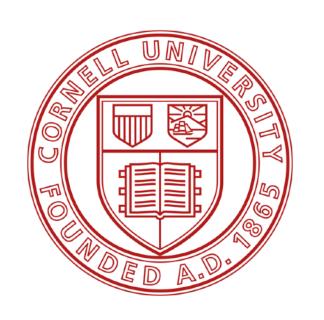
Lecture 28: Recent topics in generative modeling

CS 5670: Introduction to Computer Vision



Today

• 3D generation (continuing from last time)

Flow matching

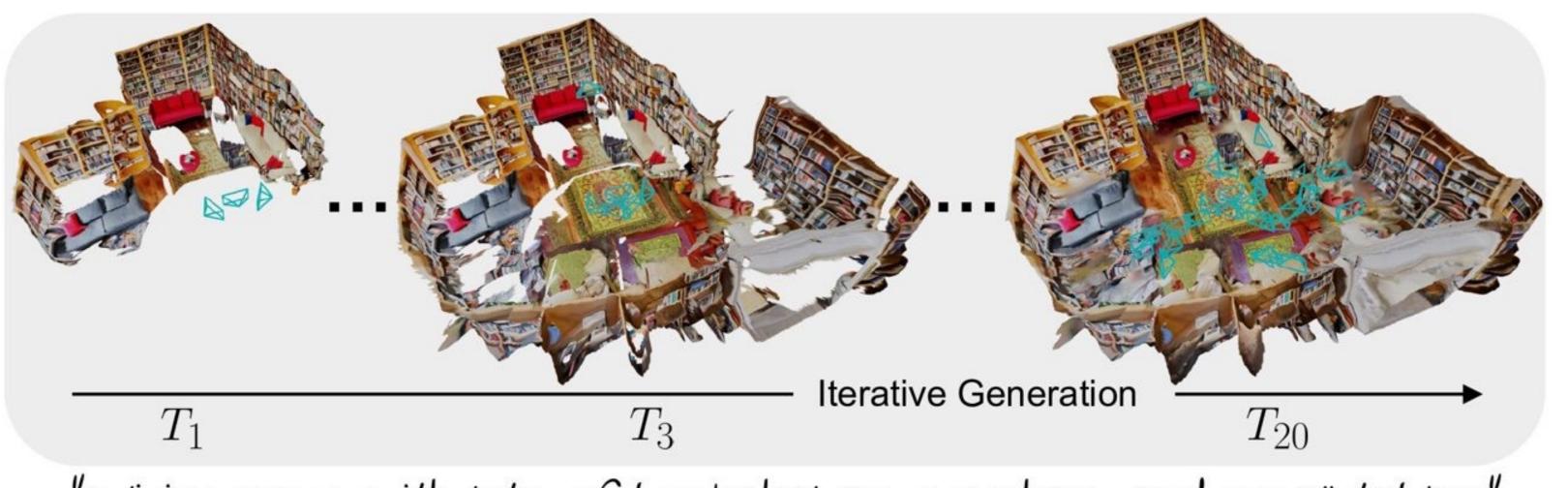
Video generators as vision problem solvers

Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models

Lukas Höllein^{1*}, Ang Cao^{2*}, Andrew Owens², Justin Johnson², Matthias Nießner¹

¹Technical University of Munich, ²University of Michigan

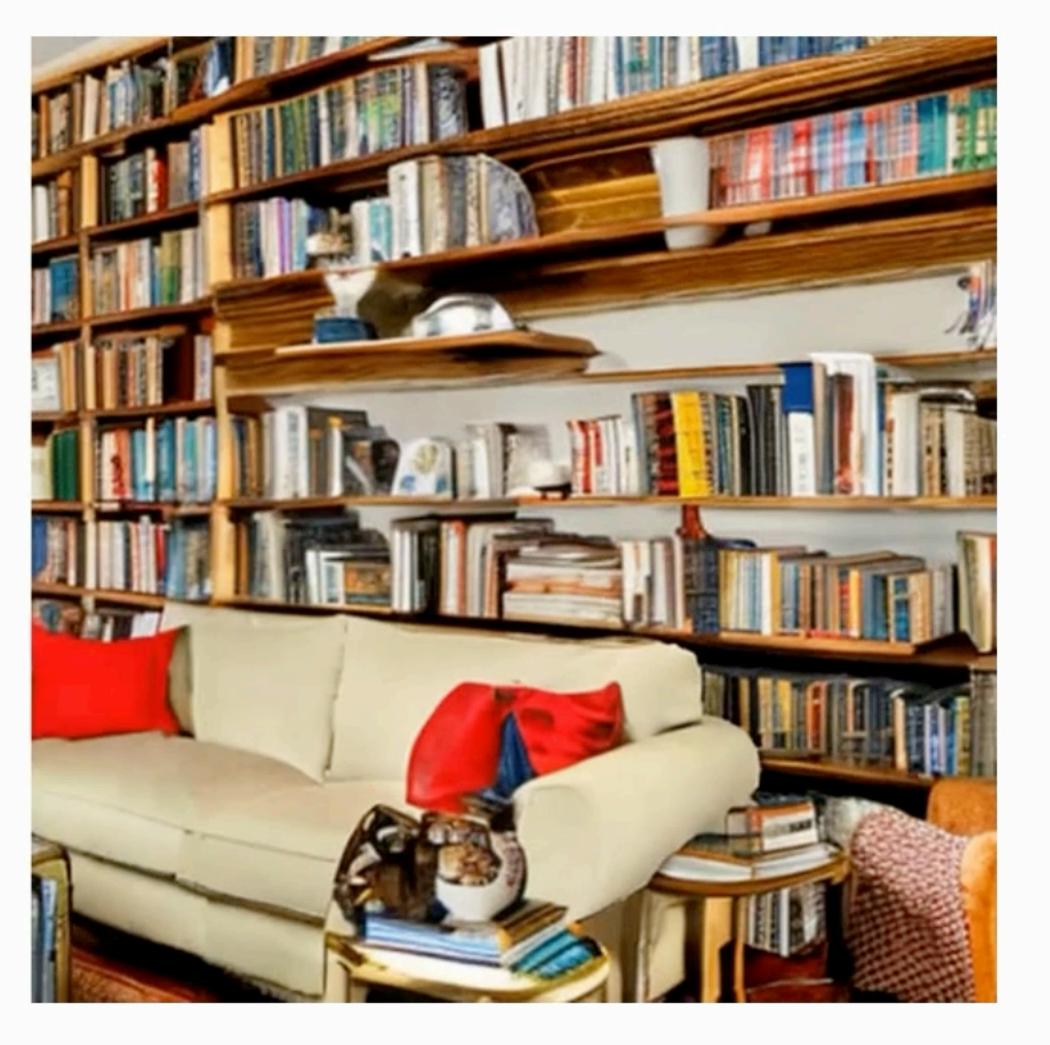
*joint first authorship



"a living room with lots of bookshelves, couches, and small tables"

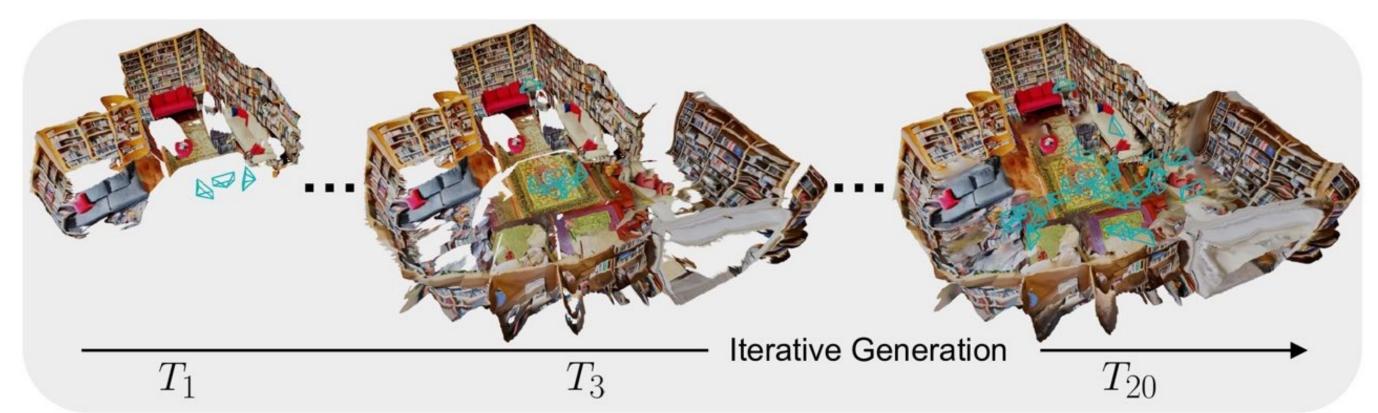
"a living room with a lit furnace, couch, and cozy curtains, bright lamps that make the room look well-lit"

Scene Generation Stage

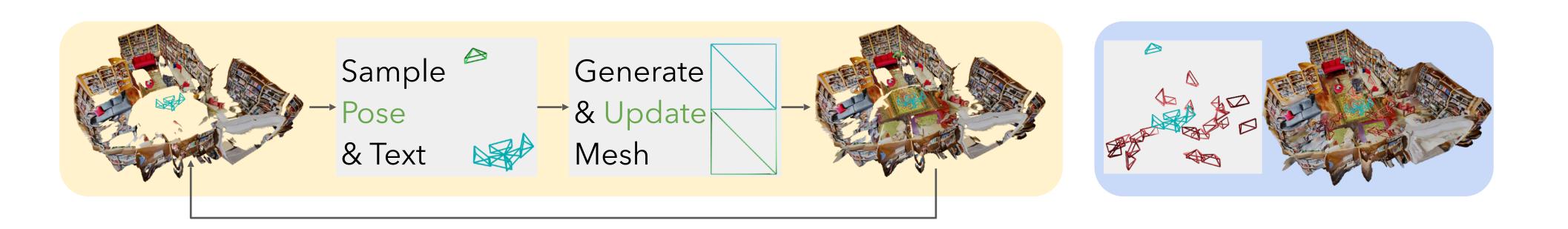


generated images

Two-Stage Scene Generation



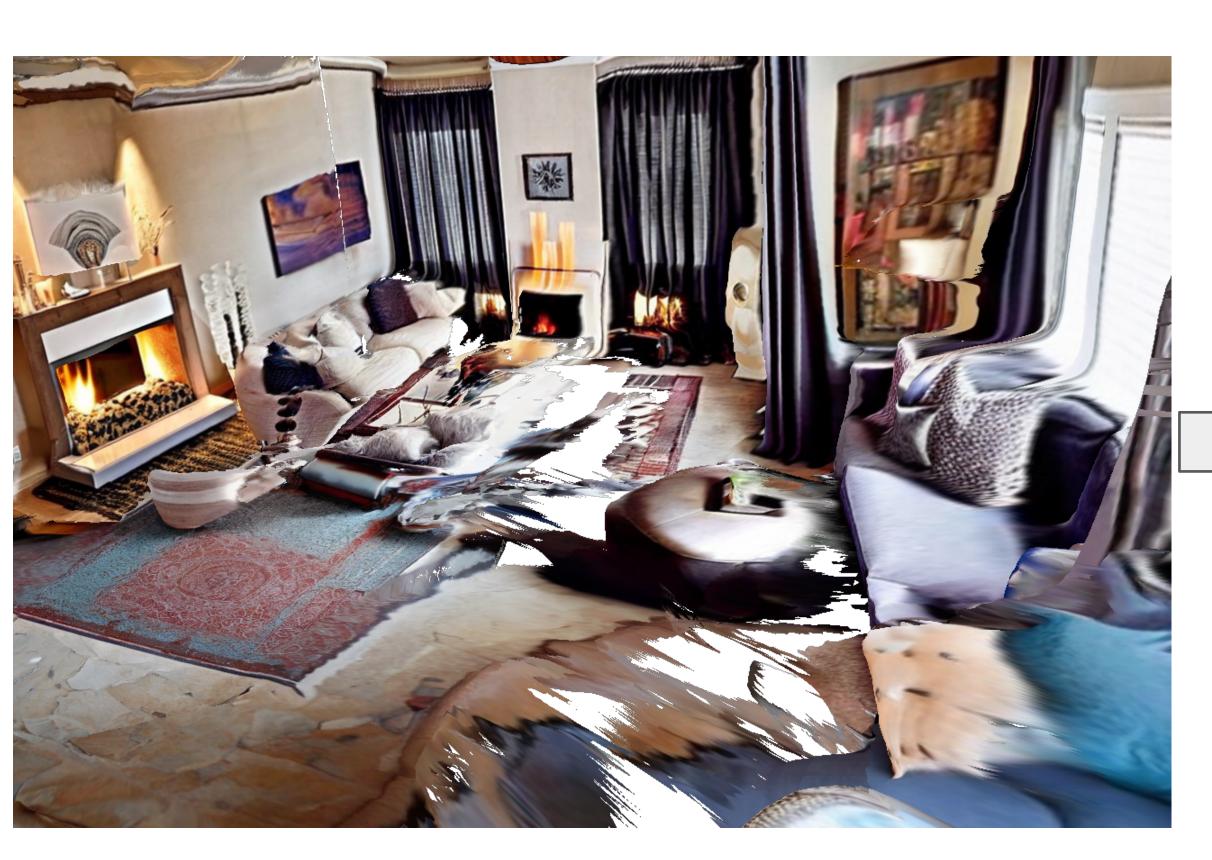
"a living room with lots of bookshelves, couches, and small tables"



Scene Generation Stage

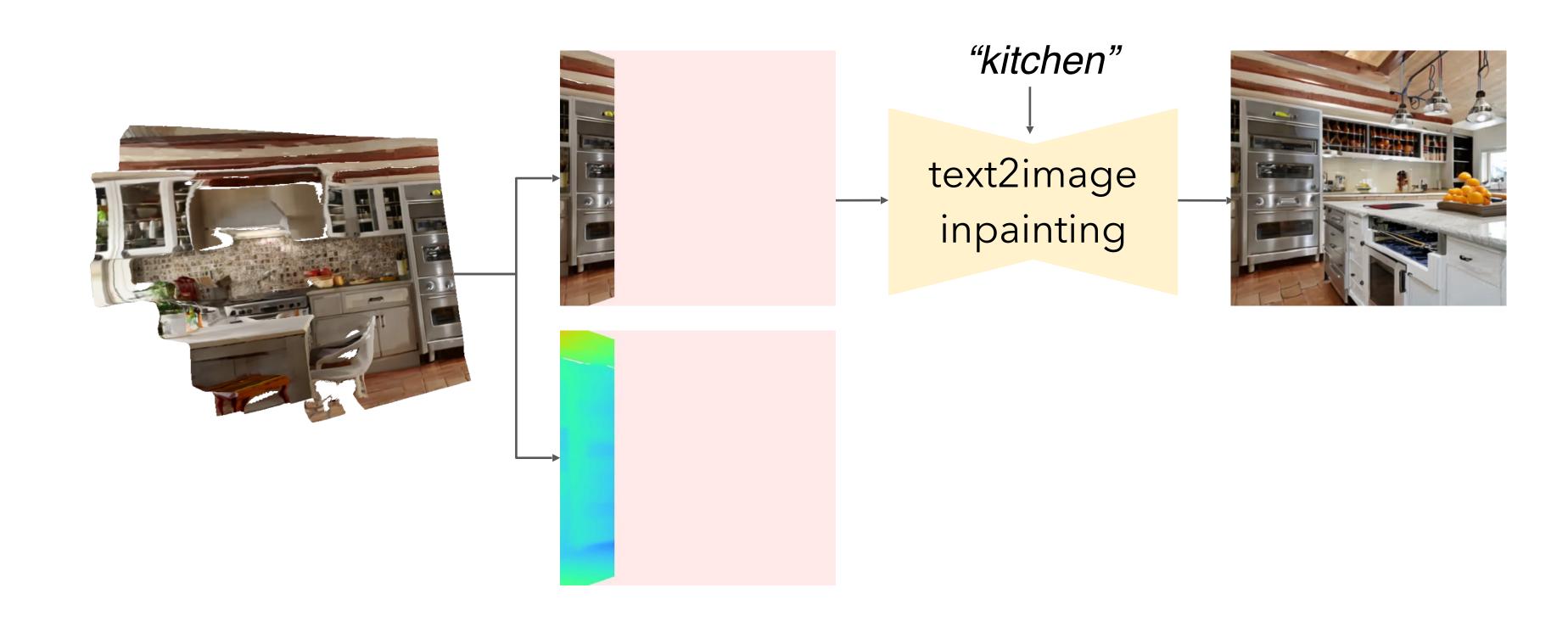
Completion Stage

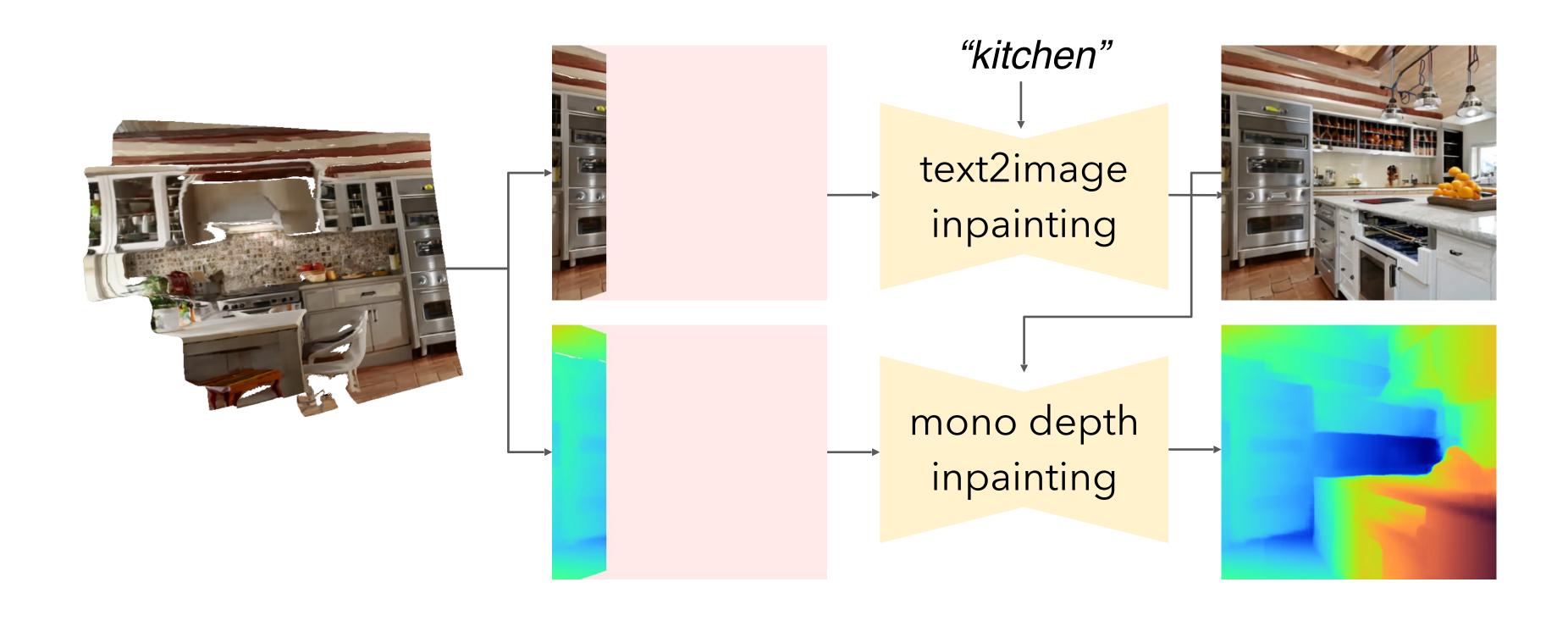
Completion Stage

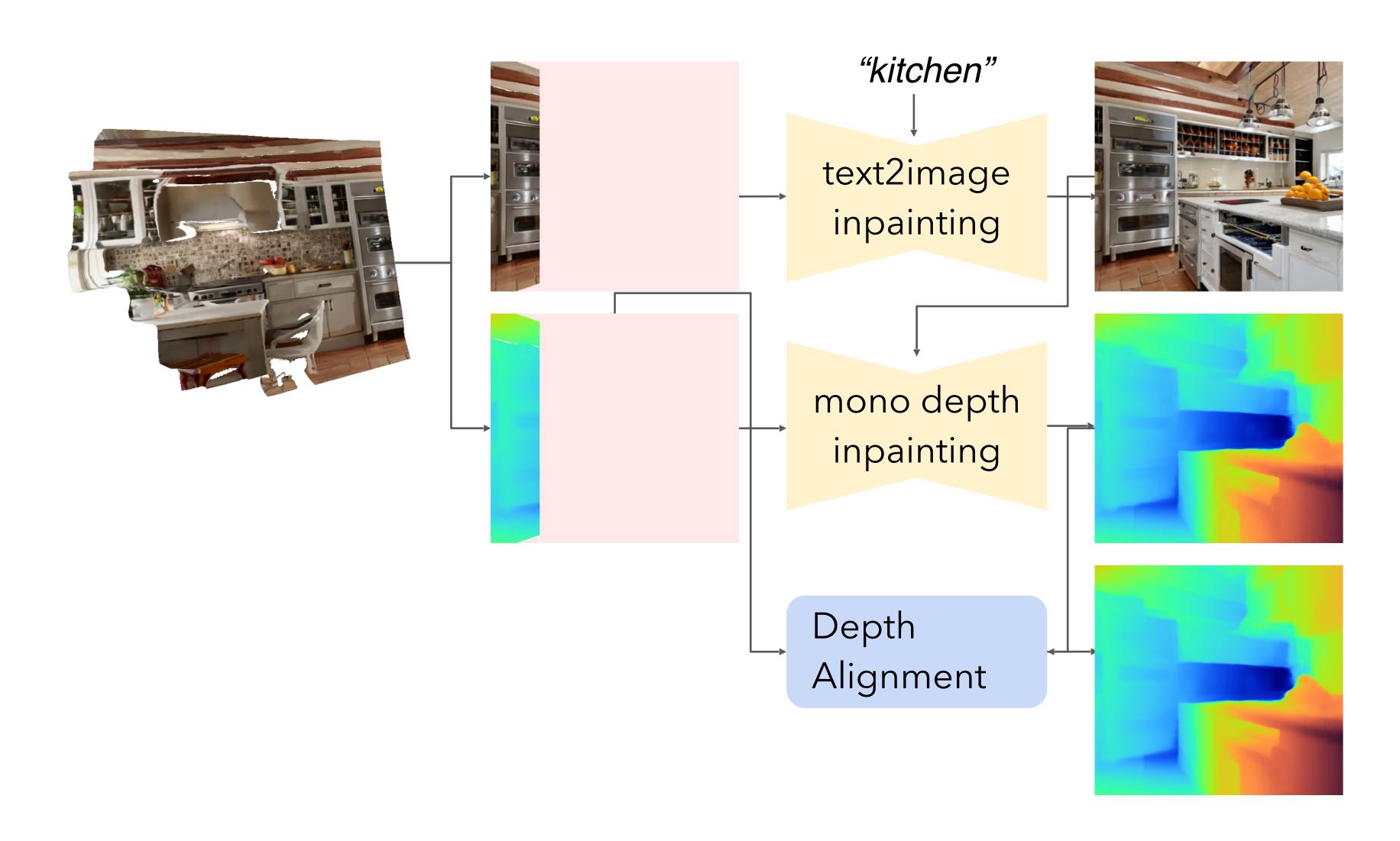


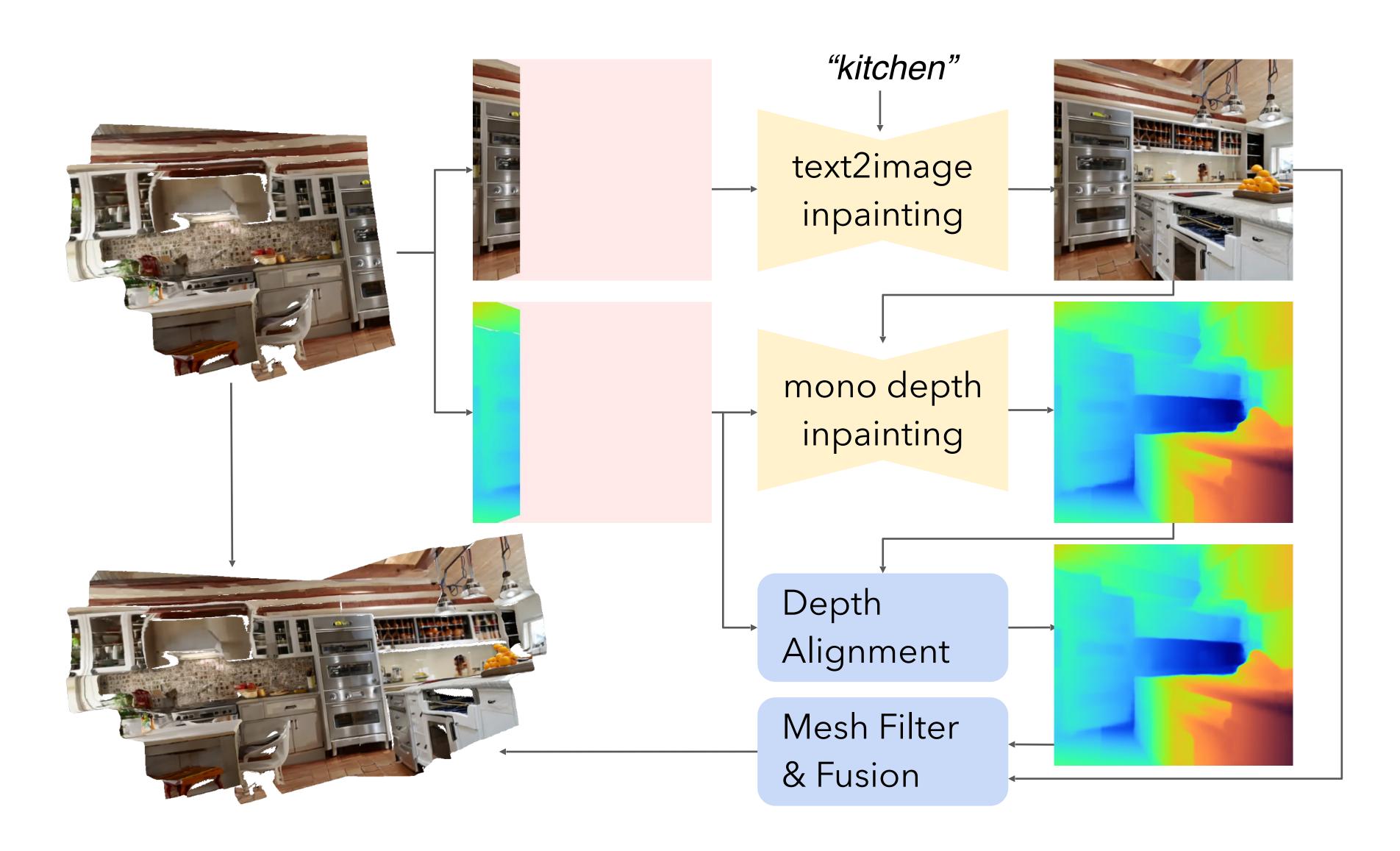
after first stage: mesh contains holes

completion fills-in holes

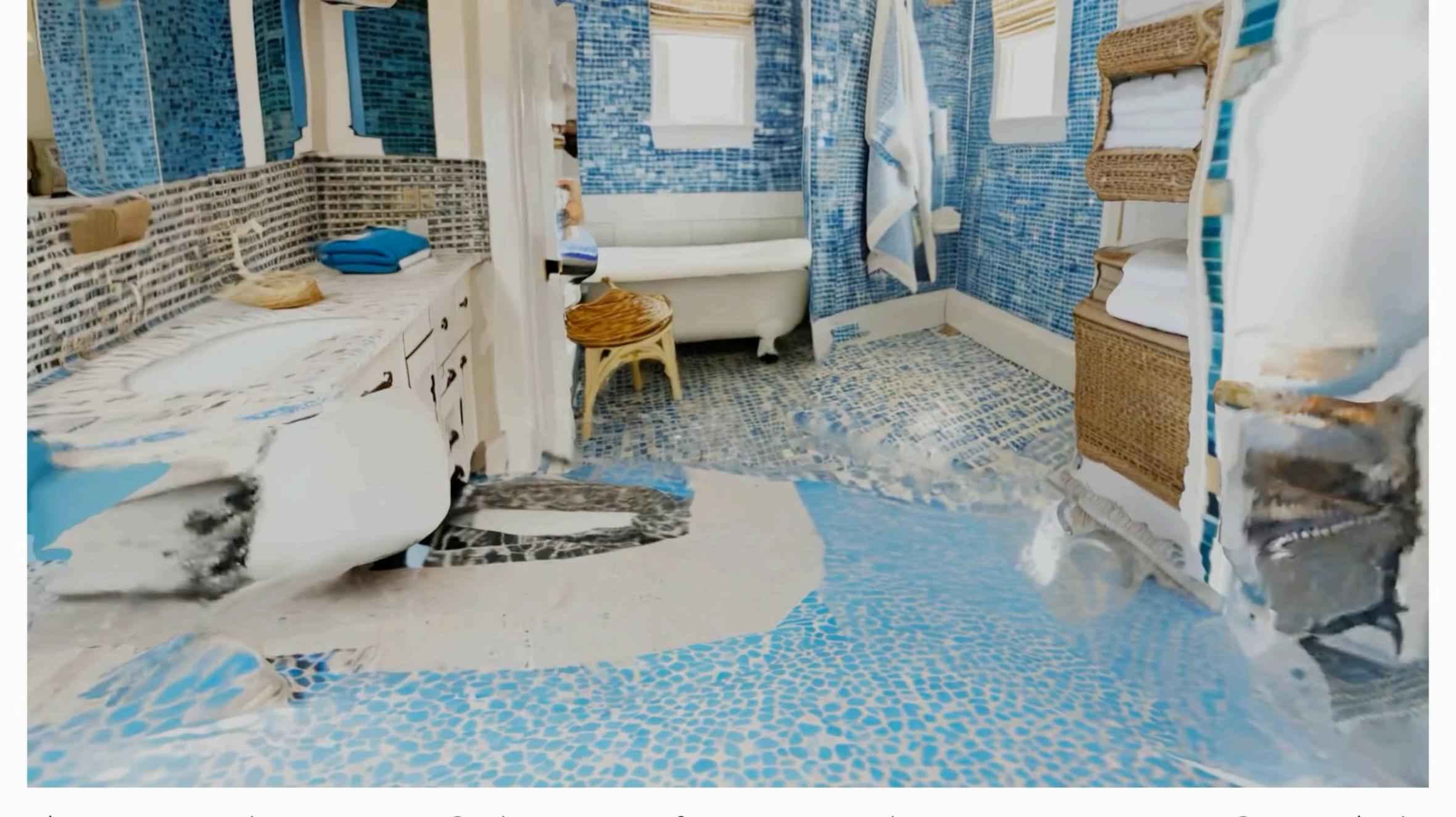








a living room with a lit furnace, couch, and cozy curtains, bright lamps that make the room look well-lit



Editorial Style Photo, Coastal Bathroom, Clawfoot Tub, Seashell, wicker, Mosaic Tile, Blue and white

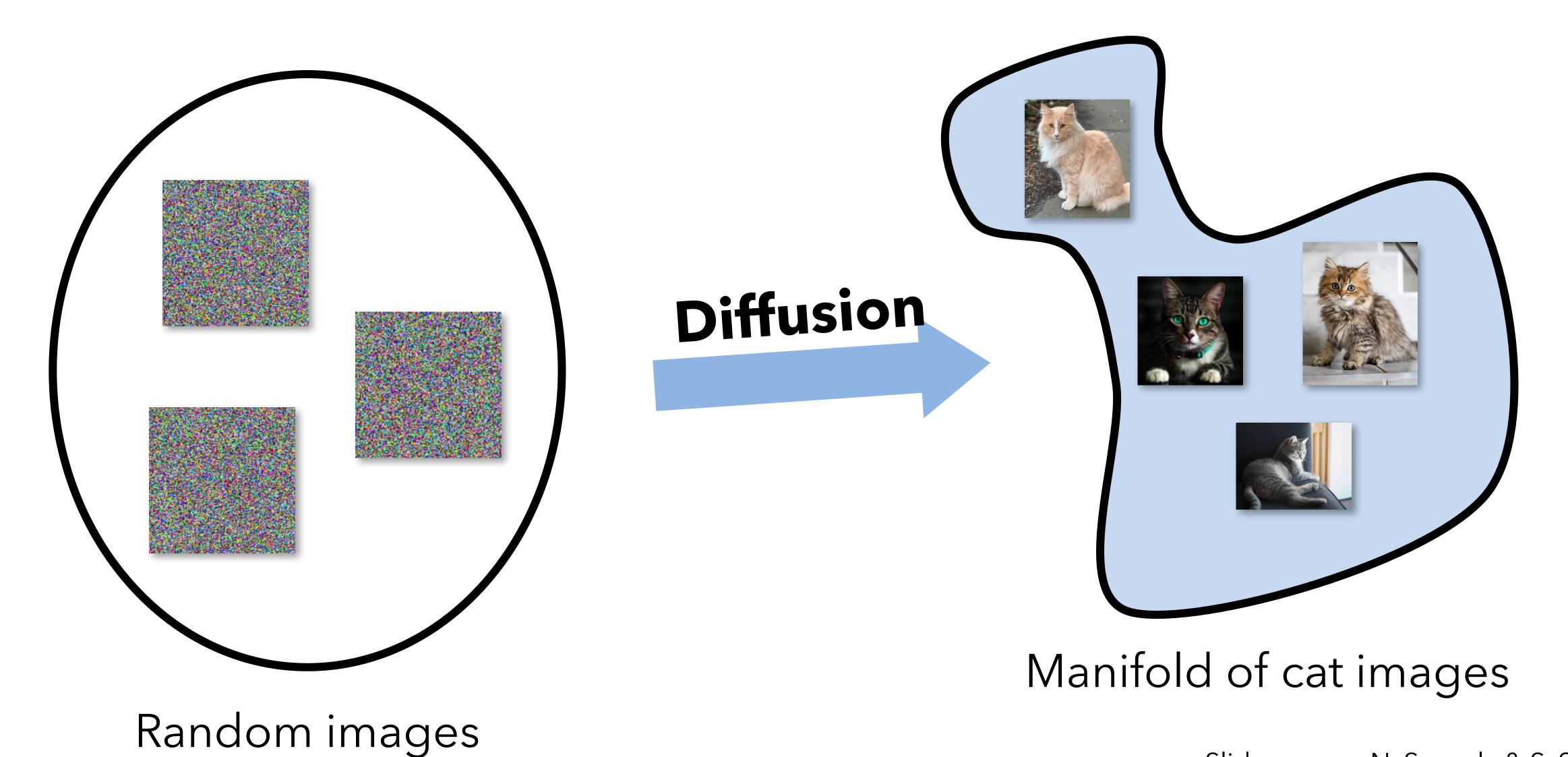
Today

• 3D generation (continuing from last time)

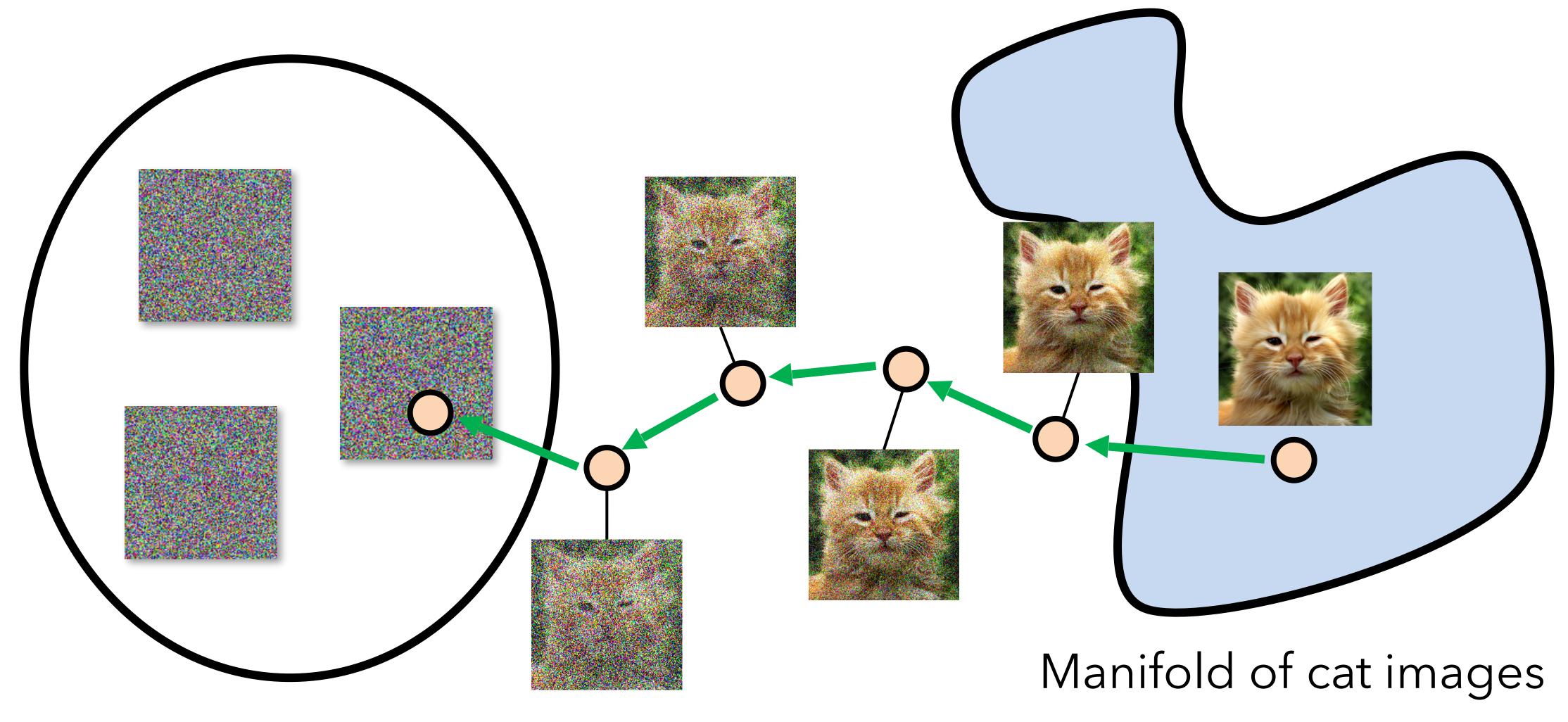
Flow matching

Video generators as vision problem solvers

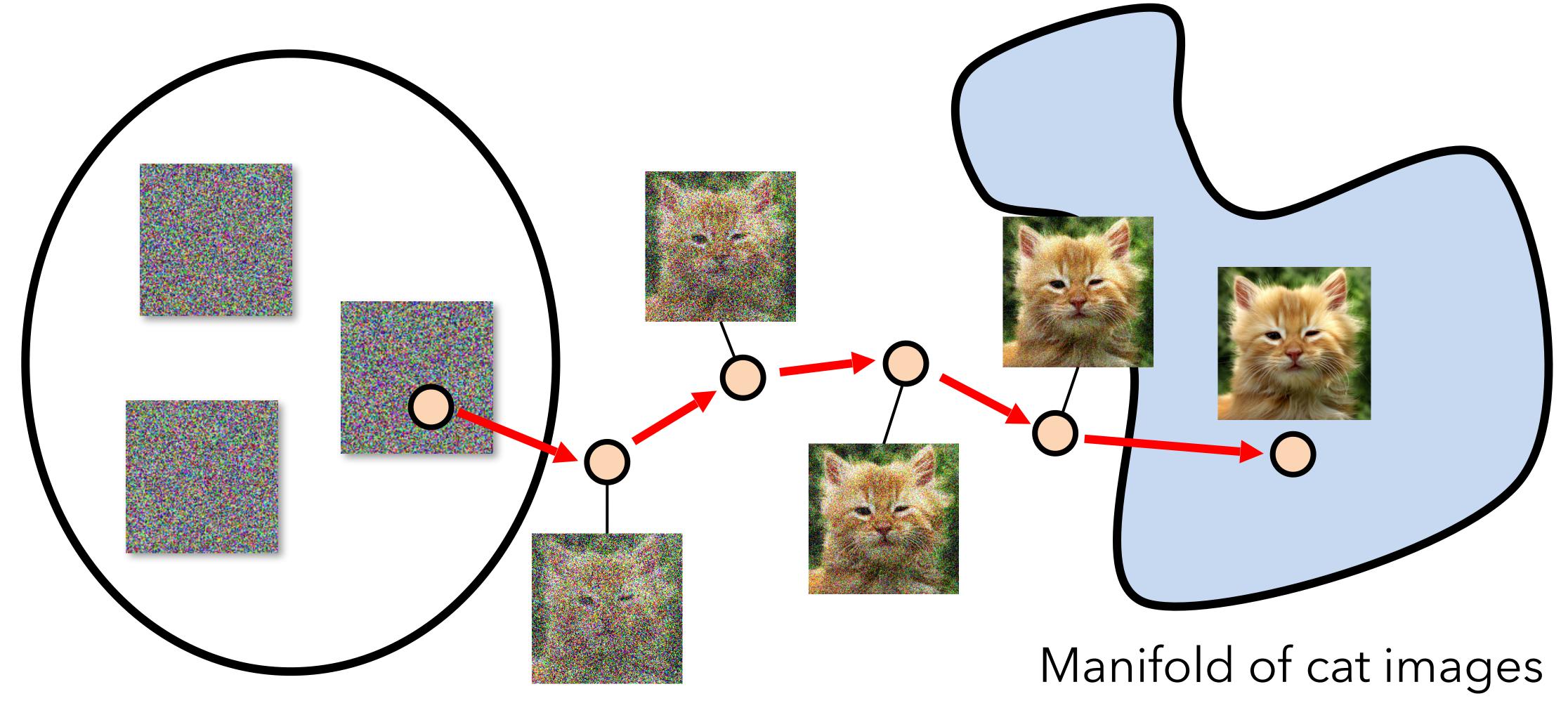
Recall: diffusion models



Slide source: N. Snavely & S. Seitz



Random images



Random images

Diffusion: Physics Interpretation

Heat Diffusion

Source: Angjoo Kanazawa

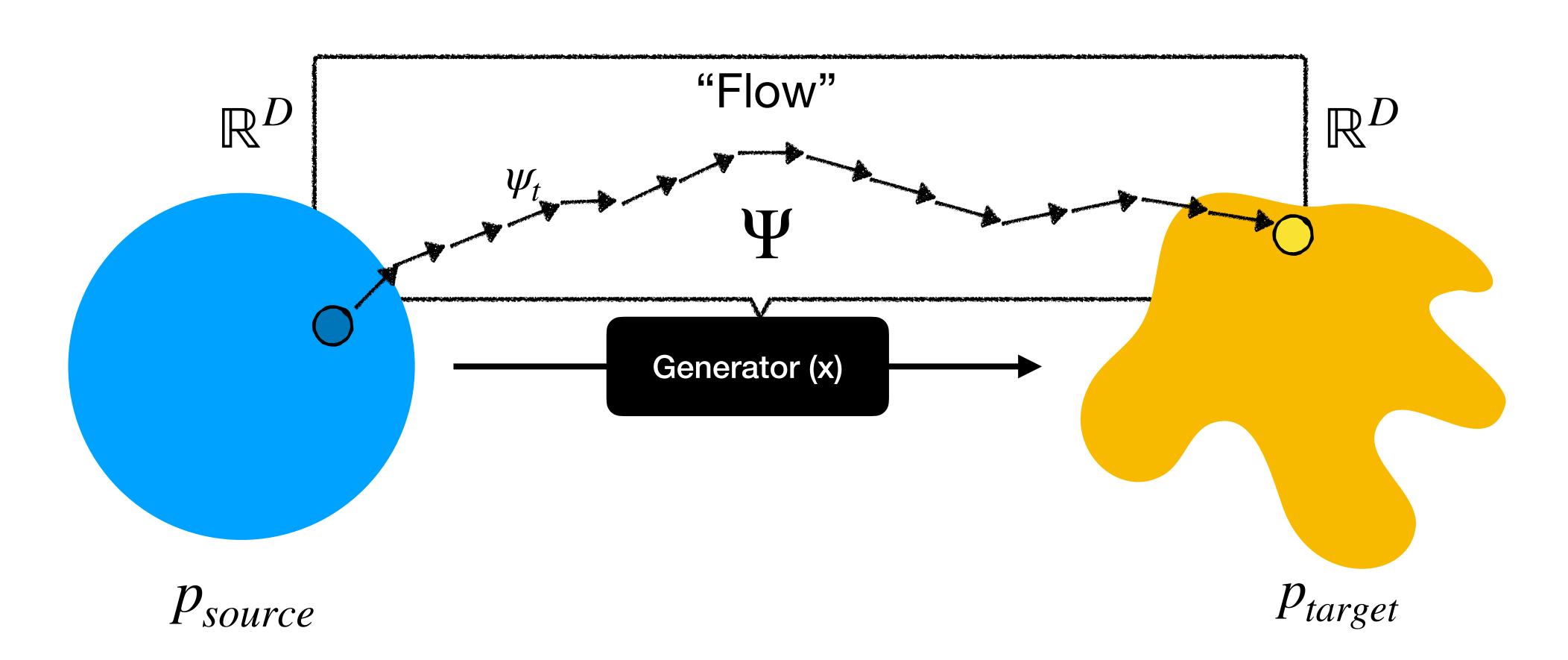
Diffusion: Physics Interpretation

Reversing the process

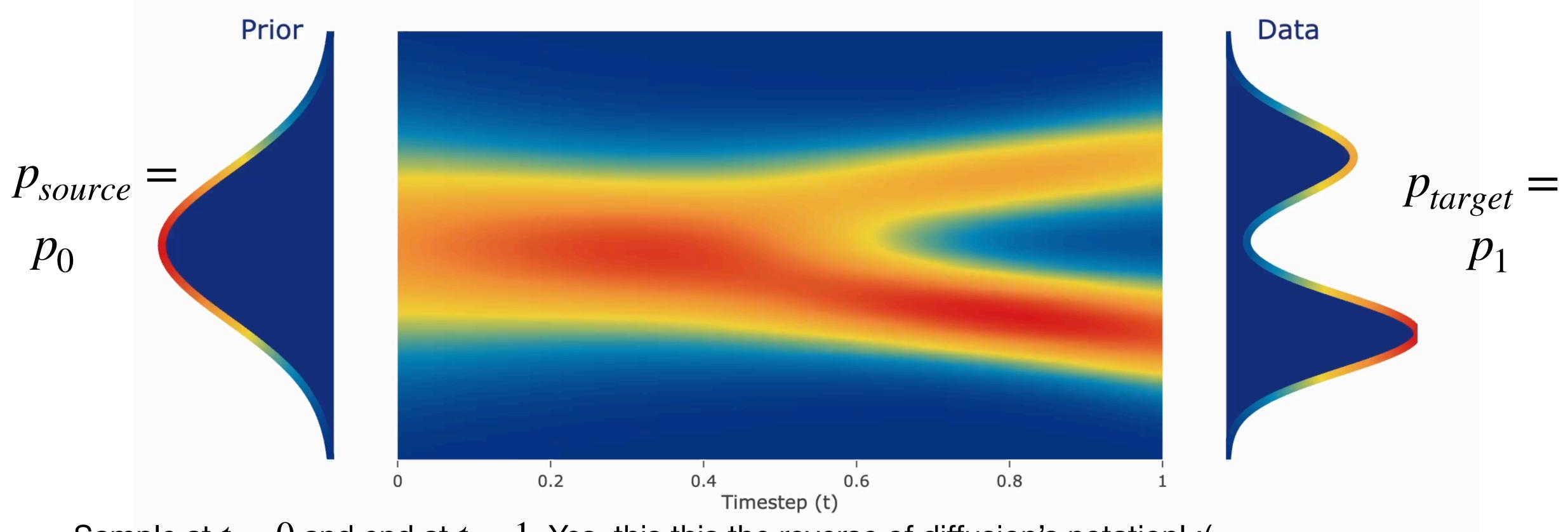
Flow matching

- Another perspective on generative modeling
- Widely used in state-of-art image and video generators
- Very similar to diffusion models
 - In fact, many popular formulations are equivalent [Gao et al., "Diffusion Meets Flow Matching", 2024].
- Simpler (in some ways)

Flow matching models

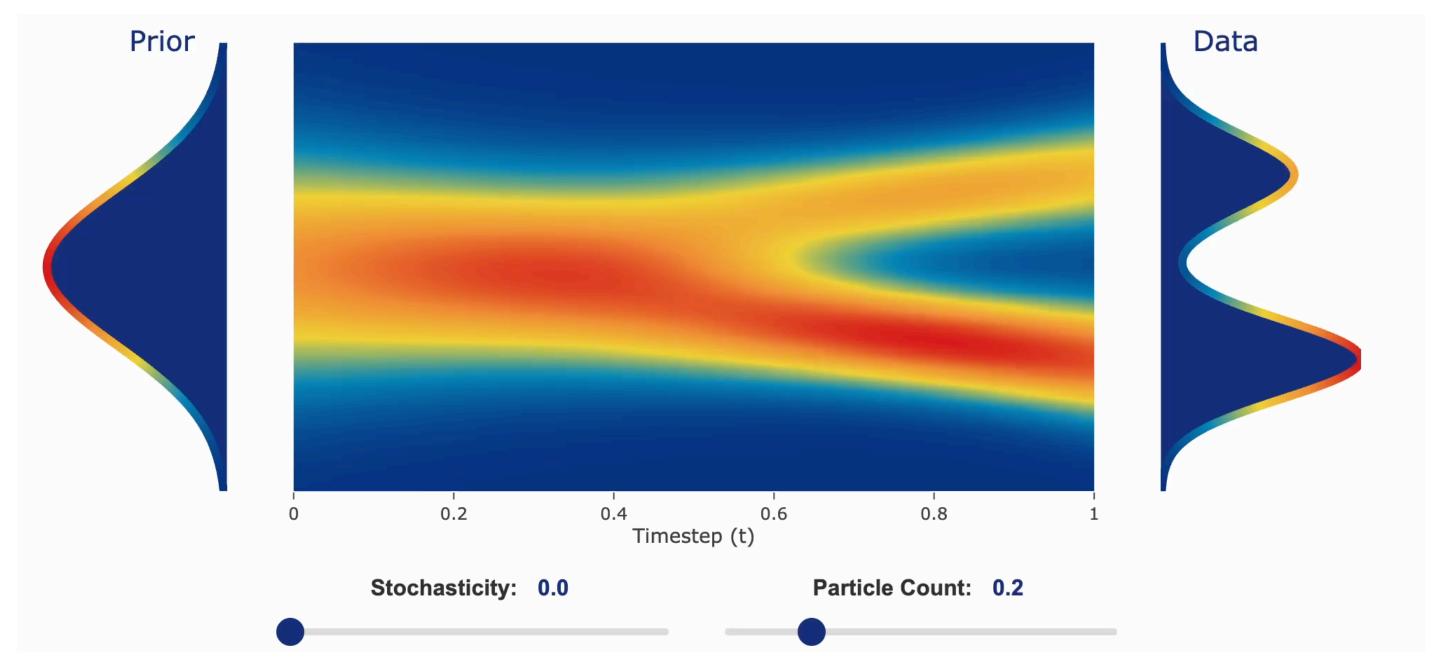


What is Flow?



- Sample at t = 0 and end at t = 1. Yes, this this the reverse of diffusion's notation! :(
- It is a velocity field.
- It's like a river with some currents, every point defines how fast you move (velocity)
- You ride this river to go from one distribution to next

Riding the river = Integration

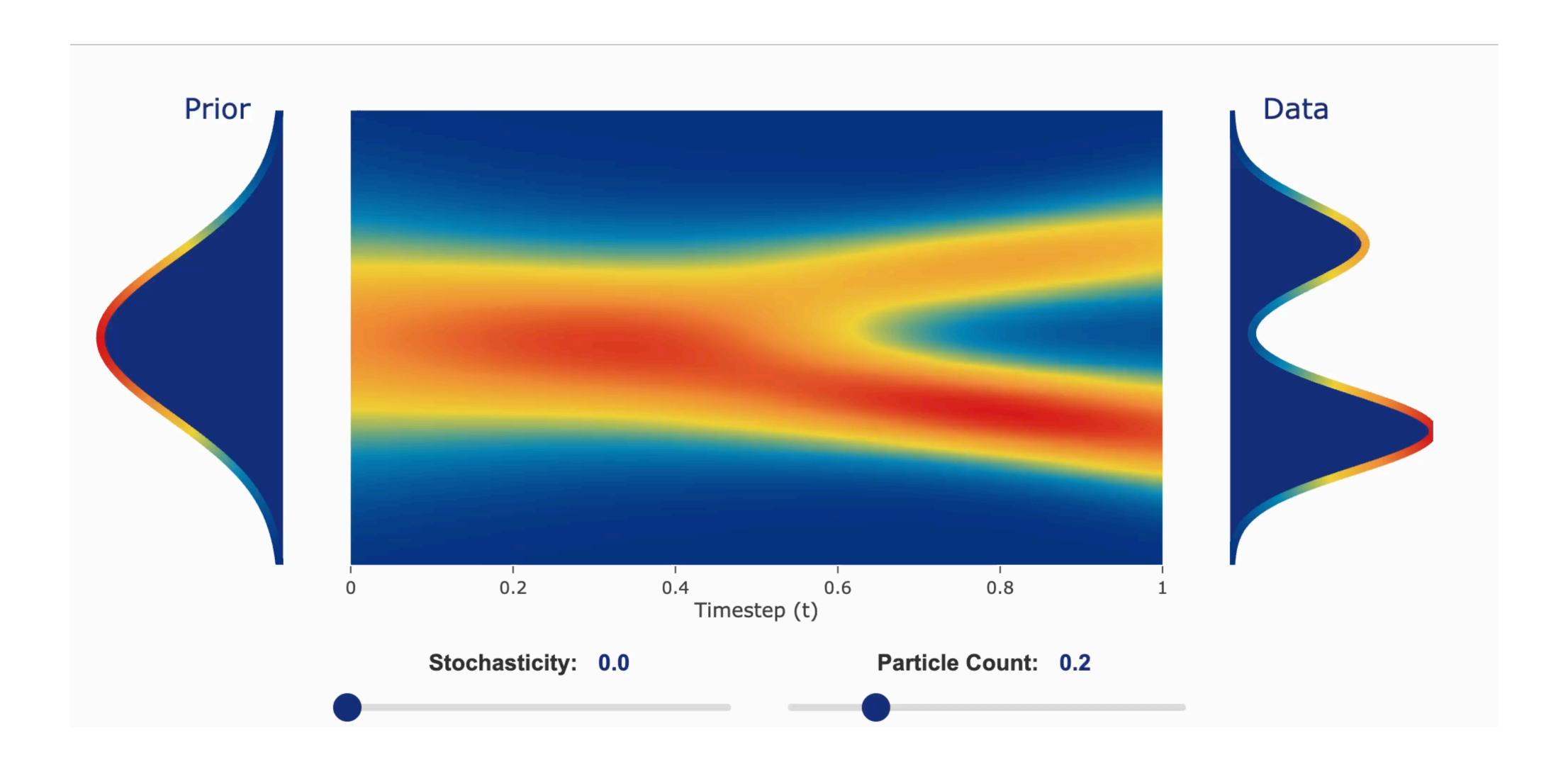


Simplest "Euler Integration":

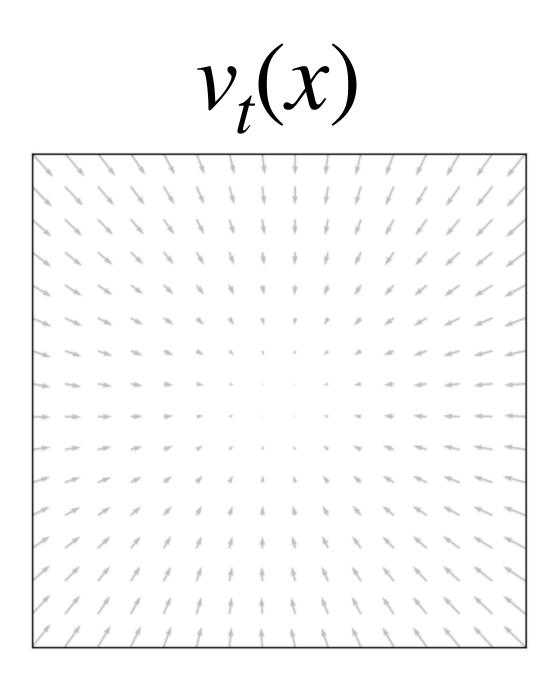
$$x_{t+\Delta t} = x_t + v_{\theta}(x_t, t) \Delta t$$

- Riding this river means you add little bits of velocity defined at each location
- This is called "Integration": solving the Ordinary Differential Equation (ODE) with initial state x_0 , through some differential parametrized by a network: $\frac{dx}{dt} = v_{\theta}(x, t)$
- You can add stochasticity when riding it, then it becomes a Stochastic Differential Equation (SDE)

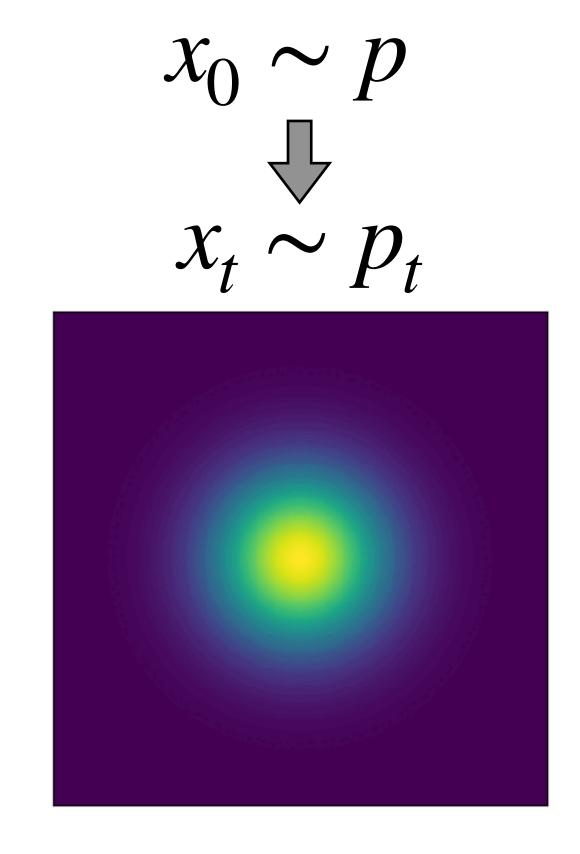
How can we learn this flow?



In 2D



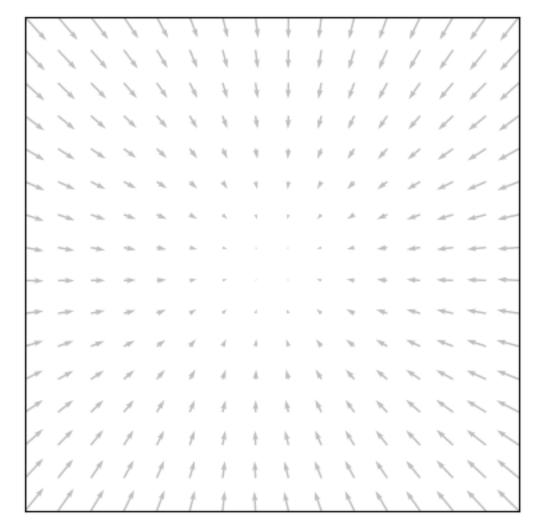
$$x_t = \Psi_t(x_0)$$



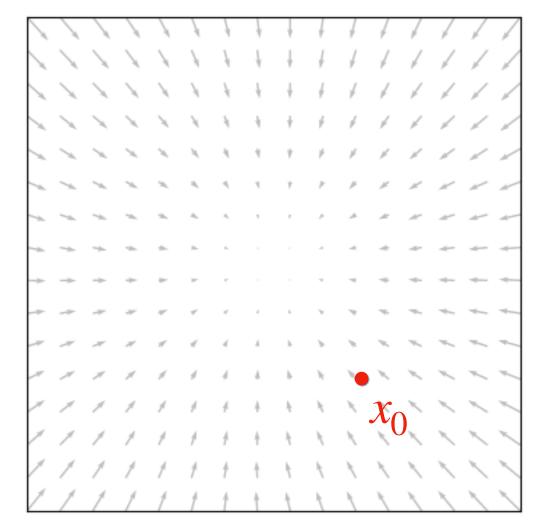
Flow ODE
$$\dot{x}_t = v_t(x_t)$$

How can we train this?

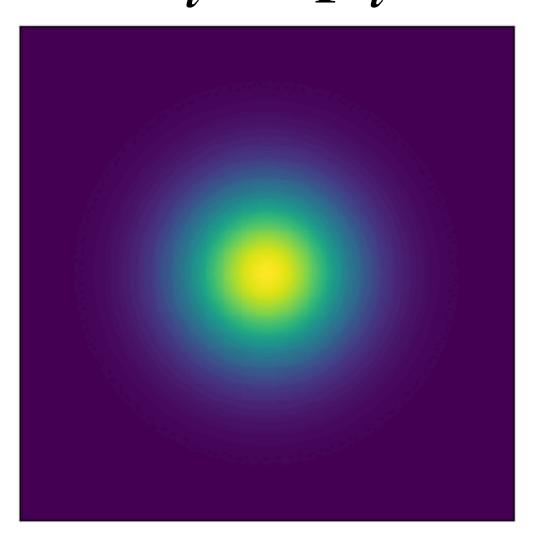




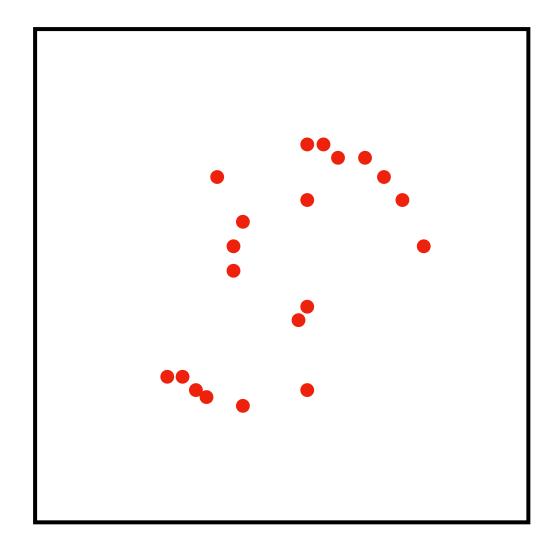
$$x_t = \Psi_t(x_0)$$



 $x_0 \sim p$ $x_t \sim p_t$



Samples of p_1

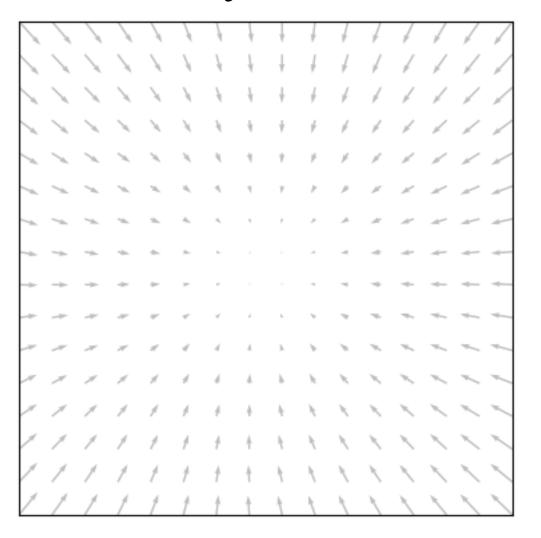


Flow ODE

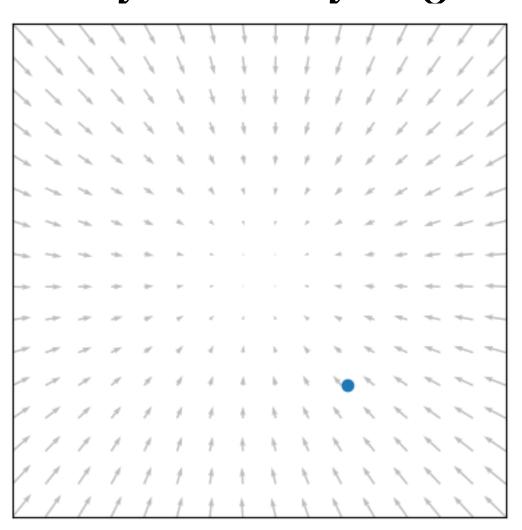
$$\dot{x}_t = v_t(x_t)$$

Caveat: Continuity equation

$$v_t(x)$$

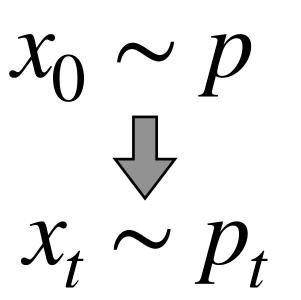


$$x_t = \Psi_t(x_0)$$



Flow **ODE**

$$\dot{x}_t = v_t(x_t)$$



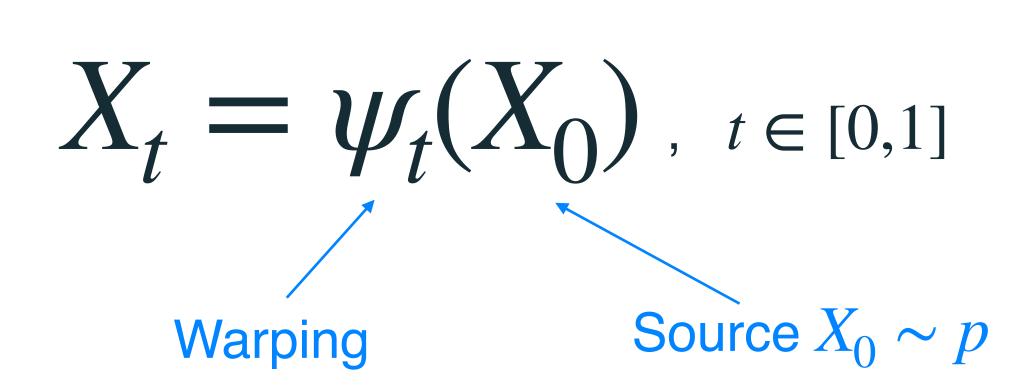
Continuity Equation PDE (*fixed x***)**

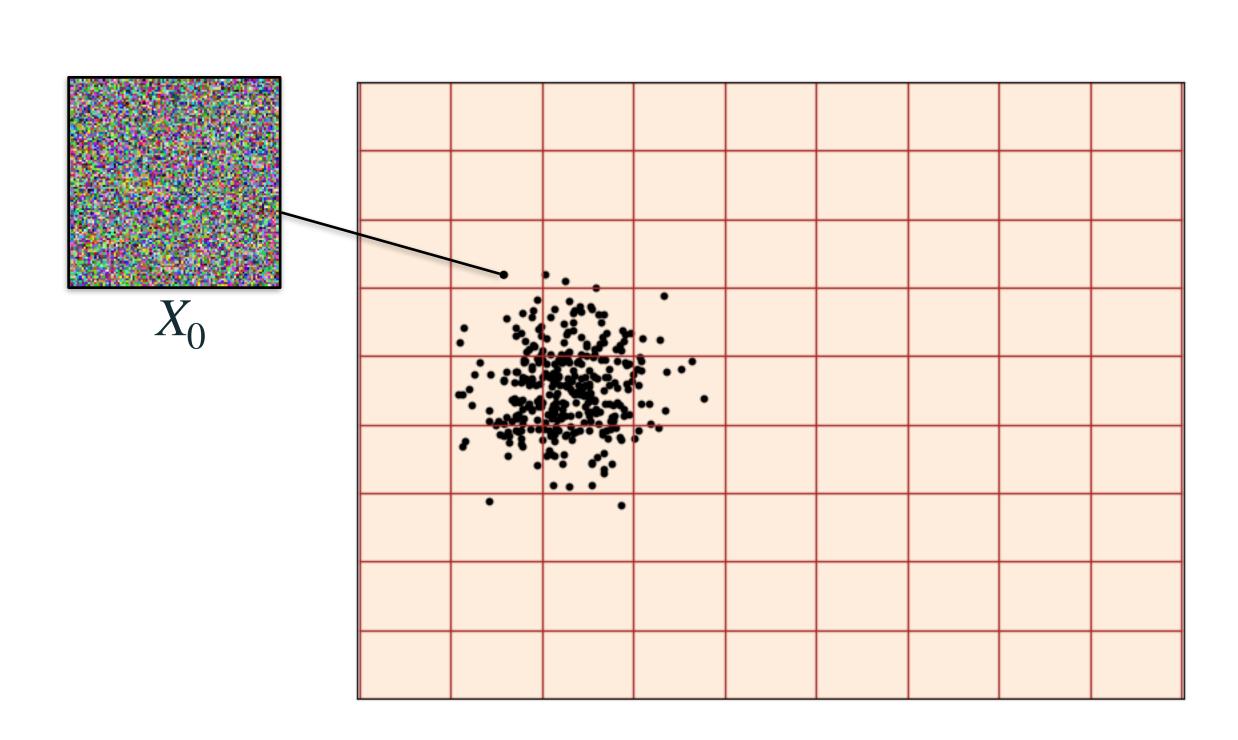
$$\frac{d}{dt}p_t(x) = -\operatorname{div}(p_t v_t)$$

where div
$$v(x) = \sum_{i=1}^{d} \frac{\partial}{\partial x_i} v_i(x)$$

- Need to conserve probability mass
- In the river, analogy you cannot add or remove water
- It has to come from somewhere and go somewhere

The flow can be though about learning a warping function

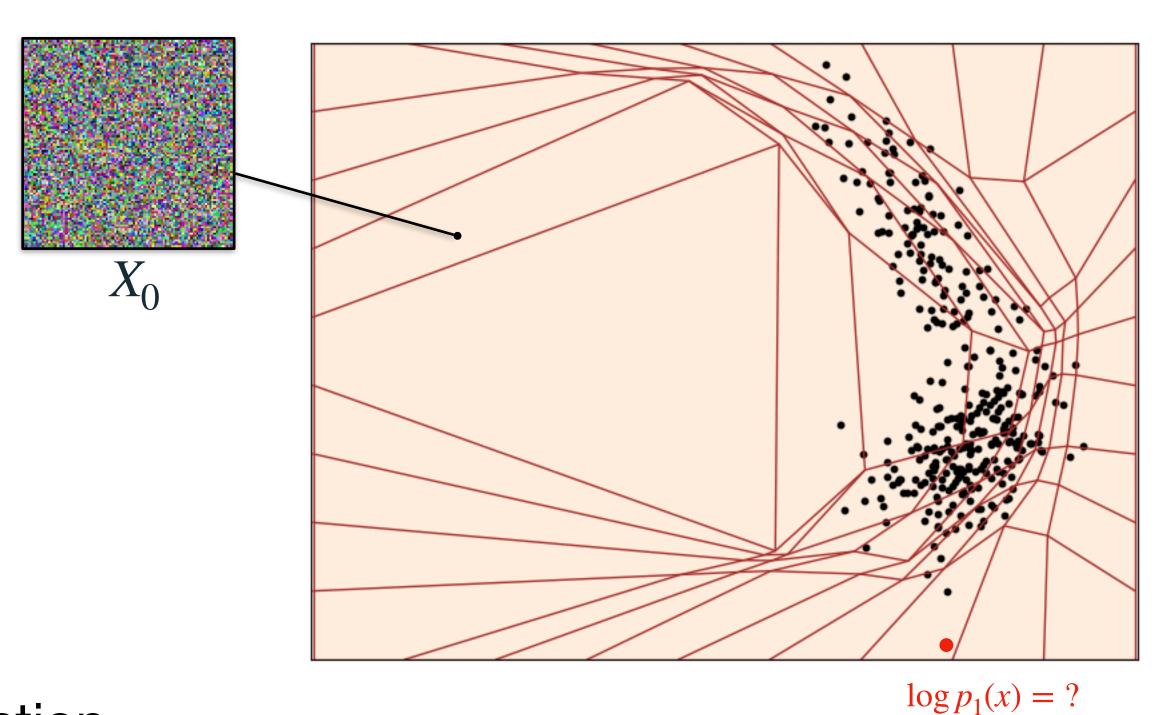




Early work trained flow with Maximum Likelihood

$$D_{KL}(q || p_1) = -\mathbb{E}_{x \sim q} \log p_1(x) + c$$

$$X_t = \psi_t(X_0)$$
 , $t \in [0,1]$ Warping Source $X_0 \sim p$

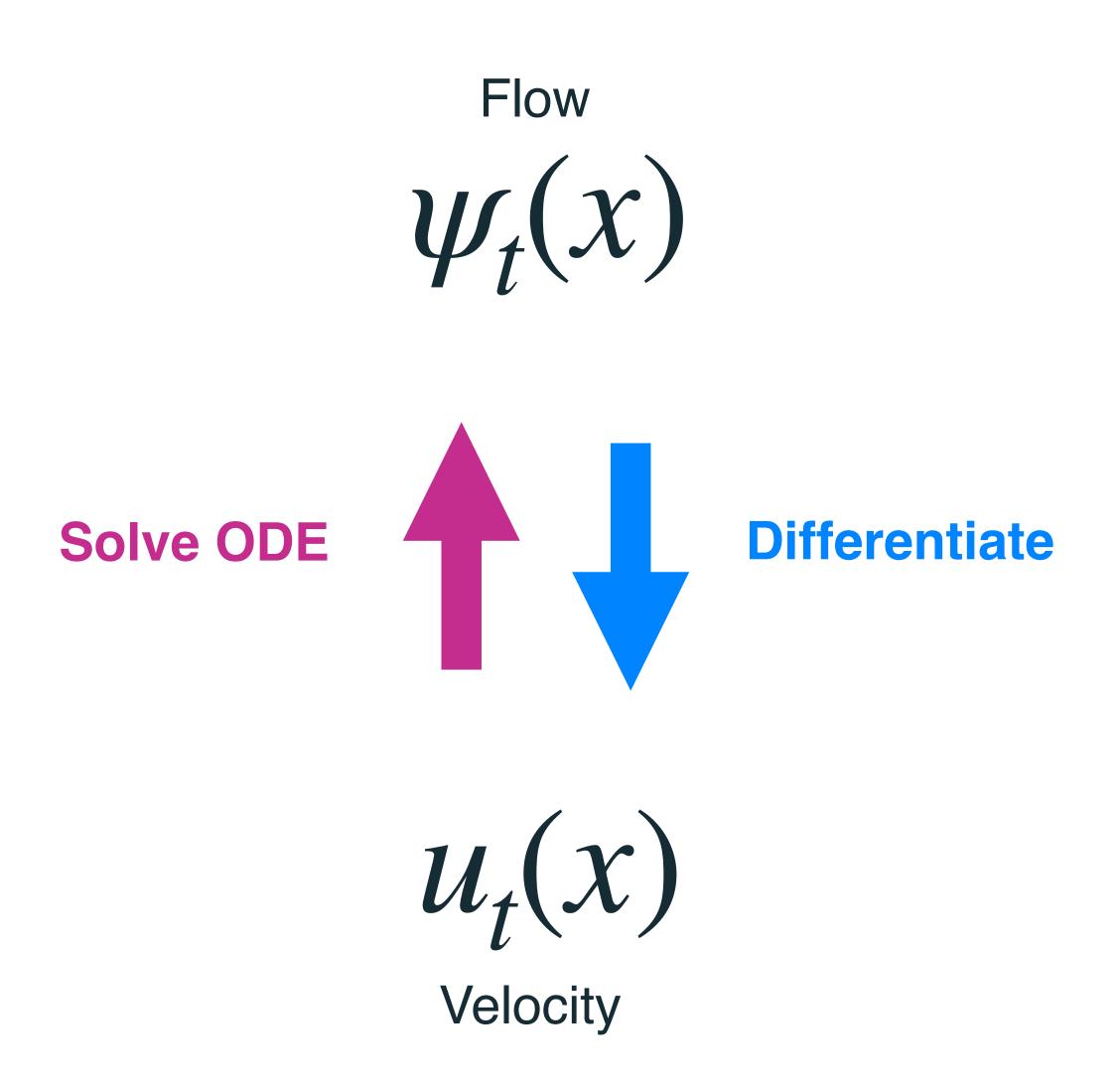


- Chaining ψ_t needs to satisfy the continuity equation
- This requires ODE integration during training with invertible neural networks

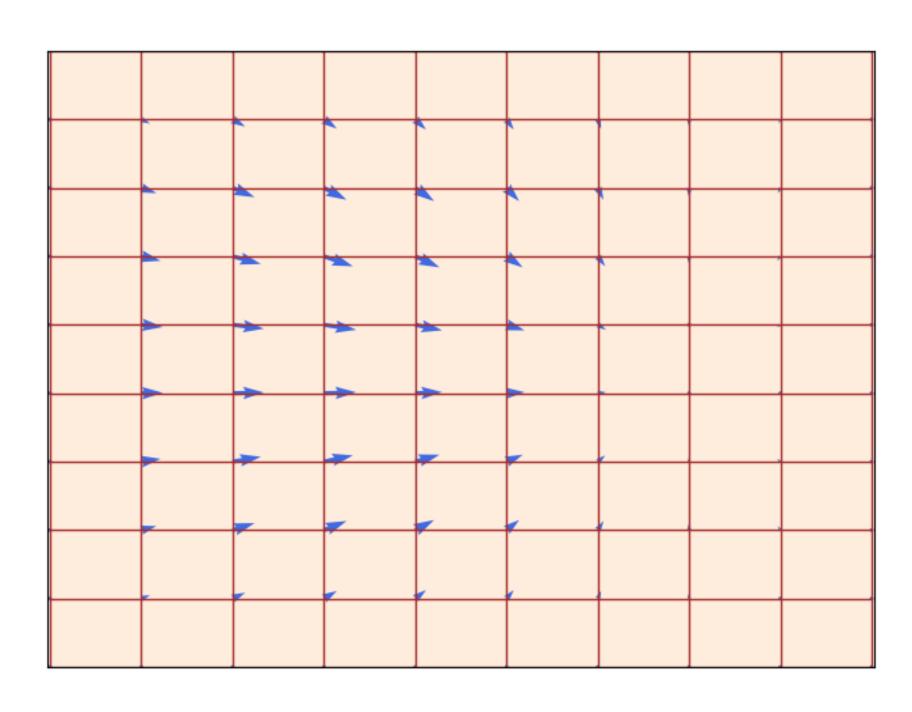
Early flow learning methods

- Based on normalizing flows (not covered in this class)
- Tries to directly deal with this continuity equation constraint
- Very slow to train (need to integrate while training)
- ullet Other constraints like invertibility of ψ_t
- Nice idea with promising results but limited capability + not practical to train

Instead, model flow with velocity



$$\frac{\mathrm{d}}{\mathrm{d}t}\psi_t(x) = u_t(\psi_t(x))$$



Source: Angjoo Kanazawa

Flow Matching [Lipman et al. '22]

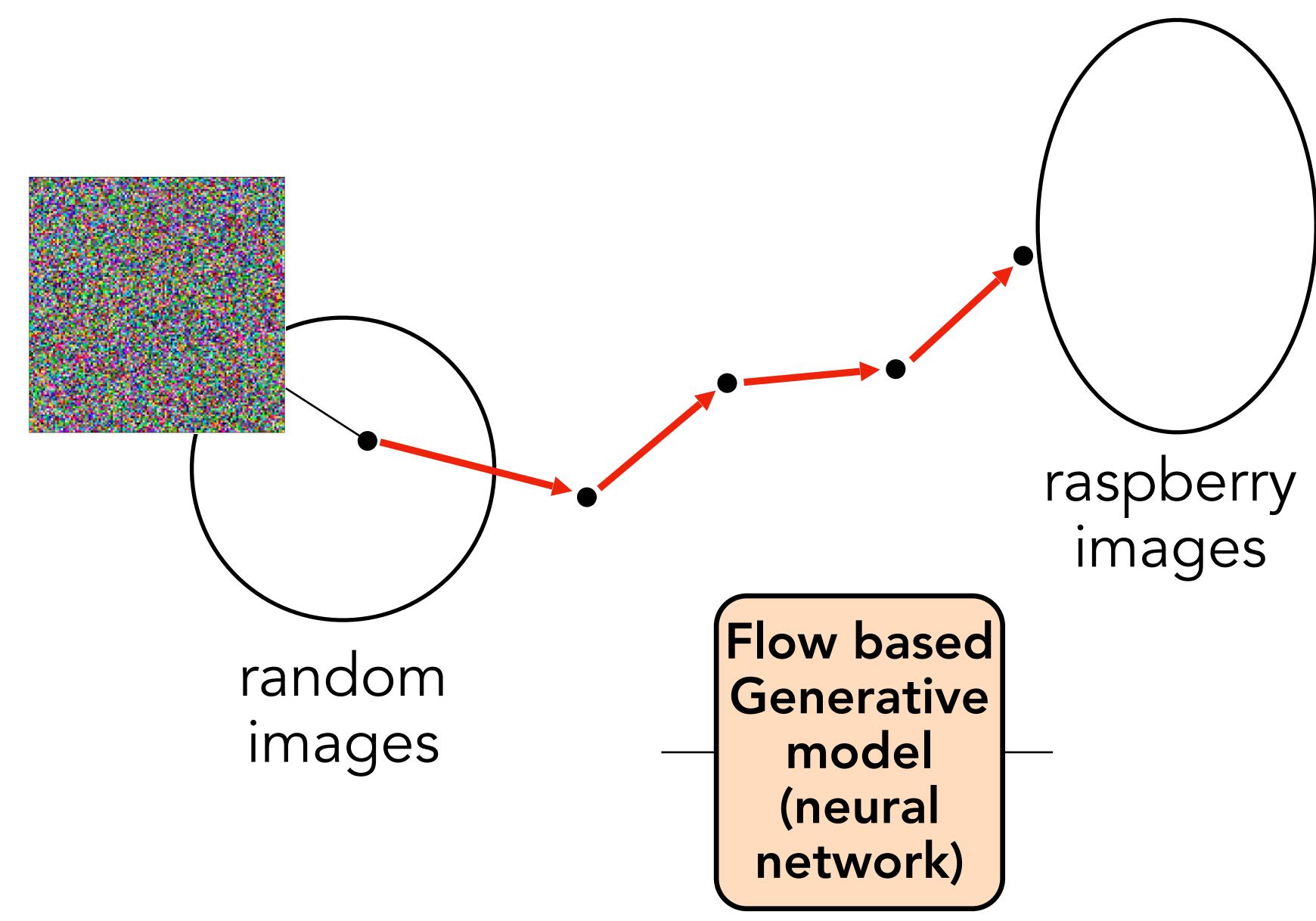
- Directly learn the velocity field!
- Don't have to worry bout the continuity equation because velocity fields can't add / subtract mass. You only re-distribute
- Continuity equation satisfied by construction.
- Basically just learn velocity fields for each data sample (conditional velocity field), all will be fine.

Diffusion vs. Flow matching

- They both end up learning flow, but diffusion poses the problem as learning a specific noising process and learning to denoise it.
- Diffusion: spread out like heat diffusion, learn how to undo it
- Flow matching: More general, just directly learn a velocity field from one to another

How do you train the flow?

Quick Recap:

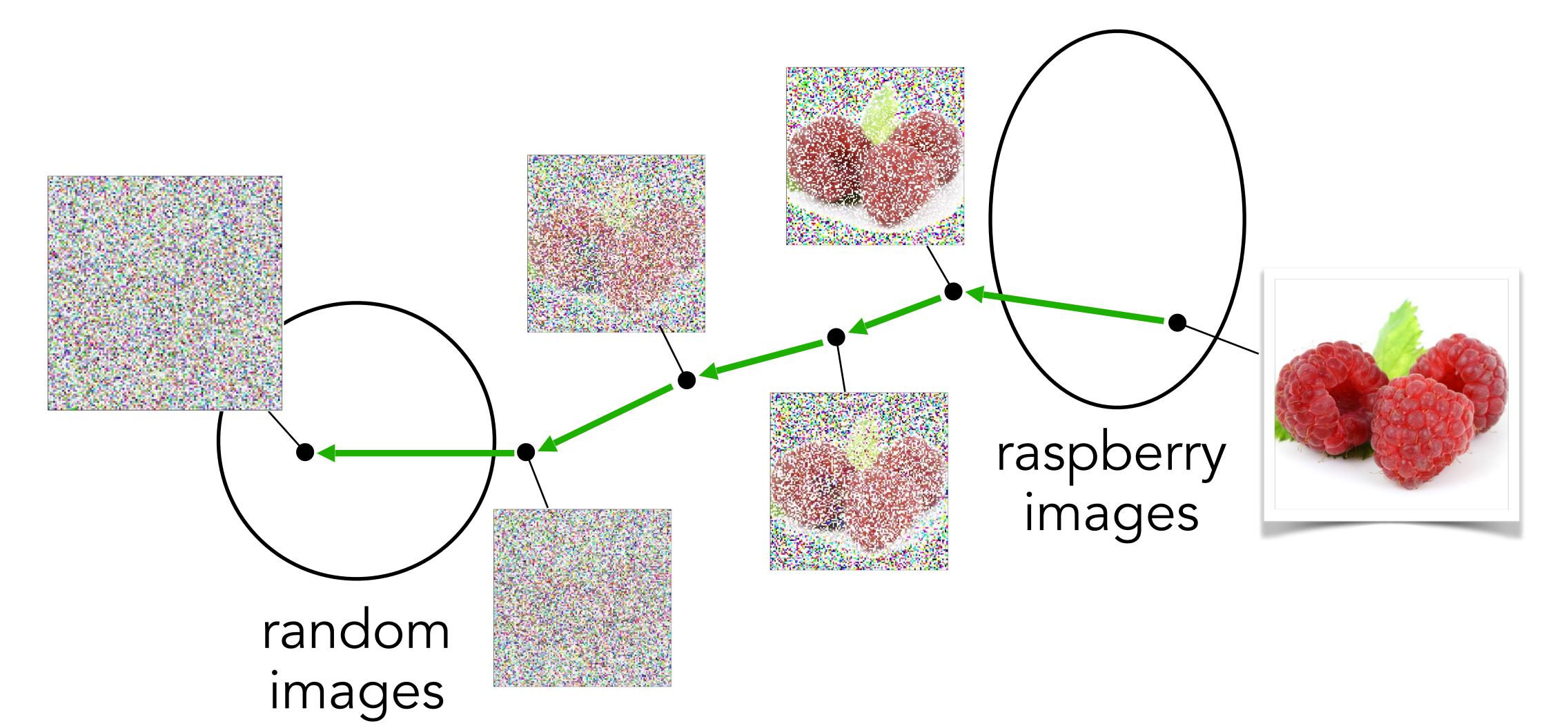


Source: Angjoo Kanazawa

slide from Steve Seitz's video

Training

1. Take real data and corrupt it

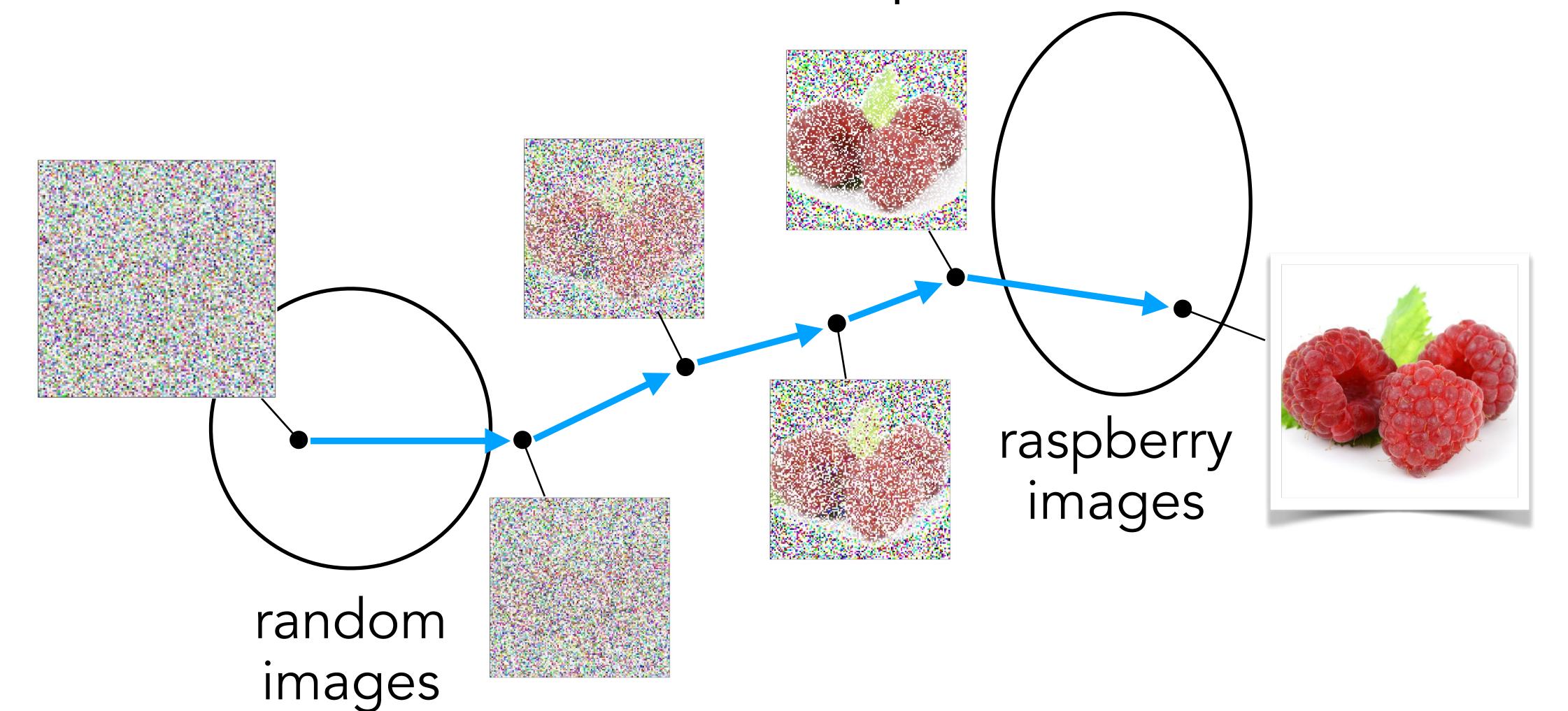


Source: Angjoo Kanazawa

Figure from Steve Seitz's video

Training

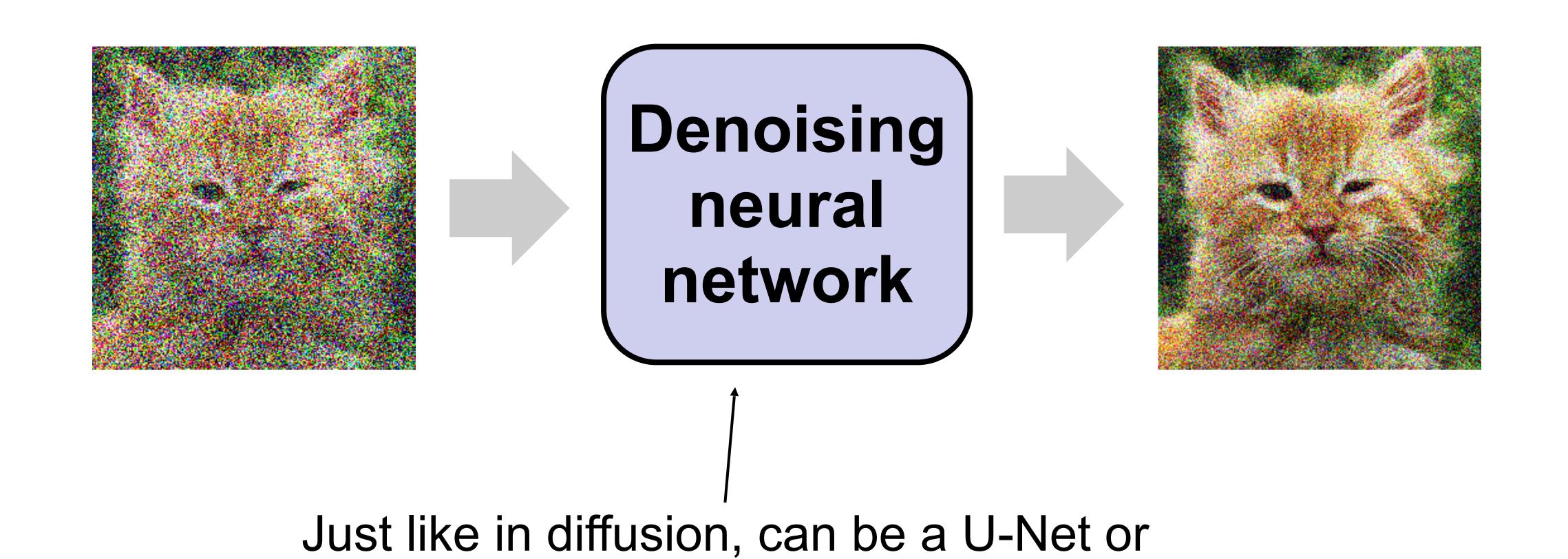
- 1. Take real data and corrupt it
- 2. Learn to undo the process!



Source: Angjoo Kanazawa

Figure from Steve Seitz's video

Denoising with a neural network

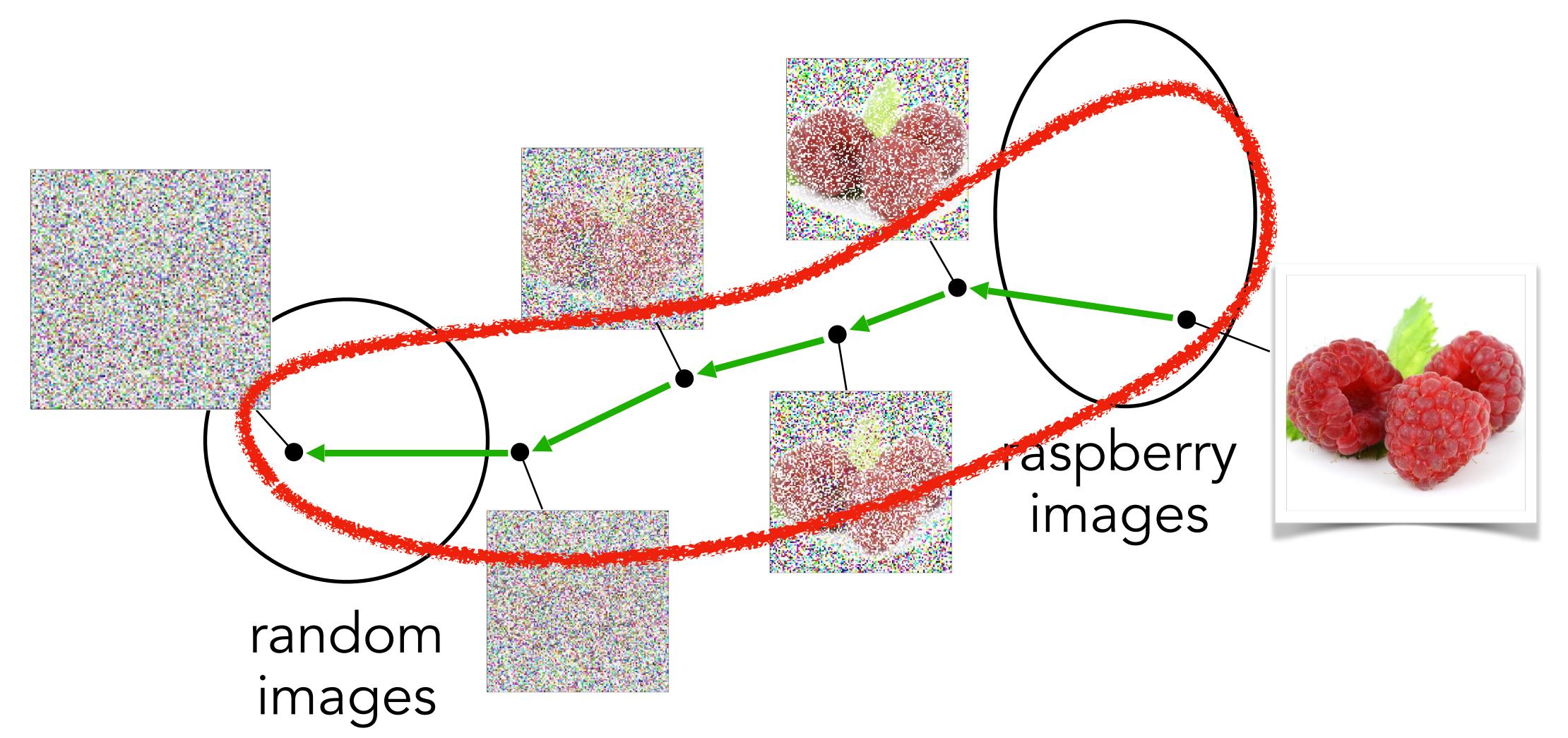


transformer (DiT)

Slide source: Steve Seitz

How do we pick the intermediate path?

How to generate the path?



What is the path?

- How to add noise? What kind of noise? What schedule do we use?
- This is complicated in the diffusion literature (lots of math).

Can we keep it simple?

Flow Matching [Lipman et al. 2022]

Because it has to follow physical diffusion process. Every time step some gaussian has to be added. But in the end you want it to be a N(0,1) etc..

Flow matching says that you can (essentially) add noise however you like!

How do we construct x_t ?

TLDR: Sample noise, add it, then reconstruct the data

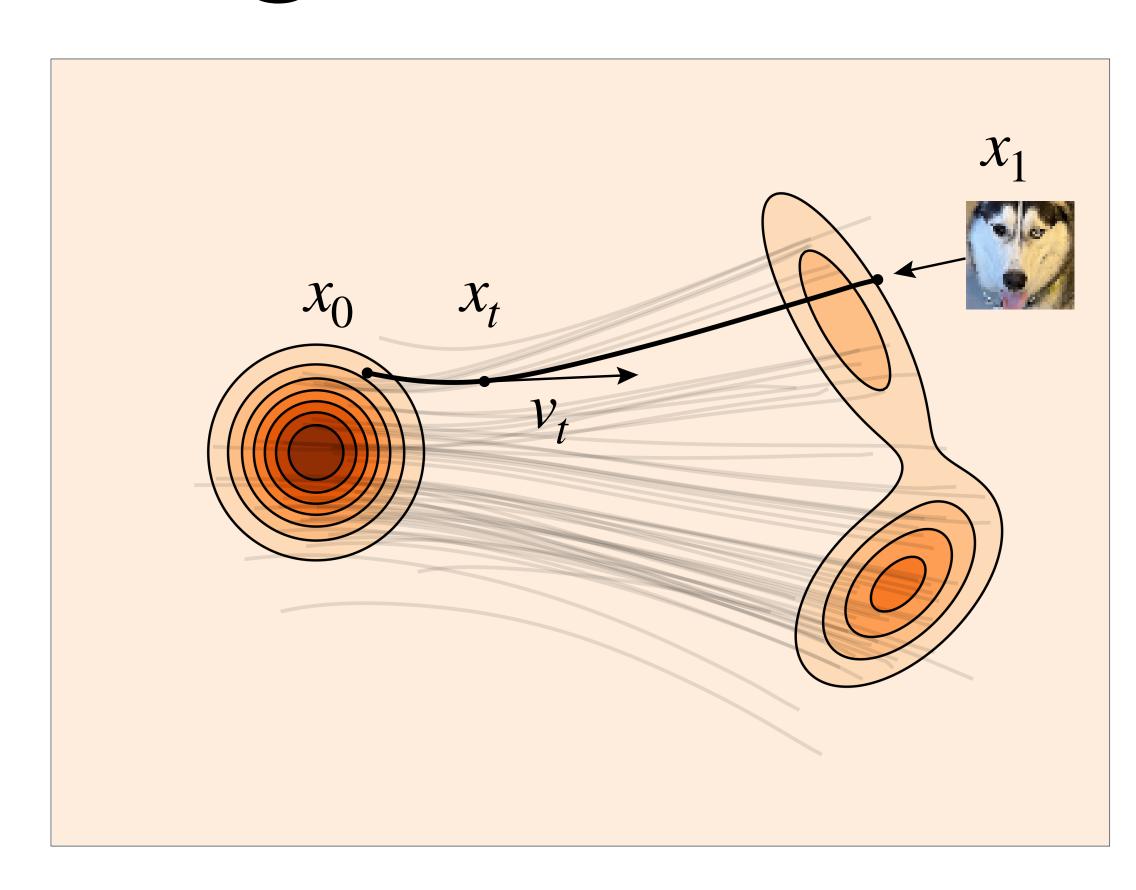
- Flow matching is quite general! For now, just consider time-dependent weighted combinations.
- Flow matching says we can choose any weighted combination, as long we start from a sample in the source (e.g. gaussian) and end with a sample in the target distribution (image).

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

$$x_0 \sim p_0(x) \qquad x_1 \sim p_1(x)$$

Flow training

- For each image x_1
 - Sample some noise x_0
 - Combine them however you want to get x_t
 - Now learn to predict the velocity at x_t
 - What is the velocity? Depends on how you got x_t

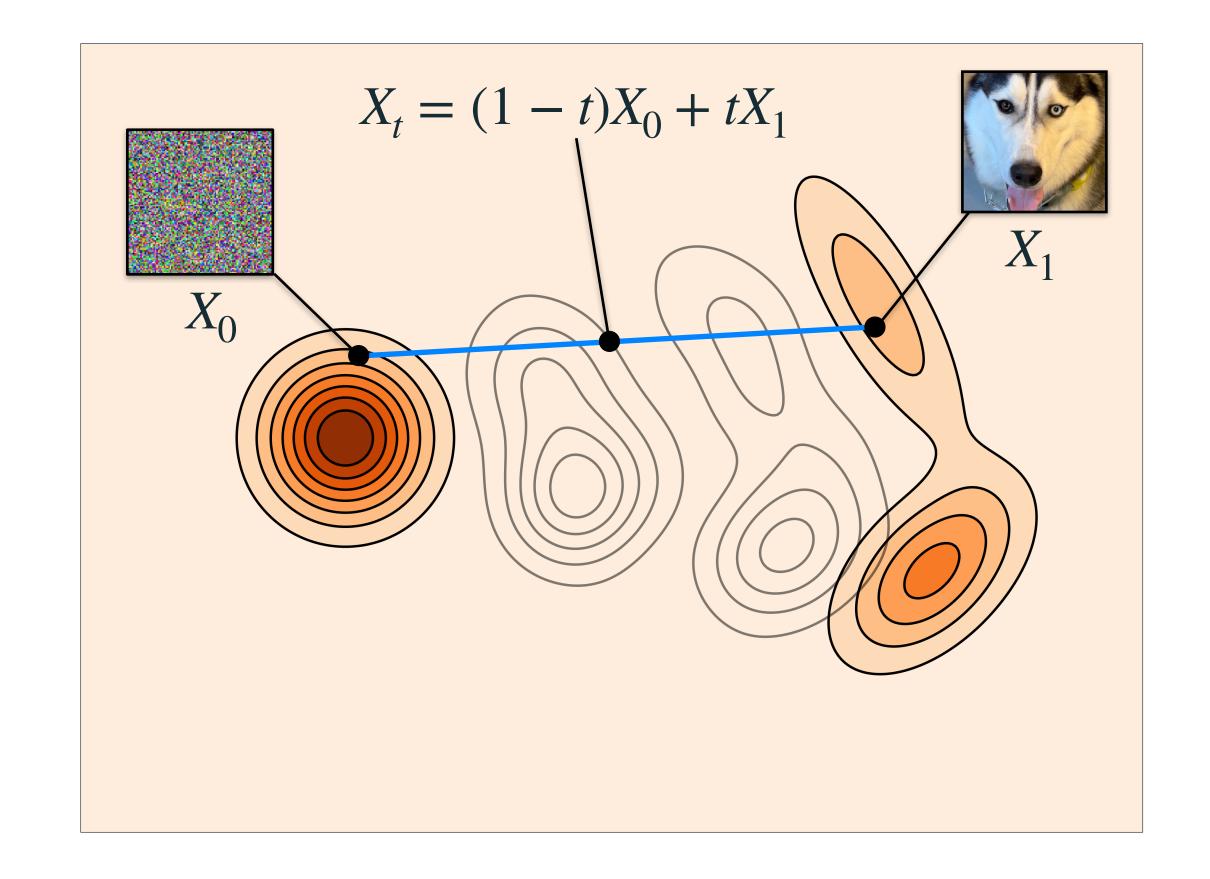


A Very Simple Way

Linear interpolation!

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

$$x_t = (1 - t)x_0 + tx_1$$



What is the velocity supervision?

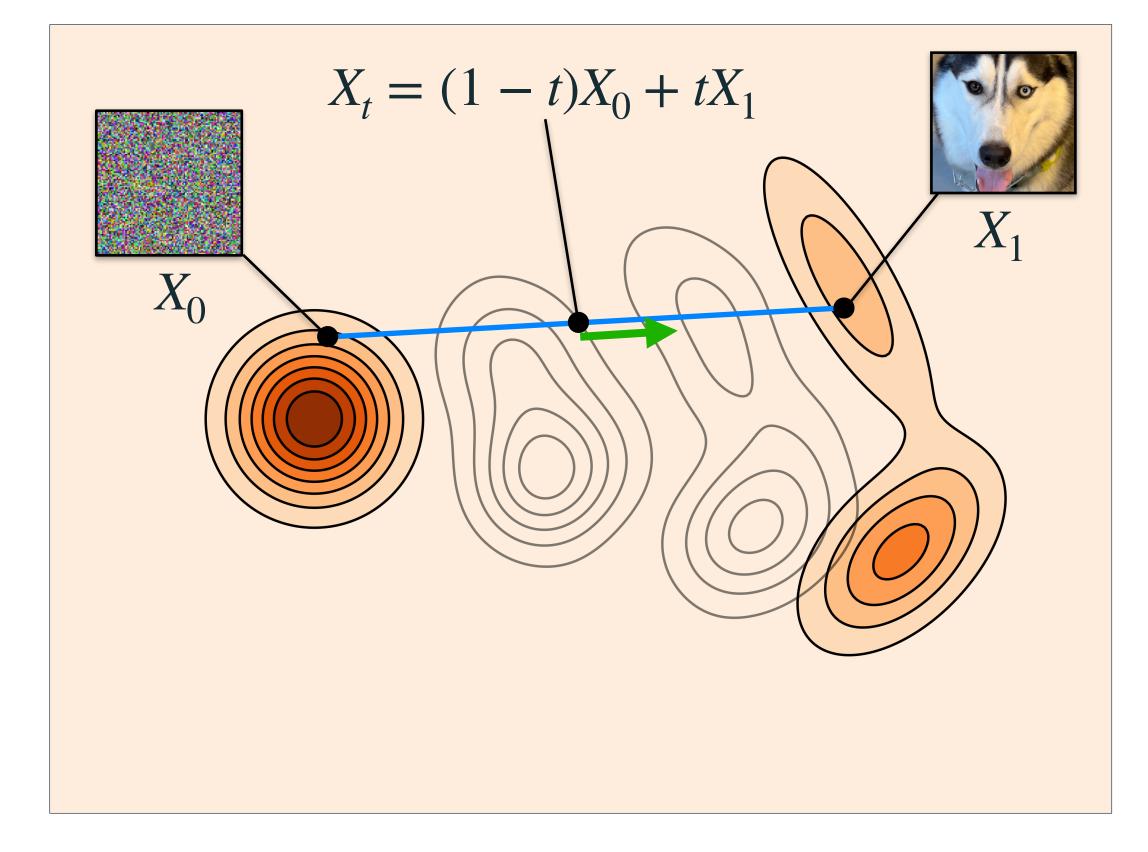
$$x_{t} = \alpha_{t}x_{0} + \sigma_{t}x_{1}$$

$$x_{t} = (1 - t)x_{0} + tx_{1}$$

$$\frac{dx_{t}}{dt} = -x_{0} + x_{1}$$

$$= x_{1} - x_{0}$$

$$\mathbb{E}_{t,X_0,X_1} \left\| u_t^{\theta}(X_t) - (X_1 - X_0) \right\|^2$$



^{*}Conditioned on a single sample

Inside a Training Loop

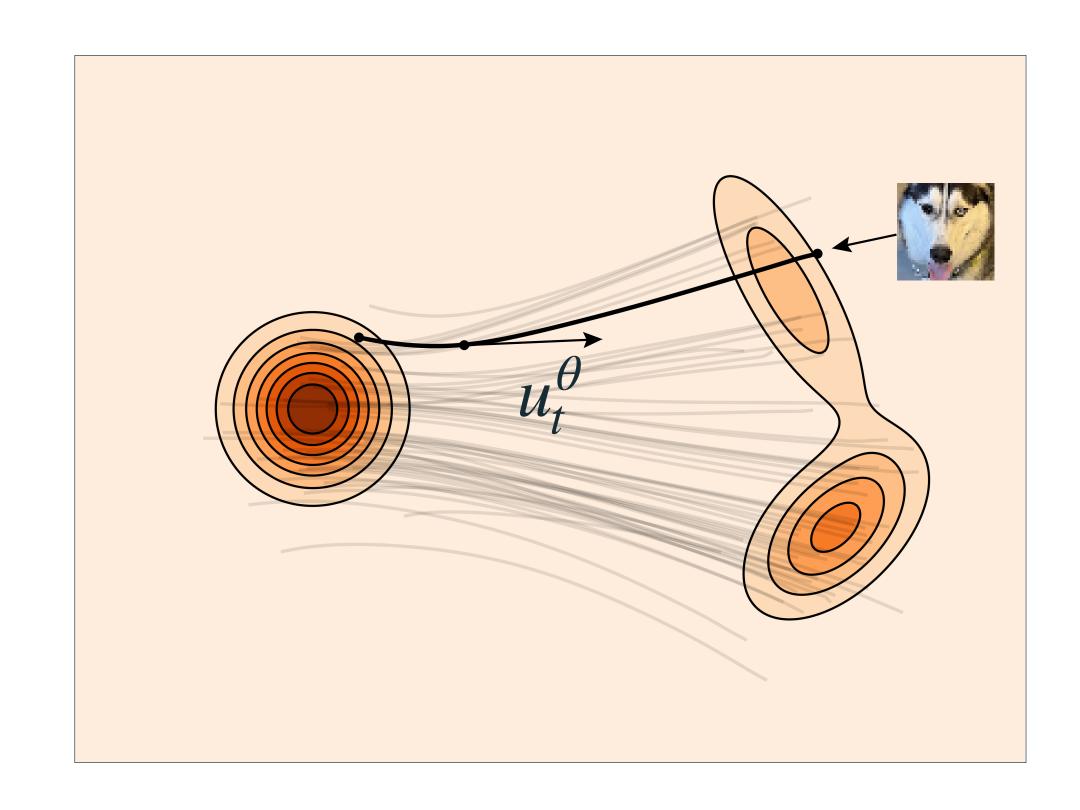
Flow Matching

```
x = next(dataset)
t = torch.rand(1) \# Sample timestep (0,1)
noise = torch.randn like(x) # Sample noise
x t = (1-t) * noise + (t) * x # Get noisy x t
flow pred = model(x t, t) # Predict noise in x t
flow gt = x - noise # ground truth flow (w/ linear sched)
loss = F.mse_loss(flow pred, flow gt) # Update model
loss.backward()
optimizer.step()
```

Test-time sampling

- Just take a small step in the velocity
- Use any ODE Solver, i.e. integration you like, e.g., Euler integration:

$$x_{t+\Delta t} = x_t + \Delta t \cdot \left. rac{dx}{dt}
ight|_{x_t,t}$$



Sample from $X_0 \sim p$

Inside Sampling Loop

```
velocity = model(x_t, t) # Predict noise in x_t
x_t = x_t + dt * velocity # Step in velocity
```

Training: Model parameterization

• You can make your network output undo the noise in many different ways, predicting x_1 , v, noise, or flow

$$v_{t} = \alpha_{t} x_{1} - \sigma_{t} x_{0} \qquad u_{t} = x_{1} - x_{0} = \epsilon - x_{0}$$

$$u_{t} = x_{t} - x_{0}$$

• These are all equivalent because of the linear relationship with x_t . You can derive all of these as long as you know one of them

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

For example

$$\mathbb{E}[(\hat{\mathbf{x}}_0 - \mathbf{x}_0)^2] = \mathbb{E}\left[\left(\frac{\mathbf{x}_t - \sigma(t)\hat{\varepsilon}}{\alpha(t)} - \frac{\mathbf{x}_t - \sigma(t)\varepsilon}{\alpha(t)}\right)^2\right] = \mathbb{E}\left[\frac{\sigma(t)^2}{\alpha(t)^2}\left(\hat{\varepsilon} - \varepsilon\right)^2\right].$$

Other options lead to prior works

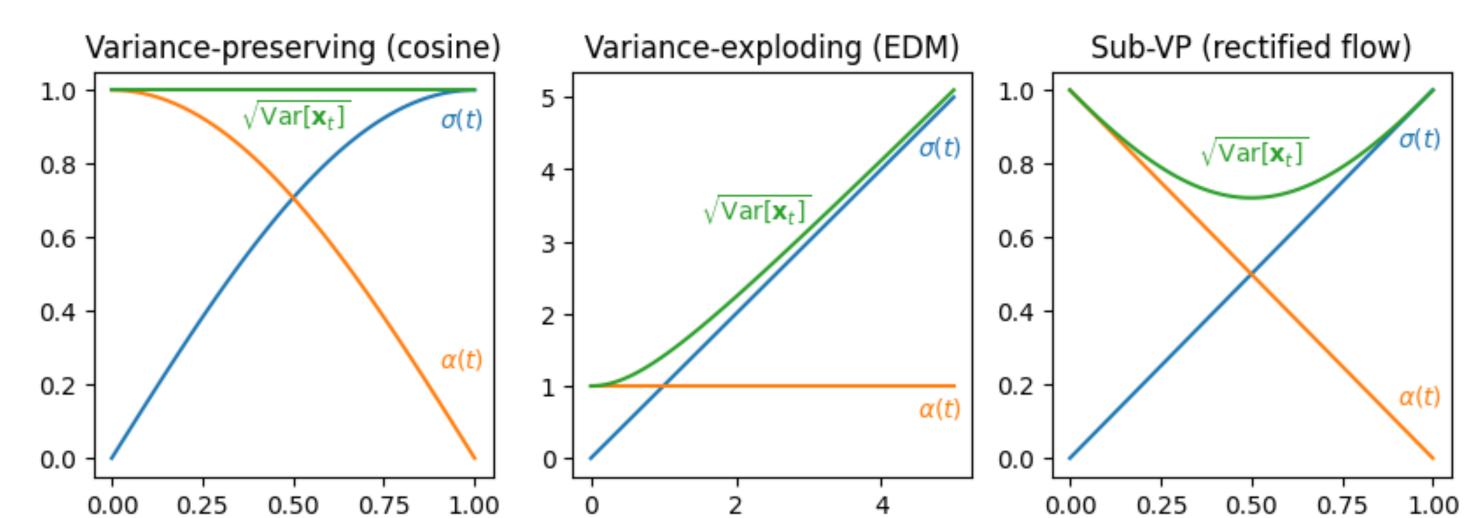
Other choices:

$$x_t = \alpha_t x_0 + \sigma_t x_1$$

- Preserve variance (VP-ODE) DDPM ("standard" diffusion formulation you've seen already)
- Exploding variance (VE-ODE) Score Matching/DDIM

• Linear interpolation (Flow Matching we've discussed so far, also Rectified

Flow)



Adapted from: Angjoo Kanazawa

Training: Flow Matching vs. Diffusion

Algorithm 1: Flow Matching training. Input : dataset q, noise pInitialize v^{θ} while not converged do $\begin{array}{c|cccc} t \sim \mathcal{U}([0,1]) & \rhd \text{ sample time} \\ x_1 \sim q(x_1) & \rhd \text{ sample data} \\ \hline x_0 \sim p(x_0) & \rhd \text{ sample noise} \\ x_t = \Psi_t(x_0|x_1) & \rhd \text{ conditional flow} \\ \hline \text{Gradient step with } \nabla_{\theta} \|v_t^{\theta}(x_t) - \dot{x}_t\|^2 \end{array}$

```
p_t(x_t | x_1) general p(x_0) is general
```

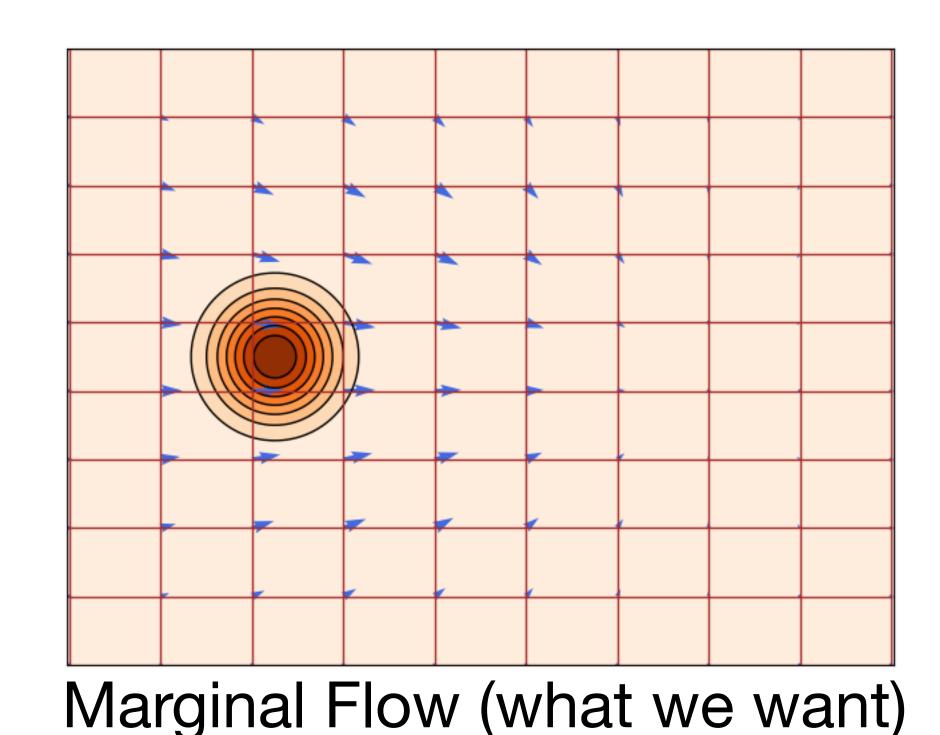
Output: v^{θ}

```
Input: dataset q, noise p
Initialize s^{\theta}
while not converged do
\begin{array}{|c|c|c|c|}\hline t \sim \mathcal{U}([0,1]) & \rhd \text{ sample time} \\\hline x_1 \sim q(x_1) & \rhd \text{ sample data} \\\hline x_t = p_t(x_t|x_1) & \rhd \text{ sample conditional prob} \\\hline \text{Gradient step with} \\\hline \nabla_{\theta} \|s_t^{\theta}(x_t) - \nabla_{x_t} \log p_t(x_t|x_1)\|^2 \\\hline \textbf{Output: } v^{\theta} \\\hline \end{array}
```

```
\begin{aligned} p_t(x_t \mid x_1) & \text{closed-form from of SDE } dx_t = f_t dt + g_t dw \\ & \bullet \quad \textit{Variance Exploding} : p_t(x \mid x_1) = \mathcal{N}(x \mid x_1, \sigma_{1-t}^2 I) \\ & \bullet \quad \textit{Variance Preserving} : p_t(x \mid x_1) = \mathcal{N}(x \mid \alpha_{1-t} x_1, (1 - \alpha_{1-t}^2) I) \\ & \alpha_t = e^{-\frac{1}{2}T(t)} \\ p(x_0) & \text{is Gaussian} \\ p_0(\cdot \mid x_1) \approx p \end{aligned}
```

Why does this work?

- What we want is the flow (velocity field) that takes samples from p_0 to p_1 when integrated (called Marginal Flow)
- But what we did was to train flow for each sample (Conditional Flow)



Conditional Flow (what we trained)

It turns out that the gradient is the same!

Flow Matching loss:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t,X_t} \left\| u_t^{\theta}(X_t) - u_t(X_t) \right\|^2$$

We can't do this because we don't know what ground truth flow is.

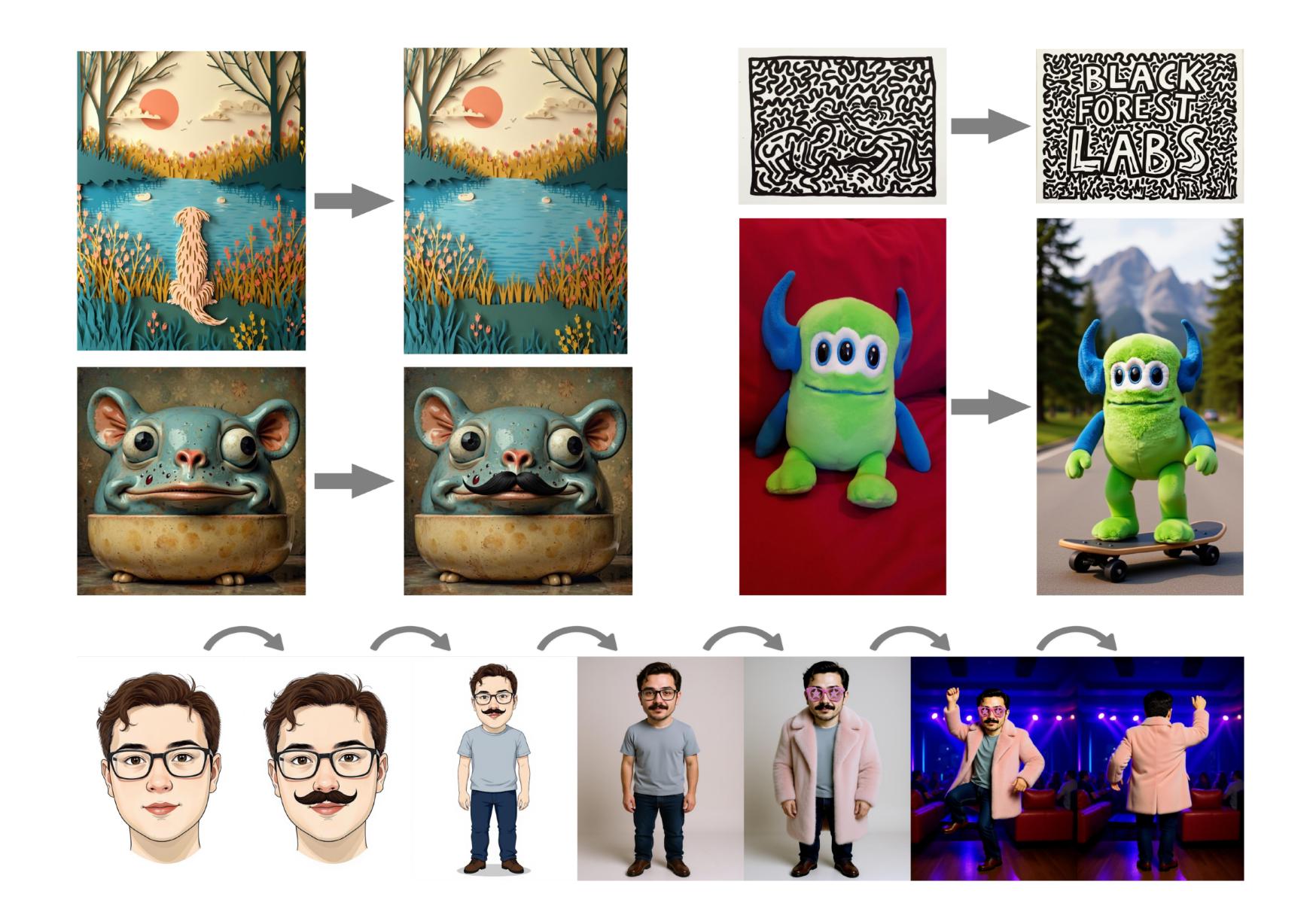
Conditional Flow Matching loss:

$$\mathcal{L}_{CFM}(\theta) = \mathbb{E}_{t,X_1,X_t} \left\| u_t^{\theta}(X_t) - u_t(X_t \mid X_1) \right\|^2$$

Theorem: Gradient of the losses are equivalent:

$$\nabla_{\theta} \mathcal{L}_{\text{FM}}(\theta) = \nabla_{\theta} \mathcal{L}_{\text{CFM}}(\theta)$$

Flow matching in state-of-art generators



Source: FLUX.1-Kontext

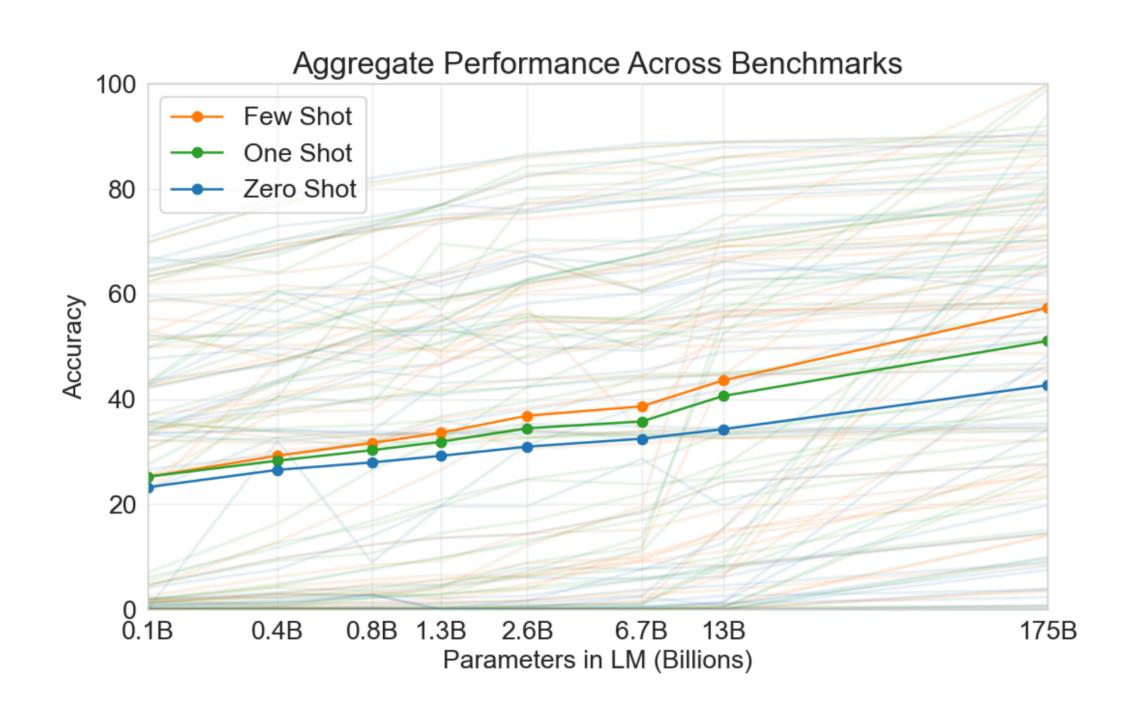
Today

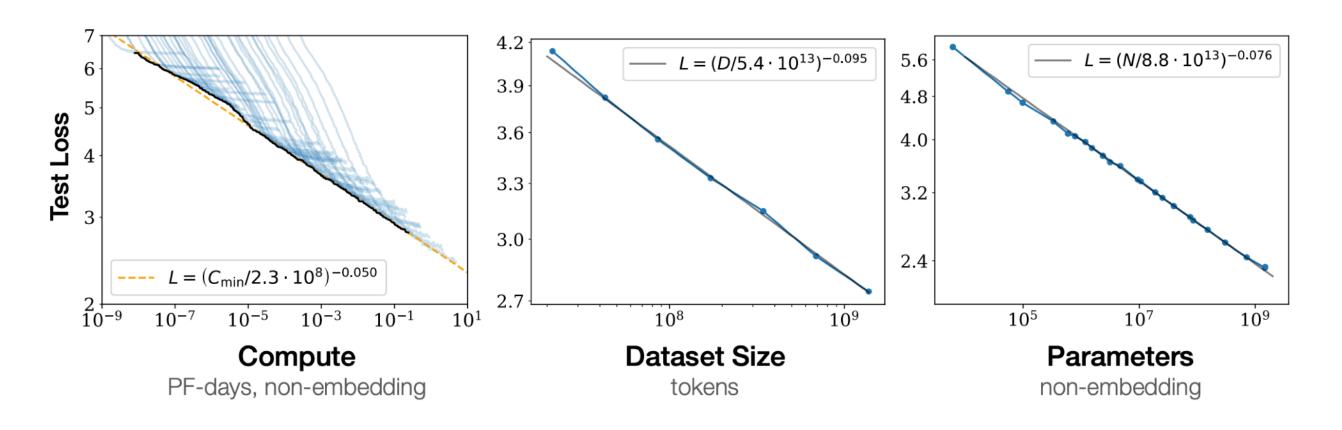
• 3D generation (continuing from last time)

Flow matching

Video generators as vision problem solvers

Scaling language models

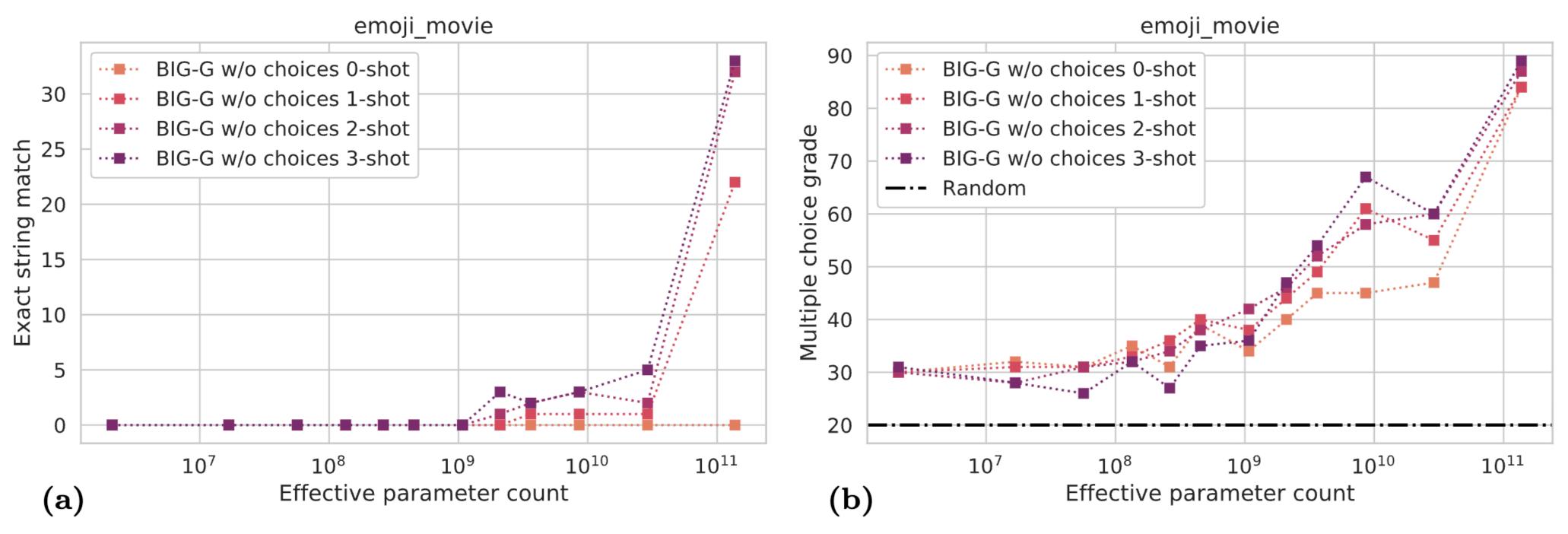




[Brown et al., "Language Models are Few-Shot Learners", 2020]

[Kaplan et al., "Scaling Laws for Neural Language Models", 2020]

Scaling language models



```
Q: What movie does this emoji describe? 👧 🐟 🐠 🐡
```

i'm a fan of the same name, but i'm not sure if it's a good idea 16m: the movie is a movie about a man who is a man who is a man ...

53m: the emoji movie

125m: it's a movie about a girl who is a little girl

244m: the emoji movie 422m: the emoji movie 1b: the emoji movie 2b: the emoji movie

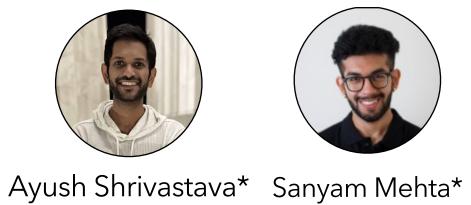
4b: the emoji for a baby with a fish in its mouth

8b: the emoji movie 27b: the emoji is a fish 128b: finding nemo

 (\mathbf{c})

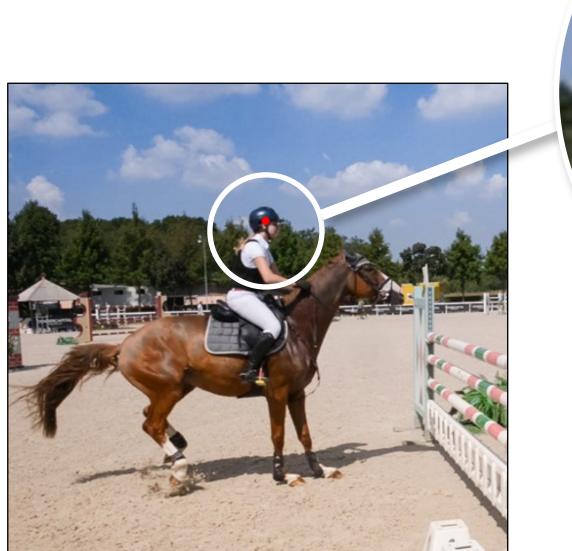
Will this happen to vision too?

Videos generated by Veo 3 + point tracks from CoTracker [Karaev, et al., 2023]



Point Prompting: Counterfactual Tracking with Video Diffusion Models, arXiv 2025.

First frame





First frame +

Input video

First frame +

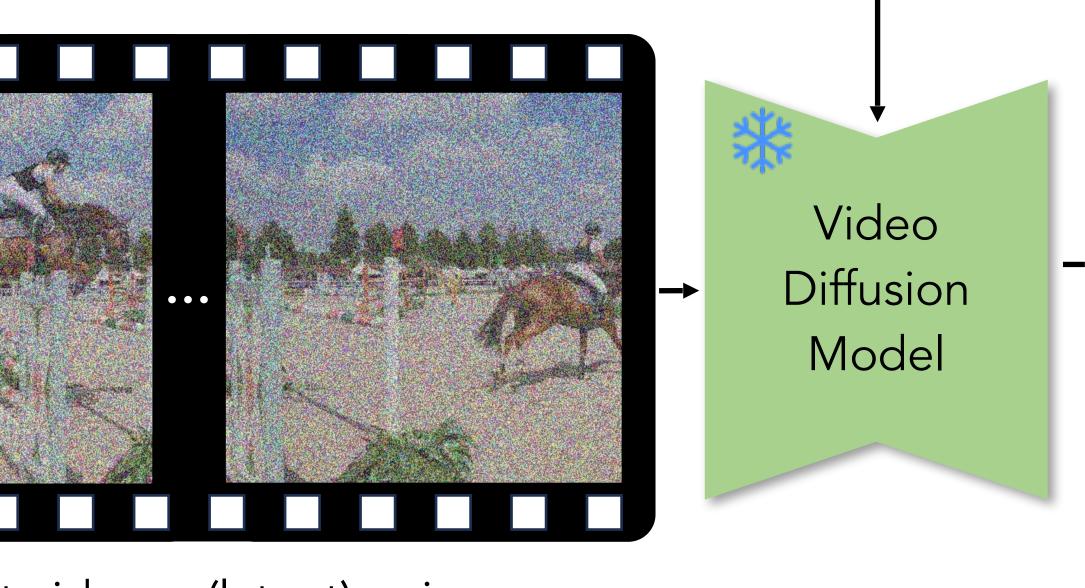
Input video + (latent) noise

Propagate the point using SDEdit

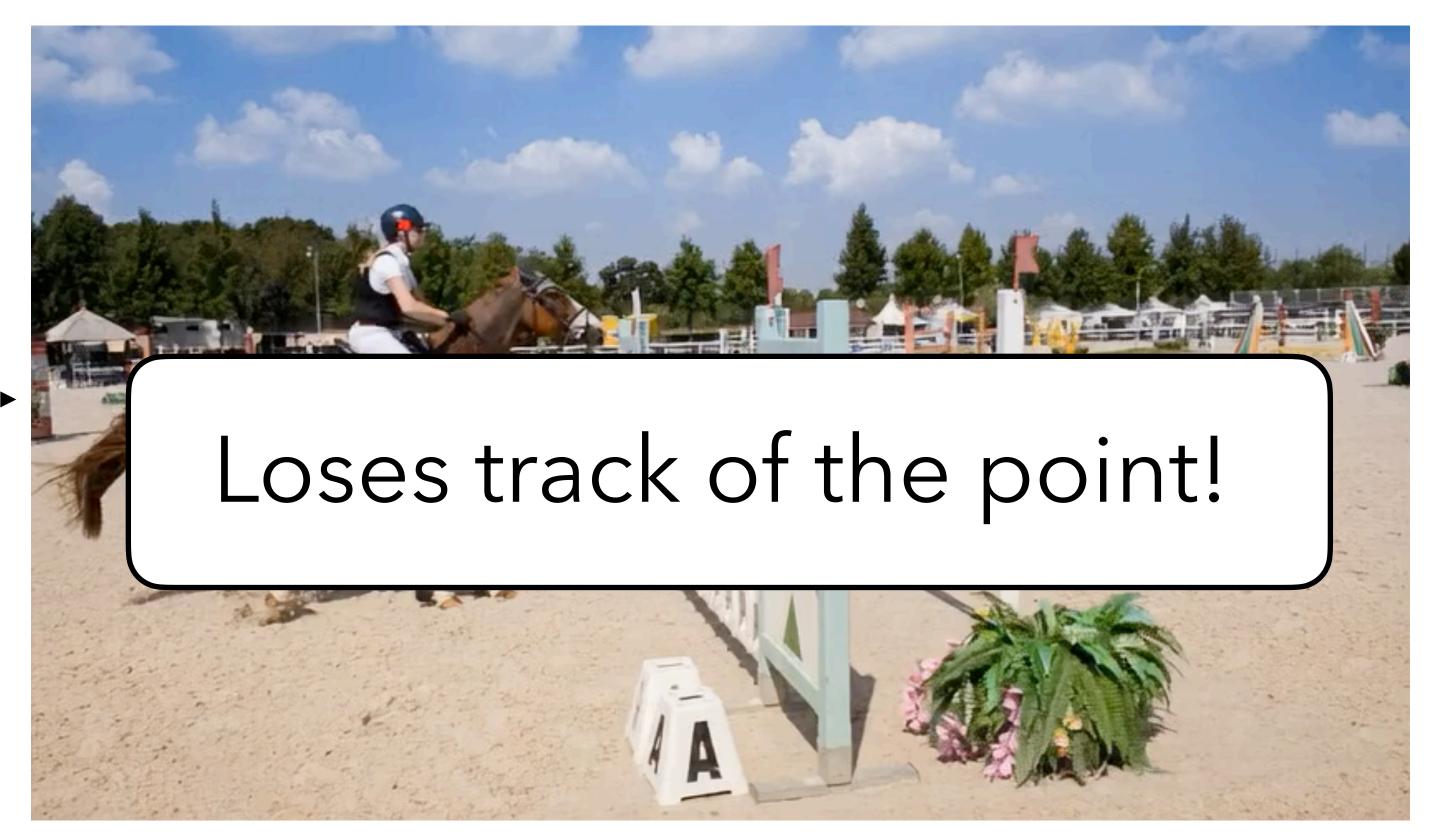
First frame +

Input video + (latent) noise

ate point using SDEdit

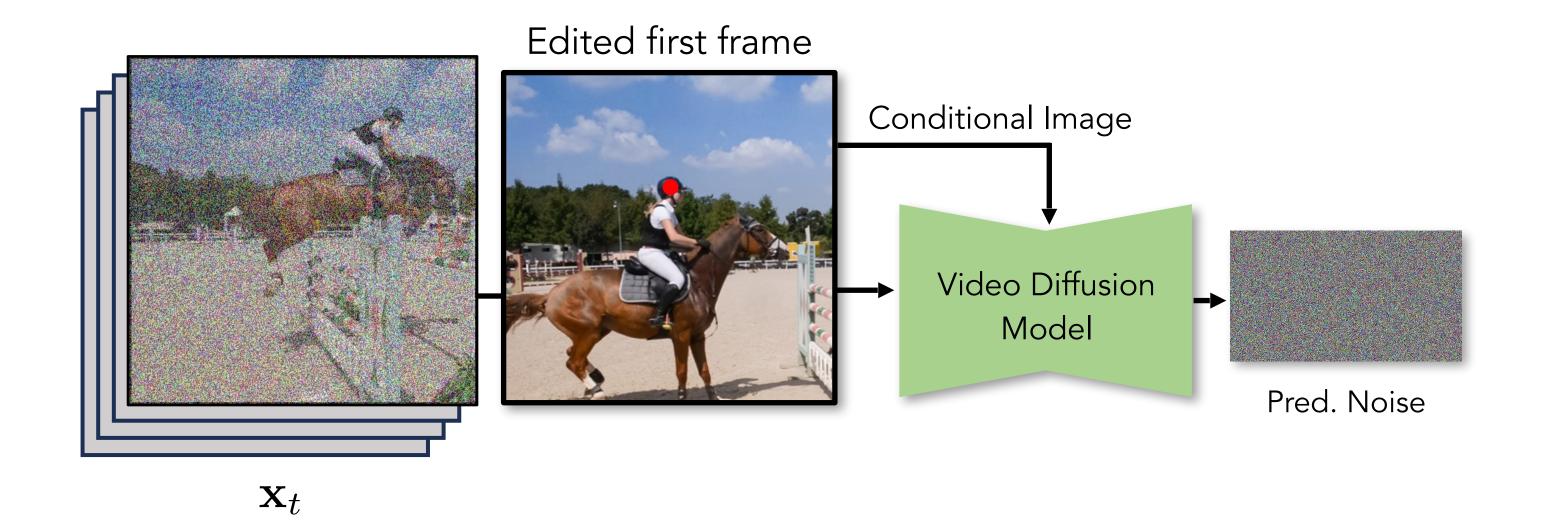


t video + (latent) noise

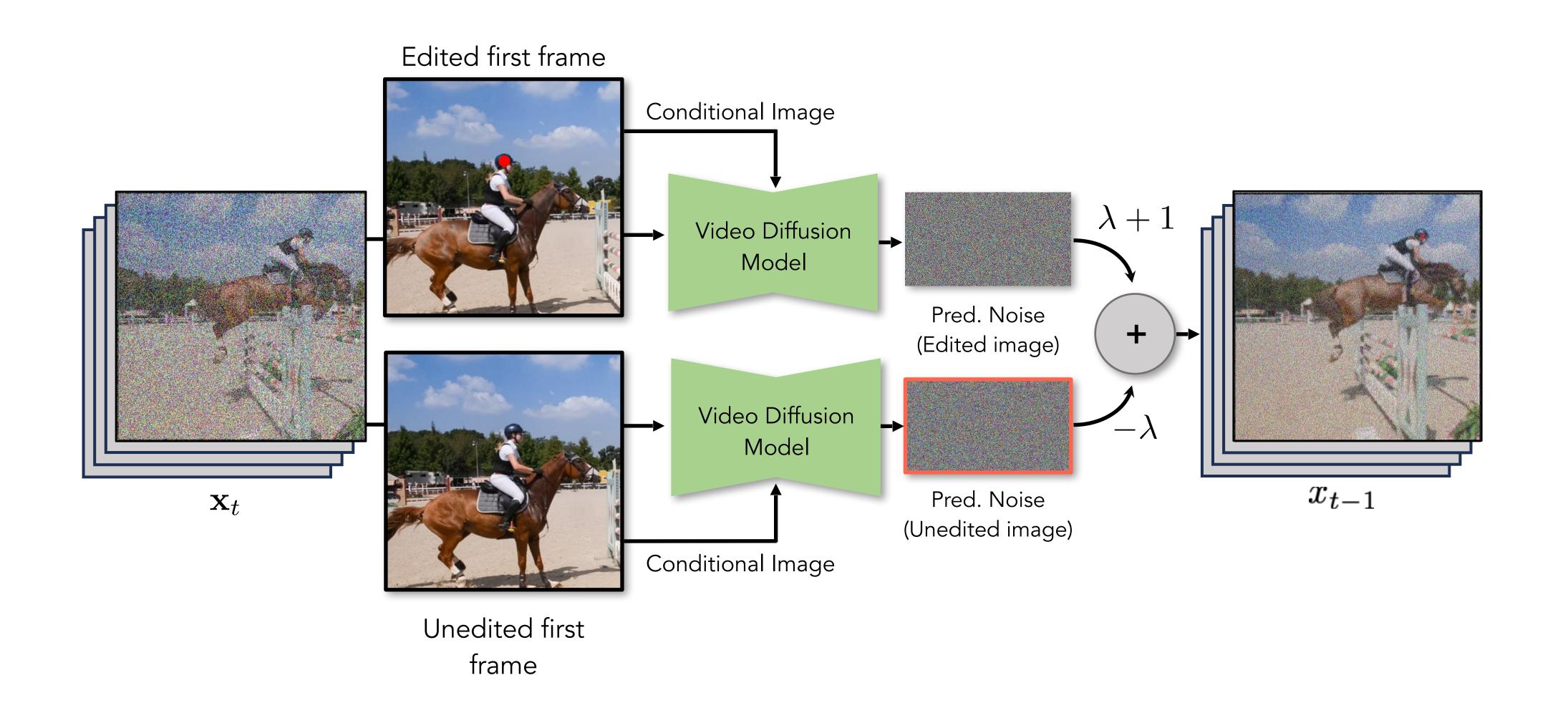


Generated video with propagated point

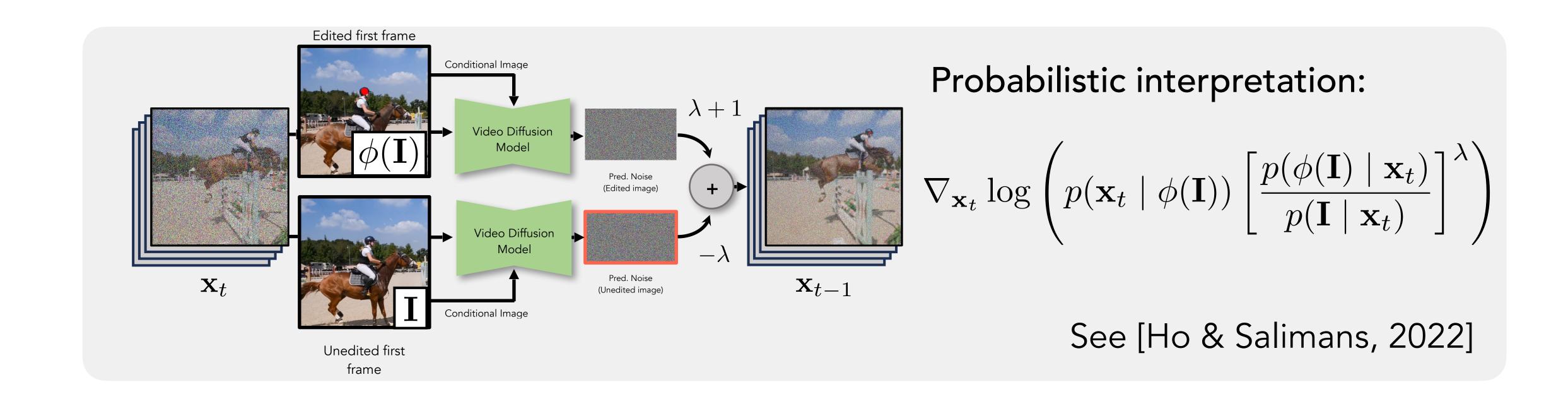
Enhancing the counterfactual signal



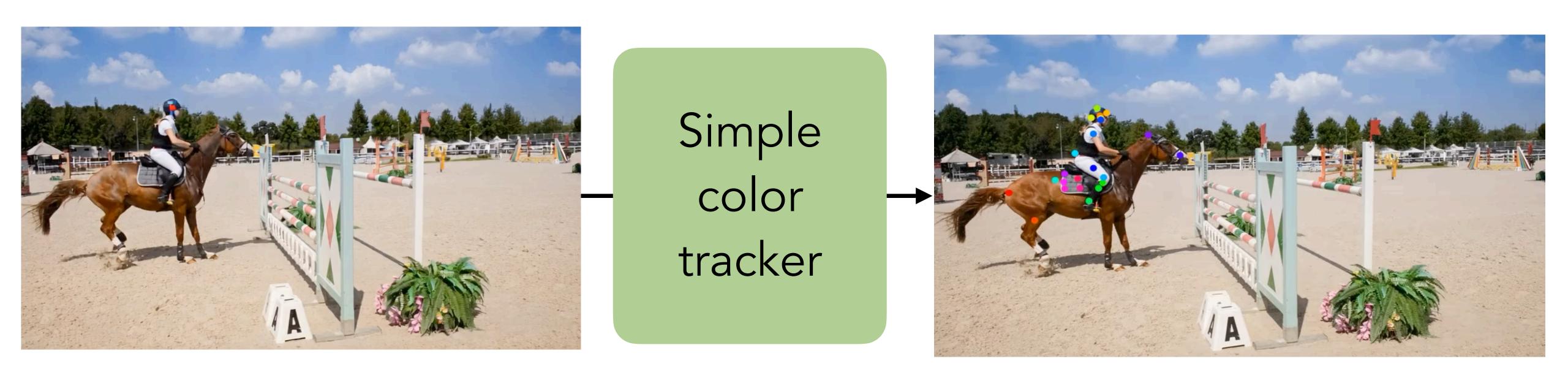
Enhancing the counterfactual signal



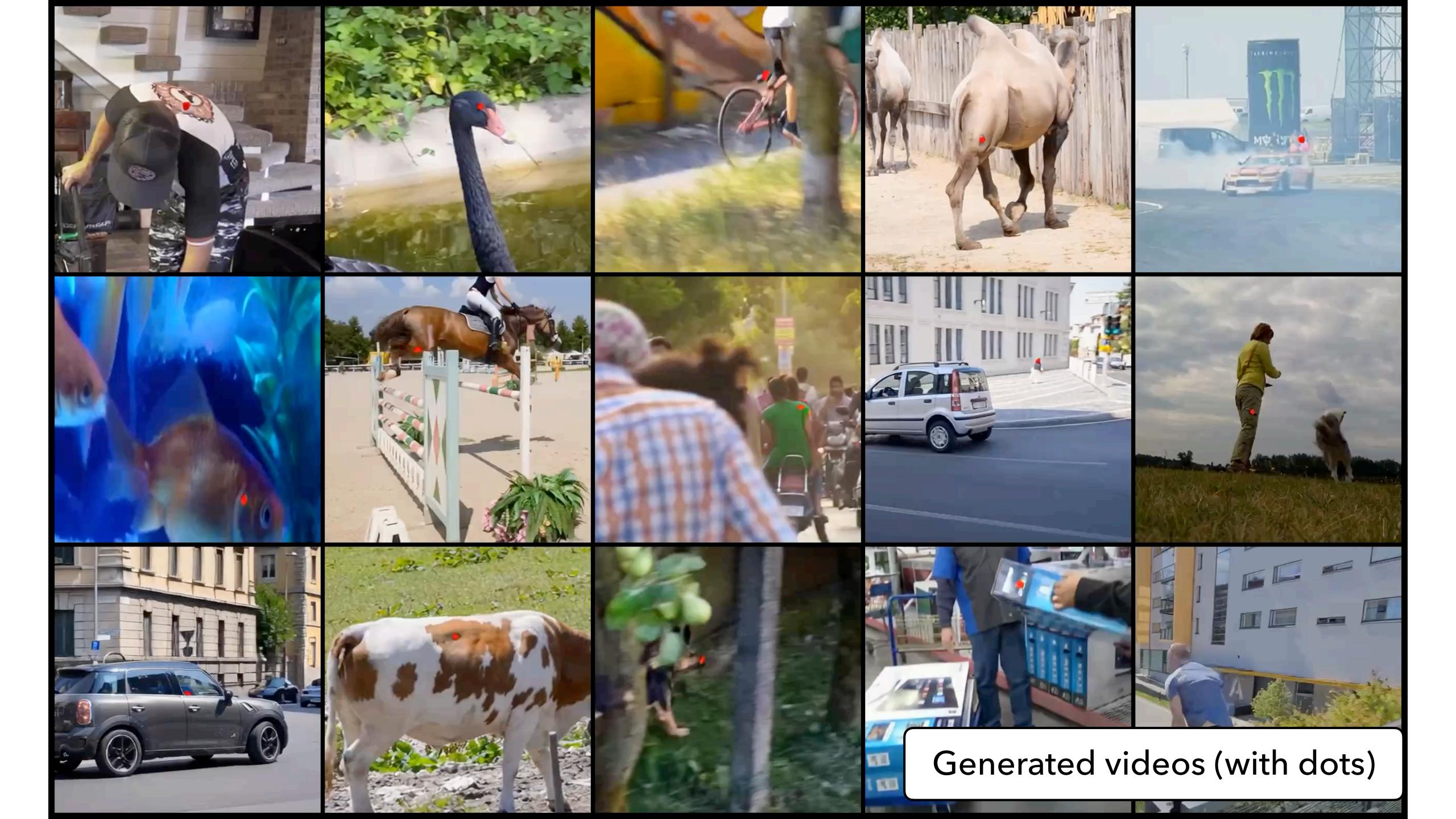
Enhancing the counterfactual signal

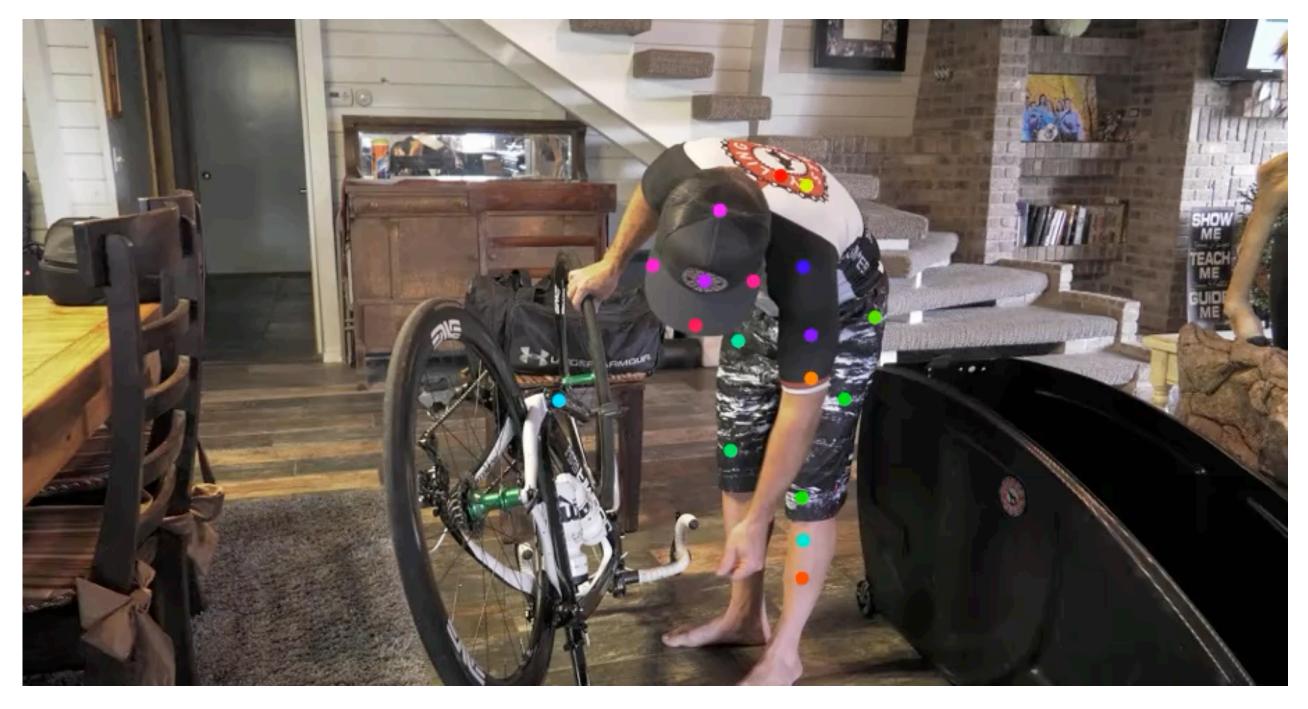


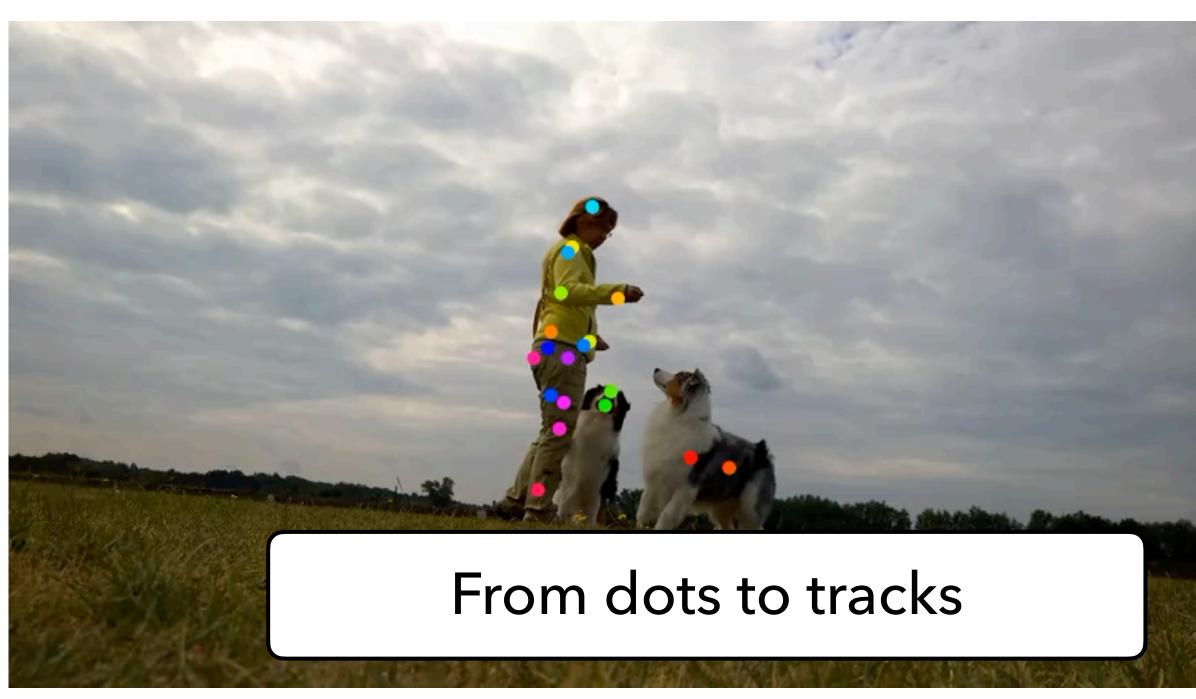
From dots to tracks



- Threshold colors, then do template matching.
- Interpolate position between frames when no dot is found.
- Generate one video per query (slow!).

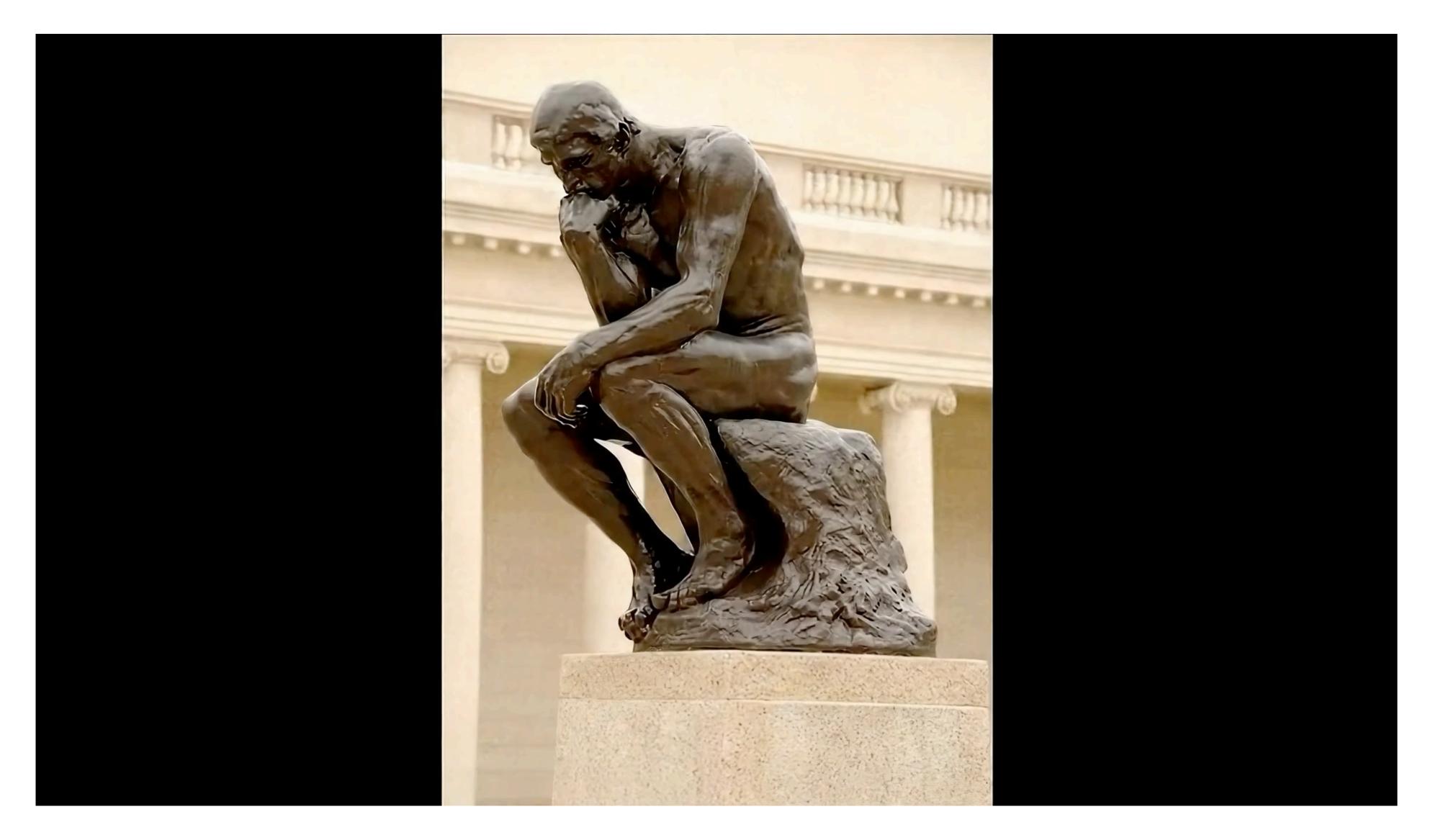






What else can video models do?

Novel view synthesis



From [Wiedemer et al., "Video models are zero-shot learners and reasoners", 2025]

Object segmentation

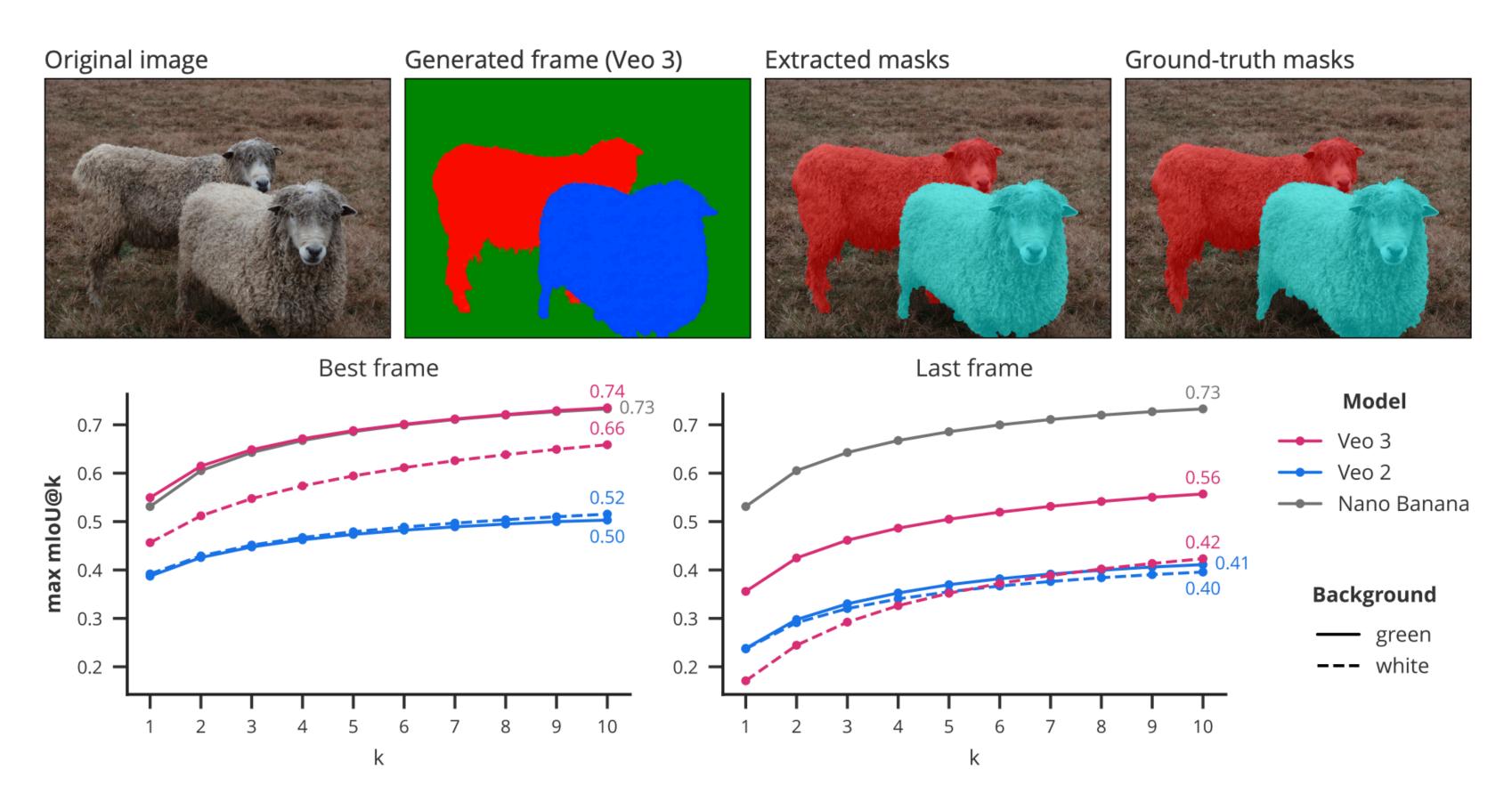
"Create an animation of instance segmentation being performed on this photograph: each distinct entity is overlaid in a different flat color. Scene:

- The animation starts from the provided, unaltered photograph.
- The scene in the photograph is static and doesn't move.
- First, the background fades to {white, green}.
- Then, the first entity is covered by a flat color, perfectly preserving its silhouette.
- Then the second entity, too, is covered by a different flat color, perfectly preserving its silhouette.
- One by one, each entity is covered by a different flat color.
- Finally, all entities are covered with different colors.

Camera:

- Static shot without camera movement.
- No pan.
- No rotation.
- No zoom.
- No glitches or artifacts."

Object segmentation



Not extremely accurate...

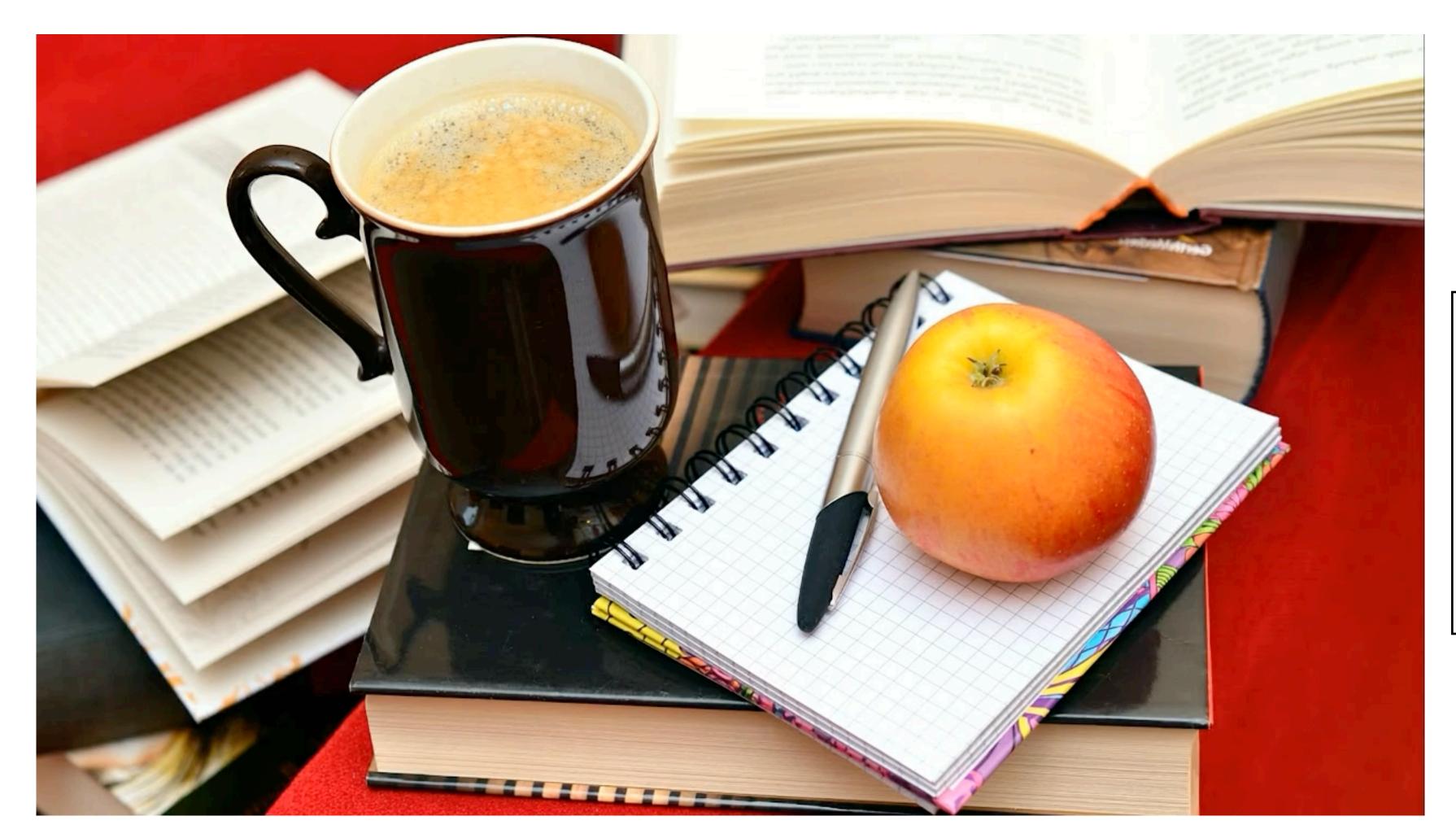
Figure 4 | **Class-agnostic instance segmentation** on a subset of 50 easy images (1-3 large objects) from LVIS [61]. Prompt: "[...] each distinct entity is overlaid in a different flat color [...] the background fades to {white, green} [...]" Details & full prompt: Sec. B.2.

Colorization

From [Wiedemer et al., "Video models are zero-shot learners and reasoners", 2025]

"Doodle-based" editing

Visual Jenga

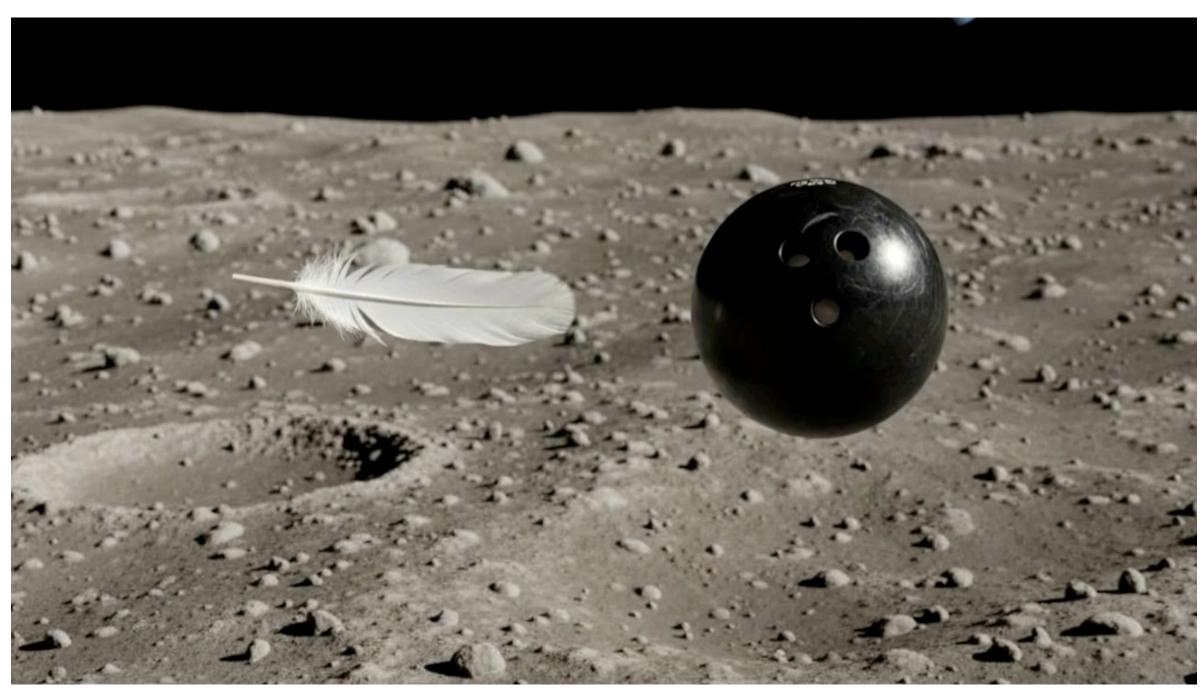


"A hand quickly removes each of the items in this image, one at a time."

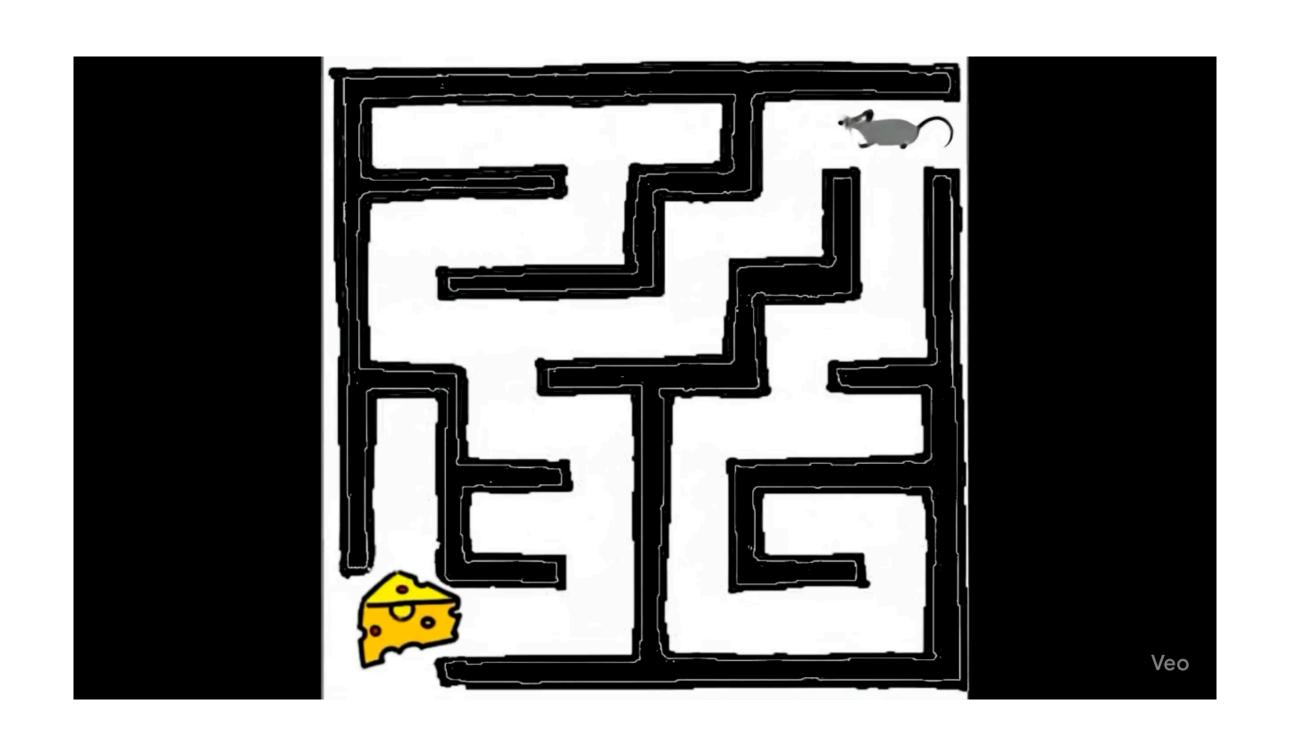
From [Wiedemer et al., "Video models are zero-shot learners and reasoners", 2025]
Task from [Bhattad, et al. "Visual Jenga: Discovering Object Dependencies via Counterfactual Inpainting", 2025]

Intuitive physics

Intuitive physics

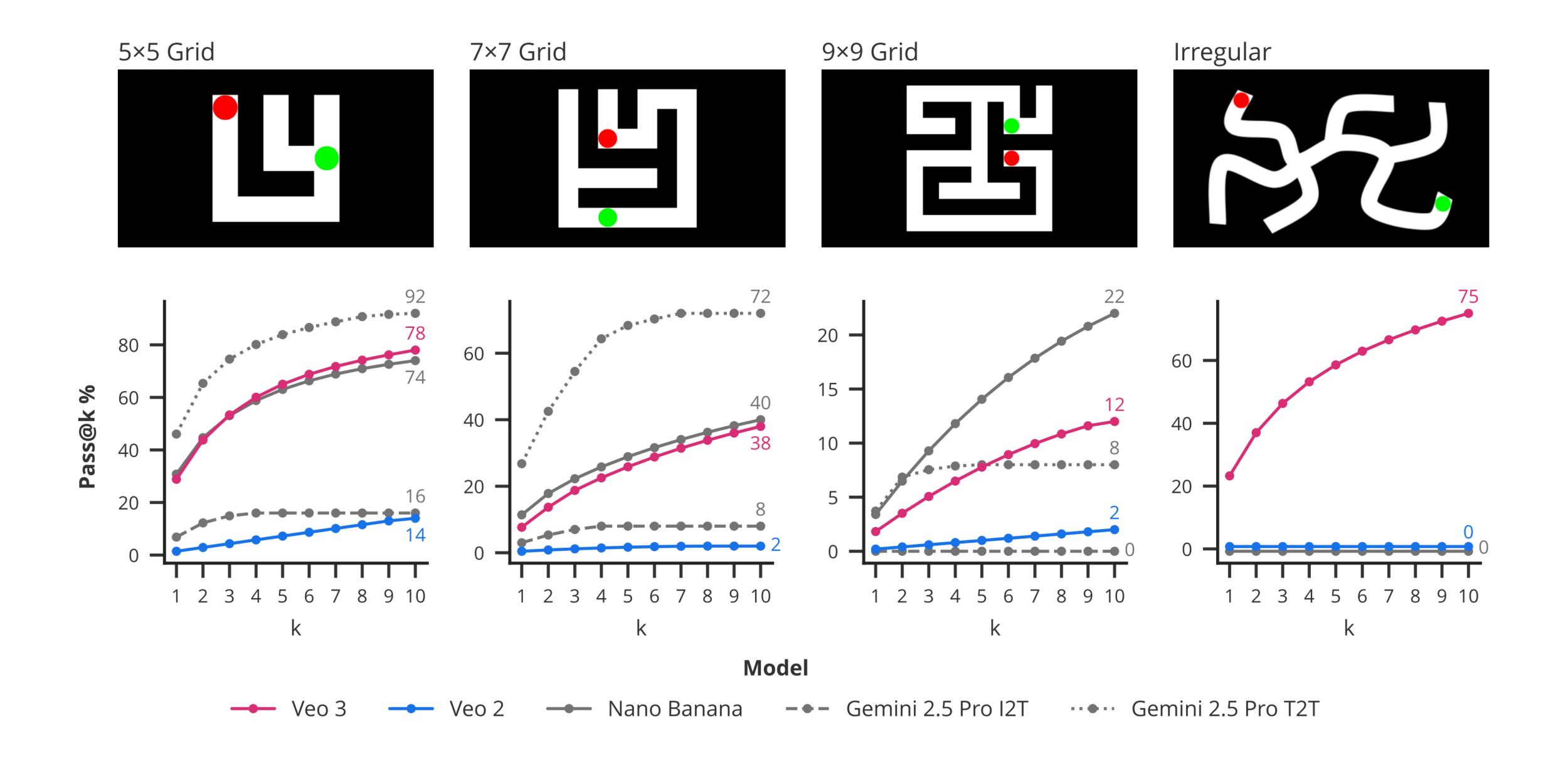


Solving mazes



"Without crossing any black boundary, the grey mouse from the corner skillfully navigates the maze by walking around until it finds the yellow cheese."

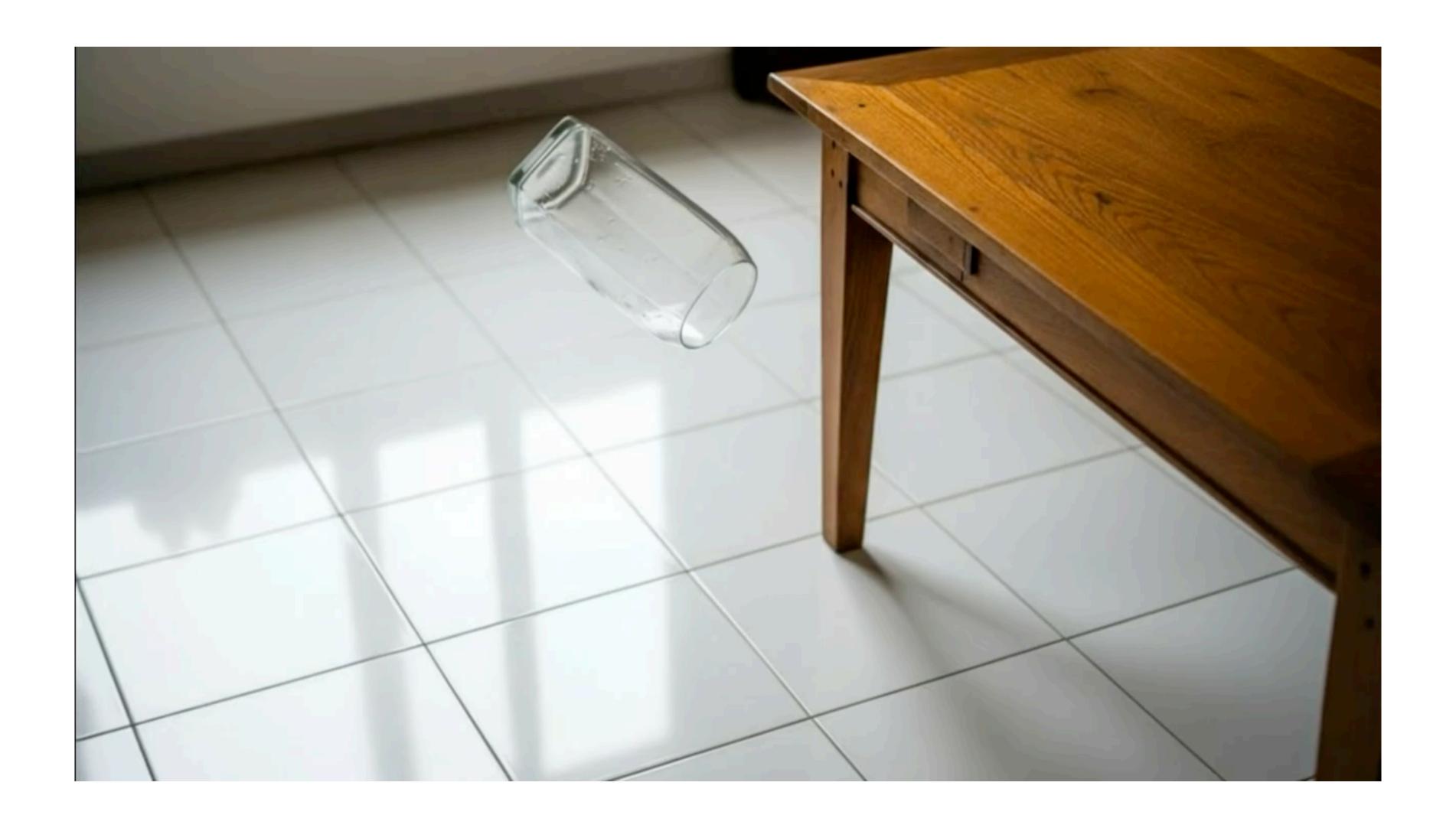
Accuracy with different models



Perceiving visual illusions

Failure cases

Failure cases



Failure cases

Open-ended discussion

- Compare the challenges of training and using generative models in vision vs. NLP.
- Will large vision models solve everything?
- What (if any) the possible obstacles in the way?
- What else (if anything) do you think is needed?

Next class: review for final exam