Lecture 1: Introduction

CS 5788: Introduction to Generative Models

Includes material adapted from Stefano Ermon and Kaiming He
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Course policies



Interacting with us

® |n person office hours

® Ask homework and class questions on Ed

@ discussion

Discussion

il gradescope

® Homework submission via Gradescope



Course website

CS 5788: Introduction to Generative Models

Instructor: Andrew Owens  Spring 2026

Schedule Staff Course info Ed Discussion Canvas Gradescope Recordings
Tentative Schedule
Lecture Date Topic Materials Assignments
Lec. 1 Tue, Jan. 20 Introduction optional review of PyTorch and probability
Course policies ps1 out (simple probabilistic models)

What is generative modeling?

Lec. 2 Thu, Jan. 22 Maximum likelihood
Gaussian distribution
Maximum likelihood

Lec. 3 Tue, Jan 27 Gaussian mixture models
Stochastic gradient descent
Gaussian mixture models
Variational inference

Lec. 4 Thu, Jan 29 Neural network review (recorded
lecture)
Transformers
Image translation networks
Backpropagation

Lec. 5 Tue, Feb 3 Variational autoencoders
Autoencoders

https://www.cs.cornell.edu/courses/cs5788/2026sp



https://www.cs.cornell.edu/courses/cs5788/2026sp

| ectures

® | ecture recordings available on Canvas (see link on course webpage).
Sometimes there is a delay in releasing them.

® Next Thursday's lecture will be recorded (it's a neural net review).

® Some guest lectures (by TAs and other faculty) in middle of course



What you'll be doing

* Assignments (40%)
e Midterm exam (30%)

* Final project (30%)



Assignments

There will be 4 assignments
Equally weighted
Mix of programming and theoretical questions

PS1 available this week. Covers material from first 3 lectures.



Assignments

® PS1 out later this week
® You'll have 120 late hours (5 |late days)
® Distribute any way as you want, charged by the hour.
® No need to notify us when you use them.
® Once they're used up, 1% penalty for that homework per hour.

® |f you edit your assignment after the deadline, this will count as a late
submission.

® Assignments be done independently. It's OK to discuss them with classmates, but
programming/writing should all be yours.

® Unless stated otherwise, LLMs only allowed for testing code and as an AP
reference (the same way that you would use Stack Overtlow).



Midterm exam

® \Will be scheduled in early April (exact date pending,
approximately Friday, April 10)

® |n person, one-page front and back hand-written
“cheat sheet” allowed with formulas, notes, etc.

® You'll have 3 hours.

® |f you have accommodation requests, let the course
staff know as soon as possible.



GPU computing

® Problem sets require GPUs

® GPUs are very expensive.
® Recommend using Google Colab

® Colab Pro sometimes available for free to Cornell students
(though not necessary!)

® | et us know if you want Pro, can't get it for free or aftord it, and
we can see what we can do.

® Make sure to start early to avoid usage limits



Final project

® Choose from a list of project topics.
® Can also pitch your own project idea for us to approve, e.q.:

® Implement a recent paper

® A research project
® Small groups (1 to 3 people) suggested.

® Under exceptional circumstances, we can consider larger groups
® Deliverables:

® Project proposal midway through semester

® Shortin-class presentation (last week of class)

® \Writeup (due during finals period)



Background

We assume you've taken an “machine learning adjacent" class!

® £ .g., deep learning, machine learning, NLP, computer vision, etc.
Python numerical computing and programming

PyTorch knowledge strongly encouraged

Numpy and PyTorch refreshers on website

Linear algebra, multi-variable calculus, probability

® Math review on webpage.



Questions?



Today

1. Class logistics

2. Generative models today

3. What are generative models?

4. What makes generative modeling

nard?



Generative models are everywhere



Language

®  ChatGPT 5.2 Thinking v

&
Q
<)

Where should we begin?

+ (O Thinking v 0}




Generating and editing images

Generated image - Edited image

Source: [FLUX.1 Kontext, 2024]



Audio and video generated by Veo 3



a7

]

“The scene explodes with the raw, visceral, and unpredictable energy
of a hardcore off-road rally, captured with a dynamic, almost found-

footage or embedded sport..”, Veo 3.



User-controllable generation

Source: [Geng et al., “Motion Prompting”, CVPR 2025]



Multimodal models

This is a picture of two teddy
bears on the moon.

What are they doing?

They are having a
conversation.

What object are they using?
It looks like a computer.
Is this surprising?
Yes, it 1s surprising.

Why is this picture surprising
to you?

I think it is surprising because
teddy bears are not usually
found on the moon.

What is the common thing
about these three images?

They are all flamingos.

What is the difference be-
tween these three images?

The first one 1s a cartoon, the
second one is a real flamingo,
and the third one 1s a 3D

(> model of a flamingo.

This is an apple with a sticker
on it.

What does the sticker say?
The sticker says "iPod".
Where is the photo taken?

It looks like it’s taken in a
backyard.

Do you think it is printed or
handwritten?

It looks like it’s handwritten.
What color 1s the sticker?

It’s white.

[Alayrac et al., “Flamingo”, 2022]




Adapting generative models to other tasks

Question: If a > 1, then the sum of the real solutions of va — ya + x = x is equal to

Response: <think>

To solve the equation \/ a —Va+ x = x, let’s start by squaring both - - -

(\/a—x/m)2=x2 — a—+Va+x=x>

Rearrange to isolate the inner square root term:
(a-x*)?=a+x = a®-2a’*+ (x>’ =a+x = x*-2ax’*—x+ (a®>-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:

Va-Va+x=x

First, let’s square both sides:

a—-Va+x=x*) = Va+x=a-x?

Next, I could square both sides again, treating the equation: - - -

Reasoning and math [DeepSeek “R1"]

SN

3D video generation [Wu et al., ’
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'‘CAT4D" 2025]



And many other domains...

Medical images
[Song, Shen et al., 2022]

3D shapes

Proteins [Abramson et al.,
"AlphaFold3”, 2024] [Zhou et al., 2021]

Robotics
[Zhao et al., 2024]



What applications do you have in mina?



Today

1. Class logistics

2. Generative models today

3. What are generative models?

4. What makes generative modeling

nard?




Rule-based (or physical) models for generating data

Generating images using traditional computer graphics:

High level Cube(color=blue, position=(x,y,z), size=...)
description Cylinder(color=red, position=(x’,y’,z’), size=..)
Generation (graphics) ="\ Inference (vision as

iInverse graphics)

Raw sensory
outputs

~
B

Slide adapted from Stefano Ermon



Statistical generative models

Statistical generative models are learned from data!

Data Prior Knowledge
(e.g., images of bedrooms)  (€.9., physics, materials, ..)

Priors are always necessary, but there is a spectrum.

This course Graphics Prior
Knowledge

Data

Slide adapted from Stetano Ermon



Statistical generative models

A statistical generative model is a probability distribution p(x)
« Data: samples (e.g., images of bedrooms)

 Prior knowledge: parametric form (e.g., Gaussian?), loss function (e.g.,
maximum likelihood?), optimization algorithm, etc.

A probability
distribution
p(X)

» scalar probability p(x)

Slide adapted from Stefano Ermon



Some goals of generative modeling

Control signals /§ % New datapoints
\.

Potential datapoints Probability values

Some of the things we'd like from a generative model:

® A “data simulator”: generating data as an end in itself.

® Get probability density estimates from p(x).
® Adaptthe underlying model for other tasks.

Adapted from Stefano Ermon



Discriminative vs. generative models

Probabilistic interpretation p(y | X)

Discriminative

model .

imaée X label y

Adapted from Kaiming He & Isola, Freeman, Torralba



Discriminative vs. generative models

Probabilistic interpretation p(x | y)

Generative

model

label y image X
‘control signal”

Adapted from Kaiming He & Isola, Freeman, Torralba



Converting a generative model into a classitier

But if we have a generative model, we can convert it into a
discriminative model using Bayes rule:

classifier

/
p(y | X)

Slide adapted from Kaiming He



Converting a generative model into a classitier

But if we have a generative model, we can convert it into a
discriminative model using Bayes rule:

i generative mode|
classitier /

/
p(y | X) = P 1Y)PG) doesn't depend
p(X) / P y

— base rate of label

Slide adapted from Kaiming He



Converting a generative model into a classitier

But if we have a generative model, we can convert it into a
discriminative model using Bayes rule:

Pick the label that is most likely to produce the data:

y* = argmax, p(X | y)p(y)

Slide adapted from Kaiming He



Deep generative models

Source distribution Target distribution

Network:

Source: Isola, Freeman, Torralb:



Deep generative models

network parameters Learning the parameters:

0* = argmin, L (6, {X,}:.,

e.g., normalizing tlow



What makes this challenging?



State of the art generation 10+ years ago

Generated images from [Goodtellow et al.,
"Generative Adversarial Nets” 2014]

Holding may be typicallz largely banned severish from sforked warhing tools and
behave laws, allowing the private jokes, even through missile IIC control, most
notably each, but no relatively larger success, is not being reprinted and withd
rawn into forty-ordered cast and distribution.

Besides these markets (notably a son of humor).

Sometimes more or on}g Lowed &quot;80&guot° to force a suit for http://news.bbc.
co.uk/1/sid9kcid/web/9960219.html ' '[[#10:82-14]1]"".
&lt;blockquotedgt;

Generated Wikipedia text from [Graves, "Generating
Sequences With Recurrent Neural Networks"”, 2014]




Many possible outputs

Discriminative model Generative model
One true y value. Many values of Xx.

Classifier “Duck” "Duck” Generator

imaQe X label y label y image X



The need to model everything

- p(X) ="

0000000000
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The need to model everything

- p(X) ="
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The need to model everything

(X) — )
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The need to model everything
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The need to model everything

integration over high dimensional space

/ p(x)dx =1



J

Learning from samples
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Diversity of different inputs

“1t was the best o:
1t was the worst o:

times,
times”

P
F

Discrete sequences

Continuous grids

Continuous sequences

Figure source: [Feichtenhoter et al., 2022]



Computation

Need architectures and learning methods that are efficient and scalable.

DeepSeekMoE
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Source: [Dao et al., “FlashAttention”, 2022] Source: [DeepSeek V3, 2024]




And many other challenges

For example:

® Updating the model over time

® Adapting the model to other tasks

® Handling a computation budget

® Aligning model behavior with user preterences
® Dealing with very large inputs

® | earning from multimodal data

® | earning useful feature representations



In this course, we'll cover:

® Some technical foundations of generative modeling

® | earning algorithms and architectures of deep
generative models.

® Some applications of generative models

What's ahead:



Lecture

Lec. 1

Lec. 2

Lec. 3

Lec. 4

Lec. 5

Date

Tue, Jan. 20

Thu, Jan. 22

Tue, Jan 27

Thu, Jan 29

Tue, Feb 3

Topic

Introduction
Course policies
What is generative modeling?

Maximum likelihood
Gaussian distribution
Maximum likelihood

Gaussian mixture models
Stochastic gradient descent
Gaussian mixture models

Variational inference

Neural network review (recorded

lecture)

Transformers

Image translation networks
Backpropagation

Variational autoencoders
Autoencoders
Variational inference for VAES

Reparameterization trick
VQ-VAEs

Generative models

DasICs

Neural net review (recorded lecture)



Lecture

Lec. 1

Lec. 2

Lec. 3

Lec. 4

Lec. 5

Date

Tue, Jan. 20

Thu, Jan. 22

Tue, Jan 27

Thu, Jan 29

Tue, Feb 3

Topic

PS1: Simple probabilistic models
Introduction

Course policies
What is generative modeling?

Maximum likelihood
Gaussian distribution
Maximum likelihood

Gaussian mixture models
Stochastic gradient descent
Gaussian mixture models

Variational inference

Neural network review (recorded
lecture)

Transformers

Image translation networks

Backpropagation Gaussian mixture model for
Variational autoencoders IMma g e p atc h es

Autoencoders : "
Source: [Zoran & Weiss, “Natural Images,

Gaussian Mixtures and Dead Leaves”, 2012]

Variational inference for VAEs

Reparameterization trick
VQ-VAEs



Lec.

Lec.

Lec.

Lec.

Lec.

Tue, Feb 3

Thu, Feb 5

Tue, Feb 10

Thu, Feb 12

Tue, Feb 17

Thu, Feb 19

Variational autoencoders
Autoencoders
Variational inference for VAES

Reparameterization trick
VQ-VAEs

Normalizing flows
Change of variables formula
Coupling layers

Inverse autoregressive flows

Generative adversarial networks
Minimax games

Mode collapse

Optimization

GANSs for image synthesis
Conditional GANs

Cycle consistency
VQ-GANSs

No class

Energy-based models
Langevin dynamics

The partition function

Score matching perspective

| atent variable
models



Lec. 5

Lec. 6

Lec. 7

Lec. 8

Lec. 9

Tue, Feb 3

Thu, Feb 5

Tue, Feb 10

Thu, Feb 12

Tue, Feb 17

Thu, Feb 19

Variational autoencoders
Autoencoders PS2: Latent variable models

Variational inference for VAES

Reparameterization trick
VQ-VAEs

Normalizing flows
Change of variables formula
Coupling layers

Inverse autoregressive flows

Generative adversarial networks

Minimax games
Mode collapse

Optimization

GANSs for image synthesis
Conditional GANs

Cycle consistency real or
VQ-GANSs fake”?
No class

Energy-based models

Langevin dynamics

The partition function

Score matching perspective Figure source: Isola, Torralba, Freeman



Lec. 9

Lec.

Lec.

Lec.

Lec.

Lec.

10

11

12

13

14

Thu, Feb 19

Tue, Feb 24

Thu, Feb. 26

Tue, Mar. 3

Thu, Mar. 5

Tue, Mar 10

Energy-based models
Langevin dynamics

The partition function

Score matching perspective

Diffusion models 1

Diffusion models for image synthesis

DDPM
Connection to VAES

Diffusion models 2

Image manipulation with diffusion

models

Conditional diffusion models
Classifier-free guidance
Inpainting and SDEdit

Flow matching

Flow formulation

Rectified flow

Continuous normalizing flows

Diffusion architectures
Transformer-based diffusion models
Latent diffusion models

Few-step generation

Diffusion models



Lec. 9 Thu, Feb 19 Energy-based models
Langevin dynamics F . .
The partition function PS3: Diffusion and flow

Score matching perspective

matching
Lec. 10 Tue, Feb 24 Diffusion models 1

Diffusion models for image synthesis
DDPM
Connection to VAES

Lec. 11 Thu, Feb. 26 Diffusion models 2
Lec. 12 Tue, Mar. 3 Image manipulation with diffusion ,,
models &

:. a 'lo.
e b
’

Conditional diffusion models
Classifier-free guidance
Inpainting and SDEdit

Lec. 13 Thu, Mar. 5 Flow matching
Flow formulation
Rectified flow
Continuous normalizing flows

Lec. 14 Tue, Mar 10 Diffusion architectures
Transformer-based diffusion models k J

Latent diffusion models
Few-step generation



Lec. 15

Lec. 16

Lec. 17

Lec. 18

Lec. 19

Thu, Mar. 12

Tue, Mar. 17

Thu, Mar. 19

Tue, Mar. 24

Thu, Mar. 26

Mon, Mar. 31

Wed, Apr. 2

Tue, Apr. 7

Transformer-based diffusion models

Latent diffusion models
Few-step generation

Autoregressive models

Language models
GPT
Tokenization

Parallel decoding

Discrete diffusion models
Masked language modeling
Diffusion in latent spaces

Applying generative models to
downstream tasks
Representation learning

Zero-shot learning

Scaling
Scaling laws
Systems issues involved

No class

No class

Midterm review

Autoregressive
models



Lec. 15

Lec. 16

Lec. 17

Lec. 18

Lec. 19

Thu, Mar. 12

Tue, Mar. 17

Thu, Mar. 19

Tue, Mar. 24

Thu, Mar. 26

Mon, Mar. 31

Wed, Apr. 2

Tue, Apr. 7

Transformer-based diffusion models

Latent diffusion models
Few-step generation

Autoregressive models

Language models
GPT

Tokenization
Parallel decoding

Discrete diffusion models
Masked language modeling
Diffusion in latent spaces

Applying generative models to
downstream tasks
Representation learning
Zero-shot learning

Scaling
Scaling laws
Systems issues involved

No class

No class

Midterm review

PS4: Language models

Once upon a

LLM

- +ime



Lec.

Lec.

Lec.

Lec.

Lec.

Lec.

Lec.

17

18

19

20

21

22

23

Tue, Mar. 24

Thu, Mar. 26

Mon, Mar. 31

Wed, Apr. 2

Tue, Apr. 7

Thu, Apr. 9

Fri, Apr. 10

Tue, Apr. 14

Thu, Apr 16

Tue, Apr 21

Applying generative models to
downstream tasks
Representation learning
Zero-shot learning

Scaling
Scaling laws

Systems issues involved

No class

No class

Midterm review

Midterm exam

Tentative midterm time

Post-training

Instruction tuning (for both images and

language)
RLHF
RL-based reasoning models

Evaluating generative models

Generated media provenance

Detecting aenerated imaages/text

Midterm after
spring break



Lec.

Lec.

Lec.

Lec.

Lec.

Lec.

Lec.

21

22

23

24

25

26

27

Fri, Apr. 10

Tue, Apr. 14

Thu, Apr 16

Tue, Apr 21

Thu, Apr 23

Tue, Apr. 28

Thu, Apr. 30

Tue, May 5

Tentative midterm time

Post-training

Instruction tuning (for both images and
language)

RLHF

RL-based reasoning models

Evaluating generative models

Generated media provenance
Detecting generated images/text
Artist attribution

Watermarking

Model interpretability
Feature visualization

Influence functions

Final project presentations

Final project presentations

Advanced topics



Lec.

Lec.

Lec.

Lec.

Lec.

Lec.

Lec.

21

22

23

24

25

26

27

Fri, Apr. 10

Tue, Apr. 14

Thu, Apr 16

Tue, Apr 21

Thu, Apr 23

Tue, Apr. 28

Thu, Apr. 30

Tue, May 5

Tentative midterm time

Post-training

Instruction tuning (for both images and
language)

RLHF

RL-based reasoning models

Evaluating generative models

Generated media provenance
Detecting generated images/text
Artist attribution

Watermarking

Model interpretability
Feature visualization

Influence functions

Final project presentations

Final project presentations

Final presentations



Questions?



Next class: maximum likelihood estimation



