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The Noisy Channel Model

I Goal: translate from French to English

Have a model ! "#%/&to estimate the probability of an
English sentence # given a French sentence %

| Estimate the parameters from training corpus
' A noisy channel model has two components:
I II#

1 "OBt&  the translation model

_ p(e,f) _ | p(e)p(f|e)
PED = 56y = . pen(t o

Giving:

and

arg maxp(ejt ) = arg max p(e)p(f [€)



Overview

l IBM Model 1
' IBM Model 2
I EM Training of Models 1 and 2



IBM Model 1: Alignments

How do we model ! "¥&§t&

English sentence # has ' words # ) #
French sentence %has + words %) %

An alignment a identifies which English
word each French word originated from

Formally, an alignent a is:
{al,...,am} where 4 1 O...]
There are" - (& possible alignments




¢ IBM Model 1: Alignments

W/ 0, +./] 1
#./ And the program has been implemented

%/ Le programme a ete mis en application



IBM Model 1: Alignments

W/ 0, +./] 1
#./ And the program has been implemented

WA oA

rogramme a ete mis en application

I One alignment is

{2,3,4,5, 6,6, 6}



IBM Model 1: Alignments

W/ 0, +./] 1
#./ And the program has been implemented

%/ Le programme a ete mis en application

I Another (bad!) alignment is

{1,1,1,1,1,1,1}



IBM Model 1: Alignments

W/ 0, +./] 1
#./ And the program has been implemented

N

%/ Le programme a ete mis en application

I Another (bad!) alignment is

{1,1,1,1,1,1,1}



Alignments Iin the IBM Models

' We define two models:
p(ale, m) p(f |a, e, m)
' Glving:
p(f,ale,m) = p(ale,m)p(f |a, e, m)
I Also:

p(fle,m) = p(ale,m)p(f |a, &, m)
al A
where 2 Is a set of all possible alignments



Most Likely Alignments

p(f,ale,m) =p(a

| We can also calculate:

e, mp(f |a,e, m)

p(f,ale,m)
Za! A p(f7 alea m)

plalf,e,m) =

for any alignment a

| For a given f,e pair, can also compute the most likely
alignment (detalls in notes)

I The original IBM models are rarely used for translation,
but still key for recovering alignments



Example Alignment

l  French:
le conseil a rendu son avis , et nous devons = prZsent adopter un
nouvel avis sur la base de la premiere position .

' English:
the council has stated its position , and now , on the basis of the
first position , we again have to give our opinion .

' Alighment:
the/le council/conseil has/” stated/rendu its/son position/avis ,/,
and/et now/prZsent ,/NULL on/sur the/le basis/base of/de the/la
first/premiere position/position ,/NULL we/nous again/NULL
have/devons to/a give/adopter our/nouvel opinion/avis ./.



IBM Model 1: Alignments

' In IBM Model 1 all alignments a are
equally likely:
1

p(ale,m) = oy

| Reasonable assumption?

" Simplifying assumption, but it gets things
started E



IBM Model 1: Translation
Probabillities

I Next step: come up with an estimate for
p(f |a, e, m)

| In Model 1, this Is:

!m
p(t la,e,m) = t(f;]es )
j=1



¢ IBM Model 1: Example

.0, +./ 1
#./ And the program has been implemented

%/ Le programme a ete mis en application

a={23,4,5,6,6,6}



p'fle™#

Le
programme
a

ete

mis

en
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IBM Model 1: Example
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IBM Model 1: Example

.0, +./ 1
#./ And the program has been implemented

%/ Le programme a ete mis en application

a={23,4,5,6,6,6}

p(f |a,e) =t(Le|the) ! t(programme|program)
I t(a]has)! t(ete|been)
I t(mis]implemented)! t(en|implemented
I t(application |[implemented) = 0.0006804

p(f,a | e,7) =8.2618& ! 1C



IBM Model 1: The Generative
Process 7

Q
pr@nc /)E/af n 0
E”Q//g/)
To generate a French string %from an English string #:

I Step 1: Pick an alignment 3 with probability ( +11)m

| Step 2: Pick the French words with probability
!m
p(fla,e,m) = t(fj]es )
j=1

The final result:
1 W

p(t,ale,m) = p(ale,m)! p(f[a, e, m)= L+ )m
j=1

t(fley )



Example Lexical Entry

English  French Probability
position position 0.756715

position situation 0.0547918
position mesure  0.0281663
position vue 0.0169303
position point 0.0124795
position attitude 0.0108907

E de la situation au niveau des nZgociations de |OompE
... of the current position in the wipo negotiations ...

nous ne sommes pas en mesure de dZcider, E
we are not in position to decide E

... Le point de vue de la commission face ~ ce probleme complexe .
E the commission Osposition on this complex problem .



Overview

l IBM Model 1
l IBM Model 2
I EM Training of Models 1 and 2



IBM Model 2

I Only difference: we now introduce alignment
distortion parameters

q(if),l,m)
I Probability that JOthrench word Is connected to

10tHENnglish word, given sentence length of eand f
areland m

| Define Im

pale,m) = g j,l.m)

=1

where a= {ai,...,a,,}

| Gives

p(f.ale,m) = ] [ a(ajli,l,m)t(fjles)

=1



Q¥

Q %

Example

6
7
And the program has been implemented

Le programme a ete mis en application
{2,3,4,5,6,6,6}



Q¥

Q %

Example

6
7
And the program has been implemented

Le programme a ete mis en application
{2,3,4,5,6,6,6}

plale,7) = q




Example

[ = 6
m = T

e = And the program has been implemented
f = Le programme a ete mis en application
a = {2,3,4,5,6,6,6}

p(fla,e7) = t(Le|the) x

(
t(programme | program) x
t(a | has) x
t(ete | been) x
t(mis | implemented) X
t(en | implemented) X

(

t(application | implemented)



IBM Model 2: The Generative
Process ”@fg/af

To generate a French string %from an English string #: st
I Step 1: Pick an alignment a= {az,...,a,}

with probability - |
p(aleem) = q(alj,l,m)
j=1
| Step 2: Pick the French words with probability
|Im
p(fla,e,m) = t(Tjey)
J=1

The final result:

[m

p(f,ale,m) = p(ale,m)! p(fla,e,m)=  q(alj,l,m)t(f;|ea,)

=1



Recovering Alignments

I If we have parameters gand t, we can easily recover the
most likely alignment for any sentence pair
Given a sentence pair

) 811621---1e|1f11f2’---’fm
define

g =arg max q(al,l,m)! t(f;,e)
al {0...1)
for | =1...m

e = And the program has been implemented

f = Le programme a ete mis en application



Overview

l IBM Model 1
' IBM Model 2
' EM Training of Models 1 and 2




The Parameter Estimation Problem

' Input:
(e £y k=1...n

Each e is an English sentence, each f is a French
sentence

I Output: parameter for

t(fle)  q(il; 1, m)

I A key challenge: we do not have alignments in our
training examples

ell00) = And the program has been implemented

f100) = Le programme a ete mis en application



Parameter Estimation if Alignments
are Observed

I Assume alignments are observed In training data
ell00) = And the program has been implemented

f100) = Le programme a ete mis en application
all00) = <2 3.45,6,6,6>

I Training data Is

(el £ aky k=1...n

Each e® is an English sentence, each f® is a French
sentence, each a® is an alignment

I Maximum-likelihood parameter estimates are trivial:
count(e, f count(J, 1,1, m
te (1) = (e, 1) () )

count(e) Gu UL M) = count(i,|,m)



Input: A training corpus (f*) e a(®)) for k =1...n, where
Fk) = fl(k) 7%,3 o(k) — (k) g .el(’l:), ak) — agk). (k)

Q-
Algorithm:

» Set all counts ¢(...) =0

» Fork=1...n

» Fort=1...my, For 3 =0...1[,

(e, 1) el 1) + 0k, 4, )
( D (e + ok, i, )
(Iz,l,m) — c(jli,l,m) +d(k,1,5)
c(i,l,m) <« c(i,l,m)+d0(k,i,7)

where 6(k,i,7) = 1 if a( ) = = 7, 0 otherwise.

c(4]%,l,m)
c(,l,m)

Output: ty1(fle) = cﬁe;j;  amr(jli,l,m) =

3P0 0pnasd



Parameter Estimation with the EM
Algorithm

| Input: (e(k),f (k)), k=1...n

Each e is an English sentence, each & is a French
sentence

I The algorithm is related to algorithm with observed
alignments, but with two key differences:

' Iterative: start with initial (e.g., random) choice of g and t
parameters, at each iteration: compute some OcountsO base on

data and parameters, and re -estimate parameters
' The definition of of the delta function is different:

a(ili, U, mi)t (£l
b o a(ili, by mi)t () 1)

5(k7i7]) —



Input: A training corpus (f*),e®)) for k = 1...n, where

FO = (0 g0 e® = e P

Initialization: Initialize ¢(f|e) and q(j|%,l, m) parameters (e.g.,
to random values).



Fors=1...8

» Set all counts ¢(...) =0
» Fork=1...n

» Fori=1...mg, For j =0...l

(e, 7)) cles”, 1)+ 8(k,i, )
c(eg-k)) < c(egk)) + d(k,1,7)
c(jli,l,m) <« e(4li,l,m) + d(k,i,5)
c(i,l,m) <« c(i,l,m)+d(k,1,7%)
where
(i) — 20t ML le,”)

. k), (k
Z;A oq(Jh,lk,mk)t(fi( )|e§' ))
» Recalculate the parameters:

c(e, f) c(gli, 1, m)

fle) = “23% allislm) =

c(i, l,m)

3P0 0pnasd



q(ili, bk, ma)t (£l
. ol o k k
S o q(ilds by mi)t (7))

6(k,i,5) =

e(100) And the program has been implemented

(100)  — e programme a ete mis en application
g



Fors=1...8

» Set all counts ¢(...) =0
» Fork=1...n

» Fori=1...mg, For j =0...l

(e, 7)) cles”, 1)+ 8(k,i, )
c(eg-k)) < c(egk)) + d(k,1,7)
c(jli,l,m) <« e(4li,l,m) + d(k,i,5)
c(i,l,m) <« c(i,l,m)+d(k,1,7%)
where
(i) — 20t ML le,”)

. k), (k
Z;A oq(Jh,lk,mk)t(fi( )|e§' ))
» Recalculate the parameters:

c(e, f) c(gli, 1, m)

fle) = “23% allislm) =

c(i, l,m)

3P0 0pnasd



Justification for the Algorithm

Input: (e®) %)) k=1...n

Each e is an English sentence, each f is a French
sentence

The log-likelihood function:

Zlogp F®|e®) ZlogZ p(f® ale®)
The maximum- |Ike|IhOOd estlmates are:
arg max L(t, q)
t,q

The EM algorithm will converge to a local maximum of
the log-likelihood function



Summary

| Key ideas In the IBM translation models:
" Alignment variables

" Translation parameters, e.g., t(chien|dog)
" Distortion parameters, e.g., q(2|1,6,7)

I The EM algorithm: an iterative algorithm for
training the g and t parameters

I Once parameters are trained, can recover the
most likely alignment on our training examples

ell90) = And the program has been implemented

f100) = Le programme a ete mis en application



