
CS574 Language Technologies
Fall 2002

Assignment 3
Due at the beginning of class, on Wednesday, November 13

Goal of the Assignment

Get experience with machine learning methods for text classification. Get a feeling for
design choices and what text classification problems are like.

What we provide:

• Dataset of abstracts from the arXiv pre-print database (see www.arxiv.org). It is
available from the assignment WWW page. The arXiv is on online database
containing scientific articles from physics and computers science. The data is split
into a training set of 29890 training documents (file arxiv_doc.train) and a test set
(file arxiv_doc.test) of 32487 documents. Both files are in the “web” format of
Lemur. Each document has a unique document ID. The data is classified into 15
classes (e.g. computer science, high-energy physics, quantum physics, etc.). The
classes are the top-level of the hierarchy on the page www.arxiv.org. The class
assignments are given in the files arxiv_classes.train and arxiv_classes.test. Each
line in the class files starts with the document ID and is followed by all classes the
document is in. Note that a document can be in multiple classes.

• SVM-light training algorithm for support vector machines. It is available from the
assignment WWW page. It compiles on pretty much all platforms that support gcc
and binaries are available for most platforms. How to use SVM-light is explained
on the WWW page. SVM-light consists of two executables. “svm_learn” trains
the SVM for a training set and outputs a model. “svm_classify” reads the model
and classifies a test set (ie. it outputs the signed distance from the hyperplane,
which can be used as a measure of confidence). You can specify the value of C
using the option –c <value> in “svm_learn”. If you do not specify C, the default
value is 1/(average Euclidian length of the training vectors). For this project you
can probably ignore all other options of “svm_learn”.

• You can make use of any other software tools you can find. In particular, using
the parsing and the evaluation part of Lemur should make things easier than
programming everything from scratch. Report in your write-up which software
tools you used.

Part 1: Design Choices in Text Classification (70 Points)

Learn a binary text classification rules for each of the 15 arXiv classes. As learning
methods, use

• SVM-light
• One other learning method (e.g. naïve Bayes, Rocchio, K-NN, Decision Tree, or

any other method you think might work well).

You will have to make design choices, for example:

• How to tokenize
• Use of term weighting
• Use of document length normalization
• Use of feature selection
• Use of stemming
• Use of stopword removal
• Choice of algorithm dependent parameters (e.g. for SVM the parameter C)
• Etc., feel free to be creative

Explain the reasoning that went into your design decisions. Since it is impossible to
explore the whole space of all different design choices, you will have to keep most of
them fixed. However, pick at least two design parameters for each learning method and
vary them.

Report the performance on the test set. Use the precision/recall-break-even point and pick
at least one other suitable measures for evaluation. Justify your choice. Analyze how the
parameter variations influence the results. Analyze the differences between the methods.

Explain how you built your system and analyze it (e.g. where are bottlenecks, what takes
most of the runtime). If you had to do it again, what would you do differently and where
do you expect improvements?

Part 2: Human Intelligence vs. Stupid Statistics (30 Points + 5 Bonus)

One of the classes in the arXiv data is “computer science” (indicated by “cs”). Let’s see
how well you, as human experts for computer science, can write a classification rule that
finds all computer science documents (ie. a binary classification task of cs vs. non-cs).

• Setting 1: Write the classification rule without looking at any data. Essentially,
anything goes that does not involve verifying your classification rule against data
(ie. the training set, the test set, or other data). Evaluate your rule on the test set
(using precision and recall) and send it to me via email (tj@cs.cornell.edu).

• Setting 2: You are allowed to tune your classification rule by verifying its

performance against the training set. Again, everything goes, except using
machine learning and except looking at the test set. After you are satisfied with
your rule (or you got too tired of fiddling around with it), evaluate your rule on
the test set (using precision and recall) and send it to me via email. Who has the
rule with the highest F1-score gets a bonus in the assignment grade and a super-
cool Google license plate holder!

For all settings, document what you did and how you proceeded. Briefly explain your
reasoning when making each design decision. Discuss the results in comparison to the
machine learning methods. Include your rules in the write-up.

