Cornell University
CS 5788: Introduction to Generative Models
Spring 2026 Instructor: Andrew Owens

Problem Set 1: Simple generative models

Posted: Friday, January 23, 2026 Due: Tuesday, February 10, 2026

Please submit your written solution to Gradescope as a .pdf file. Please convert
your Colab notebooks to PDF. For your convenience, we have included the PDF conversion
script at the end of the notebook.

The starter code was updated on Jan. 30. Please see Fd Discussion for details.

Starter code:

e The notebook for the programming problem can be found at:

https://drive.google.com/file/d/1Xy_-GZ_ekkczrvRVZOLyxnzknh2FiEVm/view?usp=sharing

e Submit your solution to the written problems as a PDF file (either written or typeset).

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead. Please note that problems marked optional will not be graded.

Problem 1.0 numpy and PyTorch review (optional)

We have provided Colab notebooks containing brief reviews of numpy here and PyTorch here.

Problem 1.1 Gaussian mizture models for image patches

We will use a Gaussian mixture model (GMM) to learn the distribution of tiny 16 x 16 pixel
image patches.

(a) We will start by fitting a simple multivariate Gaussian distribution to image patches:
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where d is the dimension of the (flattened) image patch. Estimate g and X from image
patches using the closed form solutions discussed in class.

(b) As described in class, we can write the process of sampling from a Gaussian as:

X = VD%Z, (2)



https://www.gradescope.com/courses/1227411
https://edstem.org/us/courses/93595/discussion
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where z ~ N(0,1I) is sampled from an i.i.d. Gaussian, D is a diagonal matrix of
eigenvalues, and V is the matrix of column eigenvectors. One can therefore interpret the
d x d covariance matrix ¥ = VDV | as a dictionary containing d dictionary elements
that each point to directions.

Given this interpretation, visualize the top 10 eigenvectors of the covariance matrix.
Describe their appearance in words.

(Optional) We have provided code to visualize Cov[Ppy+, P,,], the covariance between the
intensity value for a given pixel p* and the intensity of all pixels ¢; in the patch. (i)
What does the structure of the covariance matrix suggest translational invariance of
the input signal? (ii) Show that if 3;; = f(i — j) for some function f then the complex
exponentials v{u| = exp(iwu) for a constant w are eigenvectors of . (iii) Does this
explain the appearance of the eigenvectors?

Instead of using a closed form solution to estimate pu and X, we will use stochastic
gradient descent (SGD). We have provided you with a partial implementation in PyTorch,
which you should complete.

In your implementation:

e Minimize the negative log likelihood (NLL):
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for the dataset {x;}}¥; and the probability density defined in Equation 1.
e Parameterize the covariance ¥ using a matrix A, such that ¥ = AAT + €] using a
constant € = 1074, This helps ensure that 3 is positive semidefinite.

e We recommend training the model using stochastic gradient descent for 20 epochs
using a batch size of 512 or higher. We also recommend using the Adam optimizer
with a learning rate of 1074,

Run the model on the test set and plot the NLL. Compare the final NLL to that of the
closed form solution.

Extend your approach by fitting a Gaussian mizture model (GMM), rather than a
multivariate Gaussian. As described in class, the probability density for this model is:

K
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where 71, T9, ..., Tx are the mixture weights of each of the K components, the parameters
¢ = {0; Y, = {(1i, 2i)}£ | are the mean and covariance of the Gaussian distributions
in the mixture, and py, is the density of a multivariate Gaussian (Eq. 1) with its given
parameters.

To ensure that the mixture weights sum to 1, represent their logits, w € R¥, computing
the weights 7 = softmax(w):
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Run your model using K = 16.



(f) Compare the NLL of the GMM and the plain Gaussian models on the test set. Which
one has lower loss? Why?

(g) Fit a model with K = 1,4,16,32,64 mixture components. For each one, sample
image patches from the model and plot the NLL. How does performance change, both
quantitatively and qualitatively?

(h) Visualize the top eigenvectors of 3; for the K = 64 model using the provided code.
For each mixture component i, the provided code shows the image patches for which
argmax; pg, (x) = i. Find a component from the set of K that captures each of the
following image structures: (1) edges, (2) “flat” regions of uniform intensity, (3) some
other type of image content, of your choice (please describe what you see).

Problem 1.2 Image denoising using a Gaussian mixture model

The generative model that you learned in Problem 1.1 has a number of applications. We will
use it to solve the image denoising problem — an important problem that we will encounter
many times throughout the course.

We are given a noisy input image X ~ A (Xg,02I) that was obtained by corrupting a clean
image X by Gaussian noise with standard deviation o = 25/255. Our goal is to recover the
clean image X from this noisy observation. Specifically, we will use our GMM as an image
prior that distinguishes between realistic and unrealistic image patches.

We will estimate an image X that trades off between its similarity to the observed image and
the likelihood of its patches under the GMM:

LX) = X = X|* = ALo(X), (6)
where A = 1 is a weight factor that controls the importance of the two terms and Ly is the
expected patch log likelihood. We define it to be:
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where P(X) is the set of all (overlapping) image patches in the image and gy is your learned
GMM model (Eq. 4).

(a) To start, we will denoise individual image patches rather than whole images. Implement
this denoising approach by using gradient descent to solve for X. Then use the provided
code to measure the mean squared prediction error (MSE), ||xo — %||?>. Compare the
accuracy of your model on the test set for K = 1 versus K = 64.

(b) Apply the approach to denoising a full image. Compare the qualitative results using
K =1 versus K = 64.

Problem 1.3 Probability foundations



(a)

In class, we derived the closed form solution for @, the mean of the multivariate
Gaussian (Eq. 1). Do the same for ¥, after making the assumption that it is diagonal:
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Derive the mean of a single-variable Gaussian mixture model (Eq. 4).

Suppose that X ~ N(u,X). Use the change of variables formula to show that the
1

whitened variable Z = ¥72(x — ) is distributed as Z ~ N(0, I). Recall that A% isa
maltriz square root A = A3 A3 and A™3 is its inverse.

Hint: det(AB) = det(A) det(B).
Show that:
DKL (N<O7 1) H N(M7U)) = log(a) +

Recall that KL divergence is defined as:
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for a where N'(u,0) is a single-variable Gaussian.

Hint: You should not need to evaluate any integrals! Instead, take advantage of the fact
that for a Gaussian random variable X ~ N(/,0”) that E[X] = i/ and E[(X —p/)?] = o',

Credits. This problem set was written by Adnan Armouti, Jeongsoo Park, and Andrew
Owens. It is based on the following papers:

[1] Daniel Zoran and Yair Weiss. From learning models of natural image patches to whole image
restoration. In 2011 international conference on computer vision, 2011.

[2] Daniel Zoran and Yair Weiss. Natural images, gaussian mixtures and dead leaves. Advances in
Neural Information Processing Systems, 2012.



