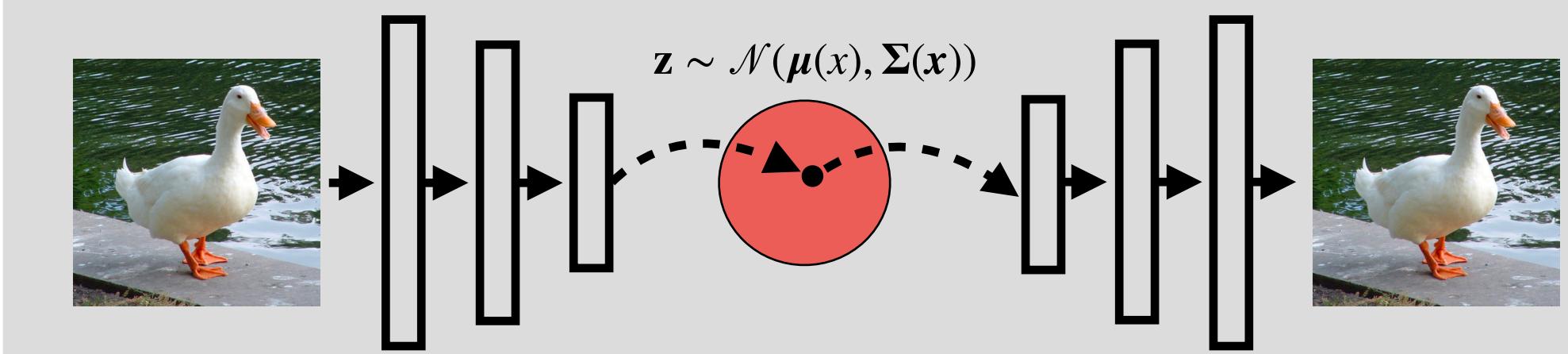
Source: [Zoran & Weiss, "Natural Images, Gaussian Mixtures and Dead Leaves", 2012]

Lec. 5	Tue, Feb 3	Variational autoencoders Autoencoders Variational inference for VAEs Reparameterization trick VQ-VAEs
Lec. 6	Thu, Feb 5	Normalizing flows Change of variables formula Coupling layers Inverse autoregressive flows
Lec. 7	Tue, Feb 10	Generative adversarial networks Minimax games Mode collapse Optimization
Lec. 8	Thu, Feb 12	GANs for image synthesis Conditional GANs Cycle consistency VQ-GANs
	Tue, Feb 17	No class
Lec. 9	Thu, Feb 19	Energy-based models Langevin dynamics The partition function Score matching perspective

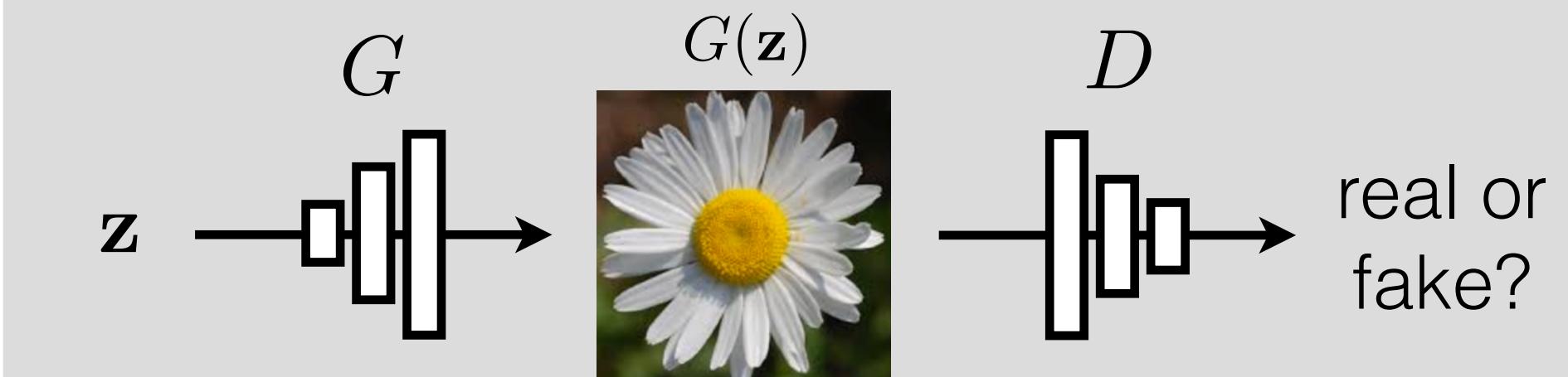
Latent variable models

Lec. 5	Tue, Feb 3	Variational autoencoders Autoencoders Variational inference for VAEs Reparameterization trick VQ-VAEs
Lec. 6	Thu, Feb 5	Normalizing flows Change of variables formula Coupling layers Inverse autoregressive flows
Lec. 7	Tue, Feb 10	Generative adversarial networks Minimax games Mode collapse Optimization
Lec. 8	Thu, Feb 12	GANs for image synthesis Conditional GANs Cycle consistency VQ-GANs
	Tue, Feb 17	No class
Lec. 9	Thu, Feb 19	Energy-based models Langevin dynamics The partition function Score matching perspective

PS2: Latent variable models



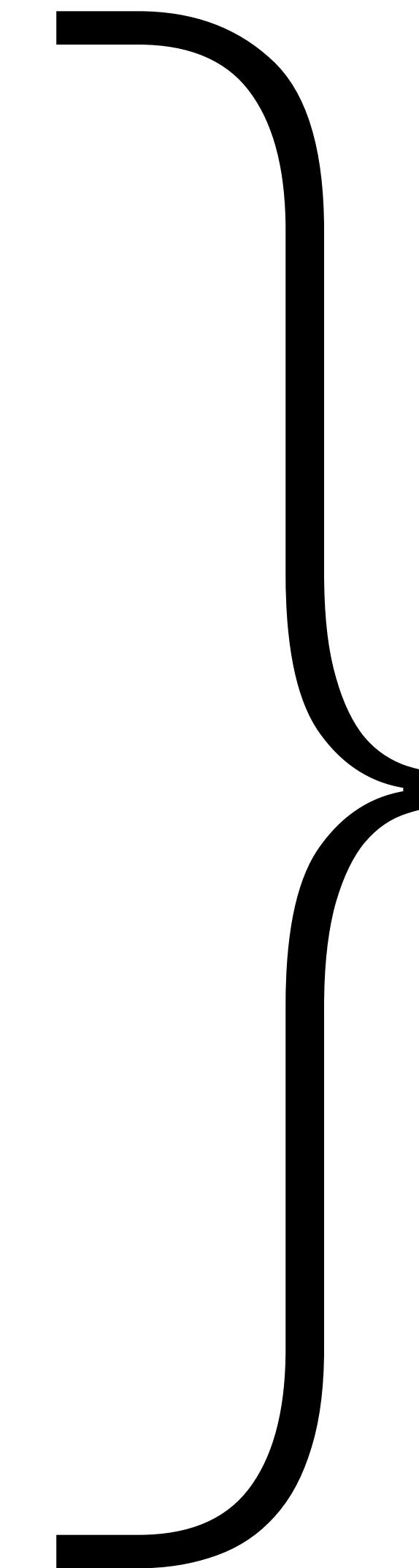
VAEs



GANs

Figure source: Isola, Torralba, Freeman

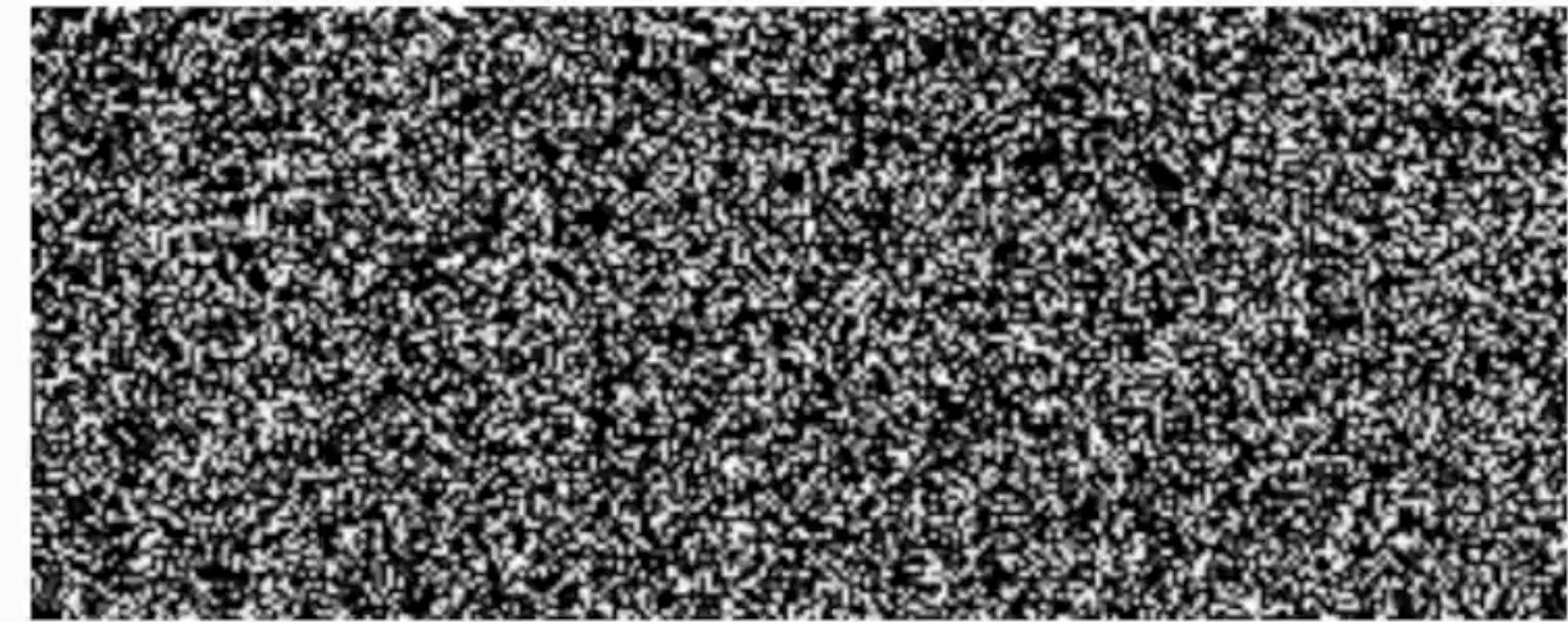
Lec. 9	Thu, Feb 19	Energy-based models Langevin dynamics The partition function Score matching perspective
Lec. 10	Tue, Feb 24	Diffusion models 1 Diffusion models for image synthesis DDPM Connection to VAEs
Lec. 11	Thu, Feb. 26	Diffusion models 2
Lec. 12	Tue, Mar. 3	Image manipulation with diffusion models Conditional diffusion models Classifier-free guidance Inpainting and SDEdit
Lec. 13	Thu, Mar. 5	Flow matching Flow formulation Rectified flow Continuous normalizing flows
Lec. 14	Tue, Mar 10	Diffusion architectures Transformer-based diffusion models Latent diffusion models Few-step generation



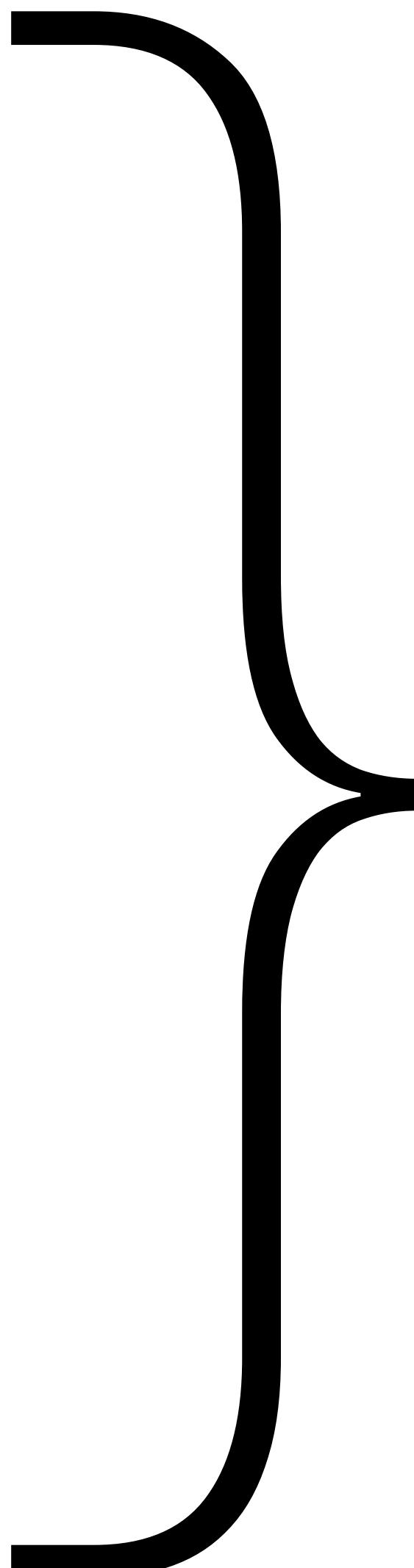
Diffusion models

Lec. 9	Thu, Feb 19	<p>Energy-based models</p> <p>Langevin dynamics</p> <p>The partition function</p> <p>Score matching perspective</p>
Lec. 10	Tue, Feb 24	<p>Diffusion models 1</p> <p>Diffusion models for image synthesis</p> <p>DDPM</p> <p>Connection to VAEs</p>
Lec. 11	Thu, Feb. 26	<p>Diffusion models 2</p>
Lec. 12	Tue, Mar. 3	<p>Image manipulation with diffusion models</p> <p>Conditional diffusion models</p> <p>Classifier-free guidance</p> <p>Inpainting and SDEdit</p>
Lec. 13	Thu, Mar. 5	<p>Flow matching</p> <p>Flow formulation</p> <p>Rectified flow</p> <p>Continuous normalizing flows</p>
Lec. 14	Tue, Mar 10	<p>Diffusion architectures</p> <p>Transformer-based diffusion models</p> <p>Latent diffusion models</p> <p>Few-step generation</p>

PS3: Diffusion and flow matching



		Transformer-based diffusion models Latent diffusion models Few-step generation
	Thu, Mar. 12	Autoregressive models
Lec. 15	Tue, Mar. 17	Language models GPT Tokenization Parallel decoding
Lec. 16	Thu, Mar. 19	Discrete diffusion models Masked language modeling Diffusion in latent spaces
Lec. 17	Tue, Mar. 24	Applying generative models to downstream tasks Representation learning Zero-shot learning
Lec. 18	Thu, Mar. 26	Scaling Scaling laws Systems issues involved
	Mon, Mar. 31	No class
	Wed, Apr. 2	No class
Lec. 19	Tue, Apr. 7	Midterm review

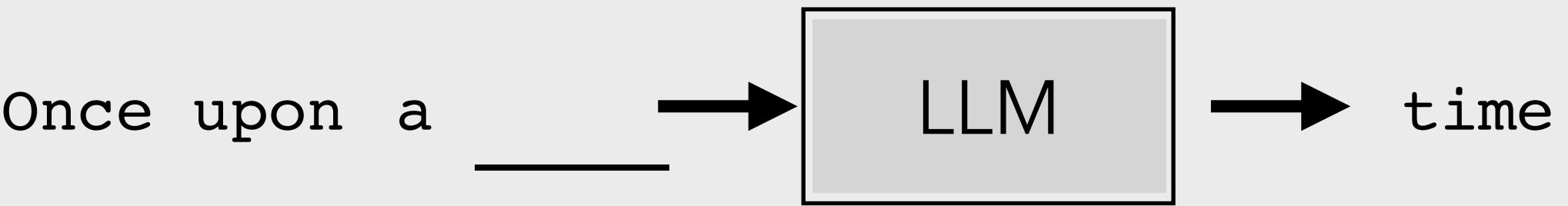


Autoregressive models

Transformer-based diffusion models
Latent diffusion models
Few-step generation

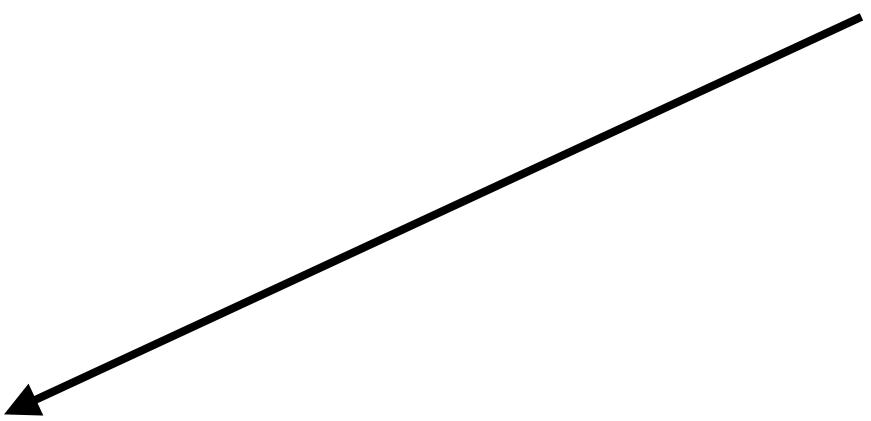
	Thu, Mar. 12	Autoregressive models
Lec. 15	Tue, Mar. 17	Language models GPT Tokenization Parallel decoding
Lec. 16	Thu, Mar. 19	Discrete diffusion models Masked language modeling Diffusion in latent spaces
Lec. 17	Tue, Mar. 24	Applying generative models to downstream tasks Representation learning Zero-shot learning
Lec. 18	Thu, Mar. 26	Scaling Scaling laws Systems issues involved
	Mon, Mar. 31	No class
	Wed, Apr. 2	No class
Lec. 19	Tue, Apr. 7	Midterm review

PS4: Language models

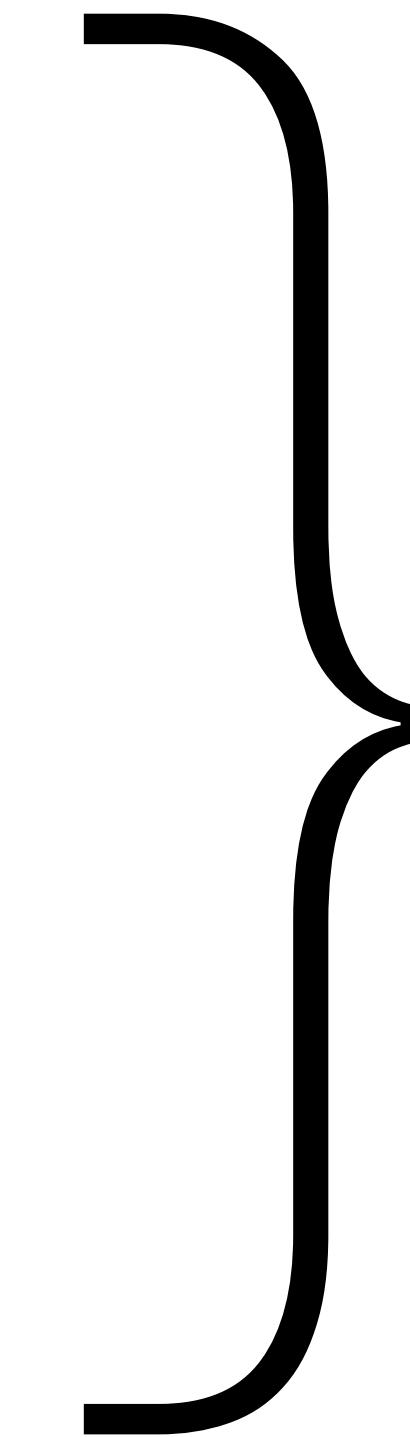


Lec. 17	Tue, Mar. 24	Applying generative models to downstream tasks Representation learning Zero-shot learning
Lec. 18	Thu, Mar. 26	Scaling Scaling laws Systems issues involved
	Mon, Mar. 31	No class
	Wed, Apr. 2	No class
Lec. 19	Tue, Apr. 7	Midterm review
Lec. 20	Thu, Apr. 9	Midterm exam
	Fri, Apr. 10	Tentative midterm time
Lec. 21	Tue, Apr. 14	Post-training Instruction tuning (for both images and language) RLHF RL-based reasoning models
Lec. 22	Thu, Apr 16	Evaluating generative models
Lec. 23	Tue, Apr 21	Generated media provenance Detecting generated images/text

Midterm after spring break



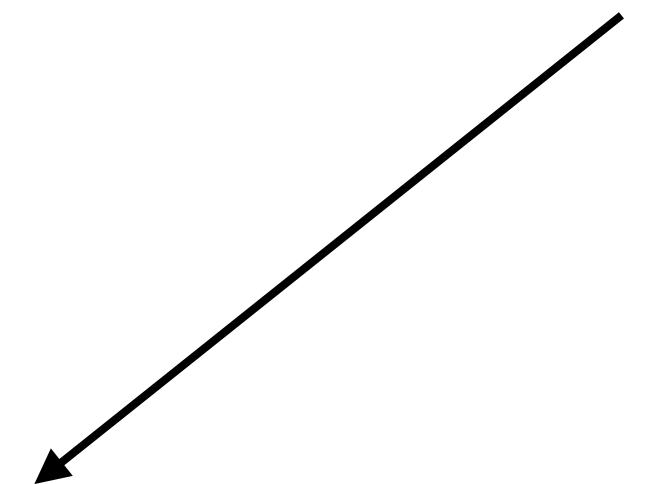
	Fri, Apr. 10	Tentative midterm time
Lec. 21	Tue, Apr. 14	<p>Post-training</p> <p>Instruction tuning (for both images and language)</p> <p>RLHF</p> <p>RL-based reasoning models</p>
Lec. 22	Thu, Apr 16	Evaluating generative models
Lec. 23	Tue, Apr 21	<p>Generated media provenance</p> <p>Detecting generated images/text</p> <p>Artist attribution</p> <p>Watermarking</p>
Lec. 24	Thu, Apr 23	<p>Model interpretability</p> <p>Feature visualization</p> <p>Influence functions</p>
Lec. 25	Tue, Apr. 28	
Lec. 26	Thu, Apr. 30	Final project presentations
Lec. 27	Tue, May 5	Final project presentations



Advanced topics

	Fri, Apr. 10	Tentative midterm time
Lec. 21	Tue, Apr. 14	<p>Post-training</p> <p>Instruction tuning (for both images and language)</p> <p>RLHF</p> <p>RL-based reasoning models</p>
Lec. 22	Thu, Apr 16	Evaluating generative models
Lec. 23	Tue, Apr 21	<p>Generated media provenance</p> <p>Detecting generated images/text</p> <p>Artist attribution</p> <p>Watermarking</p>
Lec. 24	Thu, Apr 23	<p>Model interpretability</p> <p>Feature visualization</p> <p>Influence functions</p>
Lec. 25	Tue, Apr. 28	
Lec. 26	Thu, Apr. 30	Final project presentations
Lec. 27	Tue, May 5	Final project presentations

Final presentations



Questions?

Next class: maximum likelihood estimation