Lecture 6: Linear classifiers

CS 5670: Introduction to Computer Vision




Announcements

® PS1 due tonight
® PS2? out tonight
® PyTorch Colab notebook will be on website

® Course staff can walk you through it during oftice
hours.



lmage classification with linear models

Linear

— | ' Duck”

classifier

mage X label y

Source: Isola, Torralba, Freeman



A geometric view



| inear decision boundaries
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| inear decision boundaries

Consider a binary

classitication problem. positives examples this way

N

0 20 40 60 80 T1

Training data

Example adapted from P. Isola



| inear decision boundaries

L2
Which side of the hyperplane is x on?
” Uy = x'w + b
gy {1 >0
: D)= 0, otherwise

0
0 20 40 60 80 L1

“What label is point?”



80

60

40

20

0

| inear decision boundaries

Notational simplification:
Can get rid of b by "tacking on” a 1 to x

J=%X' W

<[l -l

0 20 40 60 80 L1

“What label is point?”



Multiway classitication

For a k-class problem, we'll make a matrix “stacking” k

hyperplanes as rows of a matrix W € R**¢:
w1
W = 2
W

To classity an example: which row has the highest dot product with x?

z=Wx+0b



Example: handwritten digits

z=Wx+b o

g(y) = argmax, z;
| v
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inputs example of learned we|ghts
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Visualization adapted from scikit-learn.



https://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_logistic_regression_mnist.html

Example: handwritten digits

° ﬂ = high number

X




Example: handwritten digits

- ! ® ﬂ = [ow humber
-

Ws X




Recall: image patches as filters

Find ! in an image

Source: D. Hoiem 13



Converting to probabilities

We have: 2= Wx+ b

We want probabilistic predictions: p(y;|x)

.e. ) POyl = 1,and p(y|x) 2 0
k

, . non-negative
Solution: use the softmax function:
/ sums-to-1

y = softmax(Wx + b) COFtmax (2), = exp(z;)

pPOlx) =y, Zi exp(z;)



“Flsh”

15

Source: Isola, Torralba, Freeman



Training data

X Y
{ “Fish’ }
)

‘Grizzly”

| “Chameleon”}

16

Recall: one-hot vectors

Iraining data

One-hot vector

Training data

Source: Isola, Torralba, Freemar



Recall: loss function

0-1 loss: number of misclassifications

ﬁ(y, y) =1 — ]l(y, y) <+— number of misclassifications

Least squares: predict 1 for true class, O for others
K

A A\ 2
LF,y)= > (yx — )
k=1
Cross entropy: a good surrogate that we'll be able to optimize:

K
L(y,y)= — Z Yr log yr
k=1

Adapted from P. Isola



| oss function

One-hot vectors

Simpler than it looks:

K
LY, y)= =) yrlogi
k=1

Iraining data

Theretfore:

Adapted from P. Isola



Ground truth label y

10,0,0,0,0,1,0,0,...]

19 Source: Isola, Torralba, Freemar



Ground truth label y

dolphin
cat
grizzly bear

angel fish

chameleon

clown fish
iguana

elephant

20 Source: Isola, Torralba, Freemar



Prediction y Ground truth label y

f@ : X — R
dolphin |18 dolphin
cat |§ cat
grizzly bear |J grizzly bear
f angel fish ||l angel fish
chameleon ||B chameleon
clown fish || INEGEE clown fish
iguana | iguana
elephant I elephant
0 1 0 1

2 Source: Isola, Torralba, Freemar



Prediction y Ground truth label y | 0SS

i K
Jo: X =R N yrlog i
dolphin ||l dolphin =
cat |§ cat
grizzly bear |J grizzly bear
f angel fish ||l angel fish
chameleon ||l (+) chameleon
clown fish || INEGEE clown fish
iguana | iguana
elephant I elephant
0 1 0 1 0 1

22
Source: Isola, Torralba, Freeman



Prediction y Ground truth label y | 0SS

i K
Jo: X =R N yrlog i
dolphin [ dolphin =
cat |§ cat
grizzly bear | grizzly bear
f angel fish |fi angel fish
chameleon ||| (+) chameleon |G -
clown fish |l clown fish
iguana |[IIEGE iguana
elephant I elephant
0 1 0 1 0 1

23
Source: Isola, Torralba, Freeman



Hinge loss

One more you might see: hinge loss

L(S’,Y) — maX(Ov 1 — y?)a O)

upper bound on O-1

classy is {-

0SS (true

-1, -1} Ins

A linear classitier that uses a hinge loss is called

a support vector machine (SVM).

ead of {0,1})

't has some very nice properties (they can be made nonlinear

with “kernels”). Generally performs similar to logistic regression.



Loss

3.0

2.5 -

2.0 A

1.5 -

1.0 -

0.5 -

0.0 A

| 0ss functions

— hinge loss
cross entropy loss
—— 0-1 loss
—4 -3 —2 —1 2 3 4




Loss

3.0

2.5 -

2.0 A

1.5 -

1.0 -

0.5 -

0.0 A

| 0ss functions

— hinge loss
cross entropy loss
— (-1 loss

Low probability, high loss

~ 50% probability, medium loss

\

High probability, low loss




Why not squared loss?

3.0 |
2.5 -
: : .. "
o Highly confident prediction®
Worse loss!
Loss 7
1.0 - A K
L(y,y) = Z(yk — k)’
k=1
0.5 9 — hinge loss
—— Cross entropy loss
0od T 0-1 loss
| — L2 l0sS
—4 -3 -2 -1 0 1 2 3 4



Source: Isola, Torralba, Freeman

How do we |learn a classifier?

1 N
H* — argernin NZL(fH(Xi)7Yi)
1=1

- __

J(0)

28



Source: Isola, Torralba, Freeman

GGradient descent

f* = arg min .J(6)
v

Take direction
of “steepest

descent’

29



Source: Isola, Torralba, Freeman

GGradient descent

1 N
H* — argernin NZL(]EH(XZ')?YZ')
1=1

— ™

J(0)

One iteration of gradient descent:

0" = 0" —n:VeJ(0)

learning rate

30



Gradient descent

What's this again?
1. Gradient of the loss w.r.t. the classifier’'s parameters
2. Direction of steepest descent

3. "Local” linear approximation to the function

-or a refresher on gradients and partial derivatives:

nttps://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives#partial-derivatives

31



https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives#partial-derivatives

Gradient descent

Take gradient at current @

(9t+1 — 6’t — ﬁtVQJ(Q) /

— Vector of partial derivatives tor loss
aJ

32



Estimating the gradient

Idea #1: finite differences f(x + €) — f(x)

€
oJ J(O + €ey) — J(O — €e,)
0, N —
2€
VJ(H) — 6’_2 where e, is vector of zeros except fora 1 in 2nd component

33



Estimating the gradient

Idea #1: finite differences f(x + €) — f(x)

€
aJ
o) ® Fasyto compute butslow!
VJ(O) = Z—j ® |naccurate in some cases, unless careful
o ® Useful for checking other methods
oJ

34



Estimating the gradient

|dea #2: compute it analytically using calculus.

Simple example: binary labels, squared loss, and regularization on @

1 N
J©O) = 201 + = ), (= 07x)"
=1

Vo

1 N
V,J(0) = 220 — ~ ; 2(y; — 0Tx)x,

35 Example from D. Fouhey



Analyzing the gradient descent update

Recall update rule: '+ = 9% — ,V,.J ()

How does this change 6 7

—V,J(0) =

36 Example from D. Fouhey



Analyzing the gradient descent update

Recall update rule: '+ = 9% — ,V,.J ()

How does this change 6 7

"Decay” toward 0 Scalar a; per example

/ /

1 N
—V,J(O) = — 210 — — 2(v. — 0 x)x.
,J(0) NZI (y, X,

37 Example from D. Fouhey



Analyzing the gradient descent update

What happens at each example?
Scalar a;

/

1 N
—V,J(O) = —2/0 — — 2(v. — 0 x)x.
,J(0) Nz} (y, )X,

f0'x; < y(too low): then 8, ; = 0 + ax; for some a > 0
Dot product before: 0 ' x.
Dot product after: (0 + ax,)'x; = 0'x; + ax; x,

38 Example from D. Fouhey



Computational issues

39



Batch gradient descent

|l oss function: 'ts gradient is the sum of

gradients for each example:

] & ] &
() Ng}(,y ) ) NZI‘ (%;, v 0)

Problem: requires iterating over every training example each gradient step!

Can we speed this up?

40



Stochastic gradient descent

This is just an average!
1 N
VJO) =— ) VL(x,y;0
0) =~ Z (% Y1 O)

We know from statistics that we can estimate the average of a
full ”popu\ation” from a sample.

VJ(O) ~ - B‘ —— ) VL(x,y,0)
1eb

where B is a minibatch: a random subset of examples.

This is called stochastic gradient descent (SGD).

41



Stochastic gradient descent

0

Batch gradient descent Stochastic gradient descent

47 Source: R. Grosse



Learning rate

® Sensitive to the learning rate:  ¢'*t! = ¢* — ), V,J(6)

D)

'\

Small learning Large learning rate

43 Figure source: R. Grosse



| earning rate schedules

Start with high learning rate, and decrease over time.

Plateau DProp learning rate

/ /

Loss (smoothed) —

Number of SGD updates —

44



| earning rate schedules

Start with high learning rate, and decrease over time.

n, = 0.01 n, = 0.001
] SR T T T T LTI T I T I I I T IITIITI I IIIIIIT

S

D

_C

o Plateau

O

g /

0p)

0p)

O

]

Number of SGD updates —

45



| earning rate schedules

Start with high learning rate, and decrease over time.

7, = 0.01 7, = 0.001 7, = 0.0001

] T J Jrrereererrenanrarnnn s R i

Plategqy Drop learning rate

/ /

Drop learning rate

/

Loss (smoothed) —

Number of SGD updates —

46



loss —»

| earning rate schedules

® \What if you always use a small learning rate?
® | 0ss goes down extremely slowly

Number of SGD updates —

47



loss —»

| earning rate schedules

® | earning rate too high? Unstable!

Number of SGD updates —

48



| earning rate schedules

® Choosing the initial learning rate is surprisingly hard. Often requires grid search,
..e., trying many rates and choosing the best.

® \When do you drop the learning rate? Some strategies:
e \Wait until validation or training loss plateaus, then drop it (e.g., by a factor of 10).

® Smoothly drop the learning rate over time. Requires choosing the rate ot
dropping.

® \Warm up: make the beginning of training easier. Start learning rate at 0 and
gradually increase for the first few iterations.

® Another option: decrease and increase the learning rate using a periodic function
(e.q., cosine) [Loshchilov & Hutter, 2017/]



50

Regularization

® As before, add L, regularization R(0) = ||0||* model parameters.

e Early stopping: stop training when validation loss increases, and revert to
previous checkpoint.

. 0.20

. ..

Q *—e Training set loss
S .

= 0.15 ——  Validation set loss
2

o

2

= 0.10

2

<

el

S 0.05

%

o)

=

O
-
S

0 o0 100 150 200 250
Time (epochs)

Figure source: [Goodfellow et al., 2016



PS2: intro to machine learning
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Part #1: classification

® Object recognition with tiny images
® K-nearest neighbor

® |ogistic regression with SGD

® (Cross-validation

Can be completed after today'’s class.

Part #2: neural nets with PyTorch

® Neural netsin PyTorch

® Convolutional networks
Covered this Weds. and next Mon.



L imitations to linear classifiers

0
0 0

L1
1 0

52



L imitations to linear classifiers

53



L imitations to linear classifiers

No linear classifier can solve this

[Papert & Minsky 1972] 1 0

a:'2|- | XOR

L1

54



Next class: Neural networks

55



Perceptrons, 1958

http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/
2011 _Nagy Pace FR.pdf. Photo by George Nagy

Source: Isola, Torralba, Freeman http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&tyy



http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/2011_Nagy_Pace_FR.pdf
http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/2011_Nagy_Pace_FR.pdf
http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/2011_Nagy_Pace_FR.pdf
http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/2011_Nagy_Pace_FR.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf

Perceptrons, 1958

Very similar to the linear models we've seen.

57
Source: Isola, Torralba, Freeman



Minsky and Papert, Perceptrons, 1972

e Perceptrons, expanded edition

An Introduction to Computational Geometry

By Marvin Minsky and Seymour A. Papert

Perceptrons Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anyone who wants to understand the connectionist counterrevolution that
is going on today.

Marvin L. Minsky Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neuronlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
n u m far enough to show the exact limitations of a class of computing machines that could seriously be

considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that can simulate networks of automata have given
Perceptrons new importance.

Seymowr A Papert

FOR BUYING OPTIONS, START HERE

Select Shipping Destination —

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
Paperback | $35.00 Short | £24.95 | which they discuss the current state of parallel computers, review developments since the appearance of
'85.98':; l”;igif:j’:;;' 308 pp- | 6 the 1972 edition, and identify new research directions related to connectionism. They note a central
theoretical challenge facing connectionism: the challenge to reach a deeper understanding of how
"objects" or "agents" with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind." 583

Source: Isola, Torralba, Freeman



‘Classic” recognition without neural nets

-dges

Texture

Colors

Feature extractors

Source: Isola, Torralba, Freeman

N/

Segments

Parts

\

Classifier

“clown fish”

59



‘Classic” recognition without neural nets

Hand-crafted features s~ ama e

hog2x2 [27.2] ) ; S
45 —— geometry texton histograms [23.5] - - EREEEEEREEEE e
ssim [22.5] : : I

40} dense SIFT [21.5]

lbp [18.0]
— texton histogram [17.6]
gist [16.3]
— — —all (INN) [13.0]
30+ |bphf [12.8]
sparse SIFT histograms [11.5]
geometry color histograms [9.1]
color histograms [8.2] :
— geometric classification map [6.0] | ;

straight line histograms [5.7] :
tiny image [5.5] :

35H

Recogntion rate
N
o

‘ edge orientation
histogram

1 5 10 20 50
Number training samples per class

| Xiao et al., “SUN database”, 2010}



‘Classic” object recognition without neural nets

-dges

Texture

Colors

Feature extractors

Source: Isola, Torralba, Freeman

L earned
\ Segments
“clown fish”
Parts
i Jolz) = Zekgbk(f)
k=1
Classifier

61



Source: Isola, Torralba, Freeman

Object recognition

| earned

“clown fish”

62



Source: Isola, Torralba, Freeman

Object recognition

Neural net

| earned

“clown fish”

03



Computation in a neural net

Input vector Qutput vector

o4



Next lecture: neural networks

65



Minsky and Papert, Perceptrons, 1972

e Perceptrons, expanded edition

An Introduction to Computational Geometry

By Marvin Minsky and Seymour A. Papert

Perceptrons Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anyone who wants to understand the connectionist counterrevolution that
is going on today.

Marvin L. Minsky Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neuronlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
n u m far enough to show the exact limitations of a class of computing machines that could seriously be

considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that can simulate networks of automata have given
Perceptrons new importance.

Seymowr A Papert

FOR BUYING OPTIONS, START HERE

Select Shipping Destination —

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
Paperback | $35.00 Short | £24.95 | which they discuss the current state of parallel computers, review developments since the appearance of
'85.98':; l”;igif:j’:;;' 308 pp- | 6 the 1972 edition, and identify new research directions related to connectionism. They note a central
theoretical challenge facing connectionism: the challenge to reach a deeper understanding of how
"objects" or "agents" with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind." 66

Source: Isola, Torralba, Freeman



Perceptrons,
1958

enthusiasm

Minsky and Papert,
1972

time

67
Based on slide by: Isola, Torralba, Freemar



Parallel Distributed Processing (PDP), 1986
PARALLEL DISTRIBUTED ‘
PROCESS!NG |

Explorations s the M

. V'()]llllu 1 Founaati

DAVID E.RUMELHART, JAMES L. McCLELLAND,

L "AND THE PDP RESEARCH GROUP
1.4 63

Source: Isola, Torralba, Freeman



Perceptrons,  PDP book,

. 1958 1986
enthusiasm

Minsky and Papert,
1972

time

69
Source: Isola, Torralba, Freeman



l eCun convolutional neural networks

PROC. OF THE TEEE, NOVEMBER 1998 7
C1- foat C3:f. maps 16@10x10
: feature maps S4: . maps 16@5x5
INPUT 6@28x28 i
32x32 S2: f. maps

CS:layer pg:jayer OUTPUT
120 84 y 10

o1 |T_
i
-i ) |

‘ Full conr#ection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

-'.\

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://yann.lecun.com/exdb/lenet/index.ntml_

Source: Isola, Torralba, Freeman


http://yann.lecun.com/exdb/lenet/index.html

s%pmaya
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output label represents

-5, The grev-level of the

nurlila~|! 'i)' LeNet

noisy characters correctly rece

M1l

Examples of unusual, distorted,

Fig. 13,

Source: Isola, Torralba, Freeman

the penalty (lighter for higher penalties).



input

Neural networks to

recognize
: e handwritten digits
multiscale / edge‘dé’gected ' ‘ and human faces?
. Jes

Neural networks for
tougher problems?
not really

/2
http://pub.clement.farabet.net/ecvw09.pdt Source: Isola. Torralba, Freeman



http://pub.clement.farabet.net/ecvw09.pdf

Machine learning circa 2000

 Neural Information Processing Systems (NeurlPS), is a
top conference on machine learning.

e Forthe 2000 conference:

- title words predictive of paper acceptance: “Belief

Propagation” and “Gaussian’”.

- title words predictive of paper rejection: “Neural” and
"Network”.

73
Source: Isola, Torralba, Freeman



Perceptrons,  PDP book,

1958 1986

enthusiasm

Minsky and Papert, Neural network winter,
1972 2000

time

/4
Source: Isola, Torralba, Freeman



Krizhevsky, Sutskever, and Hinton, NeurlPS

2012
“AlexNet”

N >
............. 3 -
192 192 128 2048 2008 \dense
57 128
] 13 ‘ 13
N---...:::.: 'y : A 3 ) .:::q’..:‘:‘.""
....... 1“4 q . “1° d )‘ d _)‘
. = NI AN PEES 13 ense ense
QL \ 500
192 192 128 Max
Max 128 Max pooling 2948 2048
pooling pooling

75
Source: Isola, Torralba, Freeman



Krlzhevsky, Sutskever, and Hinton, NeurlPS 2012

container shi motor scooter
mite container ship motor scooter

black widow [ | lifeboat | go-kart [
cockroach amphibian| moped |
tick fireboat | bumper car
stlmsh drilling platform | golfcart

w = ;B ‘* R4 \.;‘;.',
- X N

musnroom

mte

Egyptian cat

rmnie

convertible agaric | monkey
grille mushroom spider monkey

pickup jelly fungus titi

beach wagon indri
fire engine | dead-man’s-fingers howler Z'éonkcy

Source: Isola, Torralba, Freeman



28 years 28 years

ﬁﬁ

Krizhevsky,
Perceptrons,  PDP book, Sutskever
1958 1986 Hinton, 2012

enthusiasm

"/

Minsky and Papert, Neural net winter,
1972 2000

time

/7
Source: Isola, Torralba, Freeman



What comes next?

KriZgevsky,
Perceptrons,  PDP book, S Mkever
1958 1986 ton, 2012

enthusiasm

Minsky and Papert, Al winter,
1972 2000

28 years 28 years 2028 ? time

ﬁﬁ

78
Source: Isola, Torralba, Freeman



What comes next?

Krizhevsky,
Perceptrons,  PDP book, Sutskever
1958 1986 Hinton, 2012

enthusiasm

Minsky and Papert, Neural net winter,

1972 2000

time

79
Source: Isola, Torralba, Freeman



What comes next?

zhevsky,

q

Perceptrons,  PDP book,
1958 1986

skever,
nton, 2012

enthusiasm

Al winter,

2000
28 years 28 years 2028 ? time

ﬁﬁ

Minsky and Papert,
1972

80
Source: Isola, Torralba, Freeman



81

Inspiration: Neurons

Axon Frexrviwals

7
Fre- s'ynapﬁ C E/

(*serding") cell
: / — Post -5 '
Devdvites (“rece; V{:;l"o)ﬁge.ll

Image source: Khan academy


https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/the-synapse

Inspiration: Hierarchical Representations

Classification

. Best to treat as inspiration. The
£\ neural nets we'll talk about aren't
./ very biologically plausible.
Sl C
PPN
T 4 SN
Vi/v2 sy
ClLIOICREGI0S

82  Source: Isola, Torralba, Freeman [Serre, 2014]



Source: Isola, Torralba, Freeman

Object recognition

Neural network

83

“clown fish”



Computation in a neural net

Input vector Qutput vector

Neuron
(a.k.a unit)

Adapted from: Isola, Torralba, Freeman 84



Computation in a neural net

Linear layer

Input Qutput
representation representation
Li C O
C Wi O
C O
O- O
O O Y3
O O
C O
C O

Source: Isola, Torralba, Freeman

85



Computation in a neural net

Linear layer

INnput
representation

Li O

Qutput
representation

Q QOOOOOC

Source: Isola, Torralba, Freeman

86

weights



Computation in a neural net

Linear layer
Input Qutput
representation representation weights

. 4
: y; =x W; + b

A S k bias
= # ={W,b}

1 C k parameters of the model

Source: Isola, Torralba, Freeman 87



Computation in a neural net

Linear layer Full layer
Input Qutput
representation representation weights

C /
@
C y =Wx+Db
@

x| & \_ bias
@
@ _
C ) = {W,b}

1 C k parameters of the model

88



Computation in a neural net

Linear layer Full layer
Input Qutput
representation representation weights + bias

C /
@
@ Y — W x
@

X W -
: Can again simplify notation by
® appending a 1to X
@

1C

89



What's the problem with this idea?

Consider stacking multiple layers:

Can be expressed as
single linear layer!

(Hwi) x = Wx

Limited power, e.g.
can't solve XOR.

QO0OO0O0OOO

QOOO0OOO0O

OCOO0O0OO00OO

W, x W,W x

90



Solution: simple nonlinearity

Input Qutput
representation representation

‘ 1.0
‘ 0.8
Ox 0.6

x|©: 9(y)
O W O 0.4
y 9(y)
O 0.0-

b k Pointwise
1C

Source: Isola, Torralba, Freeman

Non-linearity

91

9(y)

|

1,

it y>0

otherwise




Example: linear classification with a perceptron
Y

y =X W-+b

92 Source: Isola, Torralba, Freemar



Example: linear classification with a perceptron
Y

y =X W-+b

() = I, it y>0
IS 0, otherwise

93 Source: Isola, Torralba, Freemar



Example: linear classification with a perceptron
Y

- 15

10 y:XTW+b

1, if >0
o g(y){ 7

0, otherwise

—10

94 Source: Isola, Torralba, Freemar



Example: linear classification with a perceptron
9(y)

y =X W-+b

() = I, it y>0
IS 0, otherwise

95 Source: Isola, Torralba, Freemar



Computation in a neural net — nonlinearity

() = I, it y>0
Input Output I 0, otherwise
representation representation .
‘ 0.8
C
0.6
X 8x g(y) 0.4
O— W O
y 9(y)
@ b o —4 =2 0 2 4
1C Y

Can’t use with gradient descent, Vg = 0

96 Source: Isola, Torralba, Freemat



Computation in a neural net — nonlinearity

Sigmoid
1
Input Output — (1) —
representation representation 9(y) (Y) 1+ e Y

‘ 1.0

(C 0.8-
A § ,W | O g(y) 0.4-

‘ y g(y) 0.2-

- b R R
1C v

97 Source: Isola, Torralba, Freemar



Computation in a neural net — nonlinearity

* [nterpretation as firing rate of neuron Sigmoid
W) =0ly) = 1
e Bounded between [0,1] INY) = NI = 1l +e ¥
1.0+
e Saturation for large +/- inputs 0g
0.6-
e Gradients go to zero g(y) .
e Centered at 0.5. Better in practice to e
use: tanh(y) = 2g(y) — 1 B S S S

98 Source: Isola, Torralba, Freemar



Computation in a neural net — nonlinearity

e Unbounded output (on positive side)

o | g 0, it y<O
e Efficient to implement:z, =\ i , >

* Also seems to help convergence (see
6x speedup vs tanh in [Krizhevsky et

al.])

* Drawback: if strongly in negative
region, unit is dead forever (no
gradient).

e Default choice: widely used in

99
~tirrent maodealcel

Rectified linear unit (RelLU)

g9(y) = max(0, y)

Source: Isola, Torralba, Freemar



Computation in a neural net — nonlinearity

Leaky Rel U

e where ais small (e.g. 0.02) max(0,y), if y >0
N | dg | —a, if y<O 9w) = {amin(O,y), ity <0
e Efficientto implement:g, =11 i 4 >0 y

* Has non-zero gradients everywhere
(unlike RelLU) >

100 Source: Isola, Torralba, Freemar



Deep nets

&
N\ . (\Q(b S\\ﬁ
X N &P
DN O
U S O

\A (c . 1)
— “clown fish

Source: Isola, Torralba, Freeman 101



Computation has a simple form

y = Wg(W=t - g(WE g(WE (g(Wix)))))

e Composition of linear functions with nonlinearities in between
e E.g. matrix multiplications with ReLU, max(0, X) afterwards

e Do a matrix multiplication, set all negative values to O, repeat



Stacking layers

Input Intermediate Qutput
representation representation representation
O
O
s -
O oY
O O
C O
C O
1C 1C

h = "hidden units”

103 Source: Isola, Torralba, Freemar



Stacking layers

Qutput
representation

Intermediate
representation

INnput
representation

bH(2)

W (2)

W®h + b3

y

., bEN

L WE )

Source: Isola, Torralba, Freemar
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Stacking layers

negative

Qutput
representation

bH(2)

W (2)

W®h + b3

y

Intermediate
representation

INnput
representation

., bEN

L WE )

Source: Isola, Torralba, Freemar
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Stacking layers

O
>
afd
)
O)
)
c

Qutput
representation

~

o

I_I

D -

> ~
-

L o |

O = >
O +
O 5
ms
5 8
=0

INnput
representation

., bEN

L WE )

Source: Isola, Torralba, Freemar
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Stacking layers

negative

Qutput
representation

W (2)

W h + b
b

y

Intermediate
WS p)

representation
h

INnput
representation

Source: Isola, Torralba, Freemar
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Stacking layers

Input Intermediate OQutput
representation representation representation

negative

108 Source: Isola, Torralba, Freemar



Connectivity patterns

Input Qutput Input Qutput

representation representation representation representation
w

=
\
s

X
O——0
— O
Fully connected layer Locally connected layer
(Sparse W)

109 Source: Isola, Torralba, Freemar



Yi
“clown fish”

X1

Deep learning

| earned

Loss

L(fo(x1),¥1)

Source: Isola, Torralba, Freemat



Batch processing

0000000000

0000000000
O [O000000000

9 0000000000
0000000000

m 0000000000

— 0000000000

0000000000
sa.injeo

—» | Loss

|

—» [ Loss

—» [ Loss

Source: Isola, Torralba, Freemat
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lensors
(multi-dimensional arrays)

Each layer is a representation of the data

12 Source: Isola, Torralba, Freema



(multi-dimensional arrays

%Nbatch X C(l)

neuronsj

features

units

"channels”

lensors

fvbatch

=~ 0Q0000000

v

~~
e
—

VIOI0l JOIOIVI®

Q0000000

VIOl IVl JVI@

VIO I JOl JVI@
QO000®0OO0

Source: Isola, Torralba, Freemat



lensors
(multi-dimensional arrays)

%Nbatch X C(l)

<
O
4
©
O
neurons Z

features

units

"channels”

114

Source: Isola, Torralba, Freemat



lensors
(multi-dimensional arrays)

h(l) G Nbatchxc(l) h(Q) G 'A]\fbatc:hXC'(2>

('(2)

Nbat ch

115 Source: Isola, Torralba, Freemar



h(z) E %Nbatch XH(2> X W(z) XC(2>

Processing a layer

h(].) E %Nbatch XH(l) X W<1) XC(l)

L L L L LS

)M X (o) H

/77777 T

(L L L L LS

(M X H

Source: Isola, Torralba, Freemat
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