CS 3/5780 Machine Learning Setup

Supervised Learning:

feature > X = K

Model/Program/Hypothesis

Output

label/output we would like to predict

universe of all data we care about

Represents part of instances we deem relevant for predicting output

Exercise: What would you use as x for the following prediction tasks?

- 1) Is a given email is spam or not?
- 2) Price of Apple stock tomorrow
- 3) Where will Jupiter he in night sky tomorrow
- 4) Is there a pedestrian in front of the car?

How do we find h?

- Traditional CS Approach: Pay Programmer to program h somehow
- Learning Approach: Learn h from examples (data)

To learn we need the following:

Lateled Data:

model class H
a set of functions
h: 8 -> Y

Loss function
Tells us how good
a model h did
on instance (x,y)

Algorithm

To pick good
h based on D

1. Data:

- a. Multiple scenarios for Y
- Binary Classification: y = 10,13 or y={-1,+19 Eg. spam filtering, An email is either spam y= +1 or not spam y= -1
 - Multiclass classification: Y = 11, -.., K)

Eg: Pet in image:

l = "cat" 2 = "dog" 3 = "guniea pig" 4 = "snake"

- Regression y = |R|

Eg: Predict price of a house on market

- b. Xi is a feature vector of d dimensions describing the ith sample
 - Text document in bag-of-words format:

house details

- Images:

3. Loss function: l

$$l(h(\vec{x}), y) = \int_{h(\vec{x})} f(\vec{x}) dy$$

$$\int_{0}^{h(\vec{x})} f(\vec{x}) dy$$

$$l(h\vec{x},y) = (h(\vec{x}) - y)^2$$

$$\ell(h(\vec{x}), y) = |h(\vec{x}) - y|$$

Generalization:

Idea: find a model with low loss on D

Eg. Algorithm, the memorizer

$$h(\overrightarrow{X}) = \begin{cases} y_i & \text{if } \exists (\overrightarrow{X}_i, y_i) \in D \text{ st.} \\ \overrightarrow{X}_i = \overrightarrow{X} \end{cases}$$

O otherwise

Tra	ín/test:	splít: Splít data	ínto tr	aín test a	and v	alidation
		DTR		DVA		DIE
	D '	TRAIN		VALIDA TI	No	TEST
	,	80°/s	—/ \	100/0		10%
	Choose h based on D_{Tr} (+ D_{Va}) and evaluate on D_{Te}					
	Why do we need Dva?					
How	to splí					
	st must simulate Deployment scenario					
	Eg: Data drawn iid (or not temporal)					
	lit uniformly at random					
<u>*</u>						
	Eg: Spam filter (train sys on past data)					
SŢ	lit train/test temporally					
	(only use past to predict next steb)					
	Non-temporal often modeled as (決y) ルP Error at Deployment:					
		Rísk:	E	Р (h (x),	y)	
Goal of M	\ \	Population loss	(x,y) ~	r		
Pick h base D to minir	don uíze / T	raining Loss:	10-1	E DTe	l(h(x)	", y) = E _{Tr} (h)
Risk		Test Loss:	1	2	l(h($(\vec{x}), y) = \mathcal{E}_{Te}(h)$
	Val	idation Loss:				h(R),y) = Cvalh
	A CARAN		DVA	1 (Xy) ED	<u>~ ~ '</u> / ~	Va (h

For a model h spit out by learning Algorithm, what is a good proxy for Risk? why?

No free Lunch: You must make assumptions in order to learn. No Algo. Works in all settings

Every ML Algo makes Assumptions!