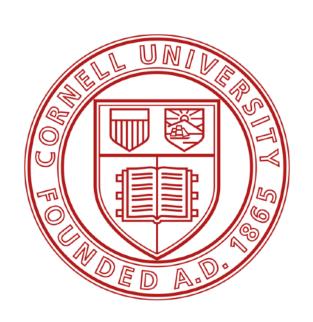
Lecture 24: Embodied vision

CS 5670: Introduction to Computer Vision



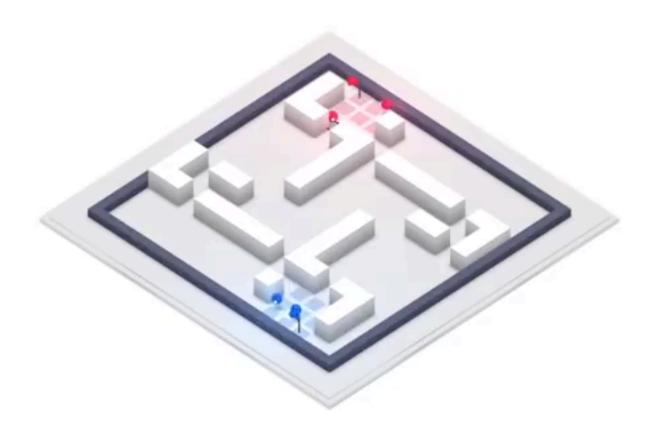
Today

- Formalisms for intelligent agents (environment, state, action, policy)
- Imitation learning
- Reinforcement learning
 - Policy gradient algorithm
 - Q-learning
- This is just a very high-level overview
 - See Sutton & Barto [http://incompleteideas.net/book/RLbook2018.pdf] for more.

[Silver et al., 2016]

Agent observation raw pixels





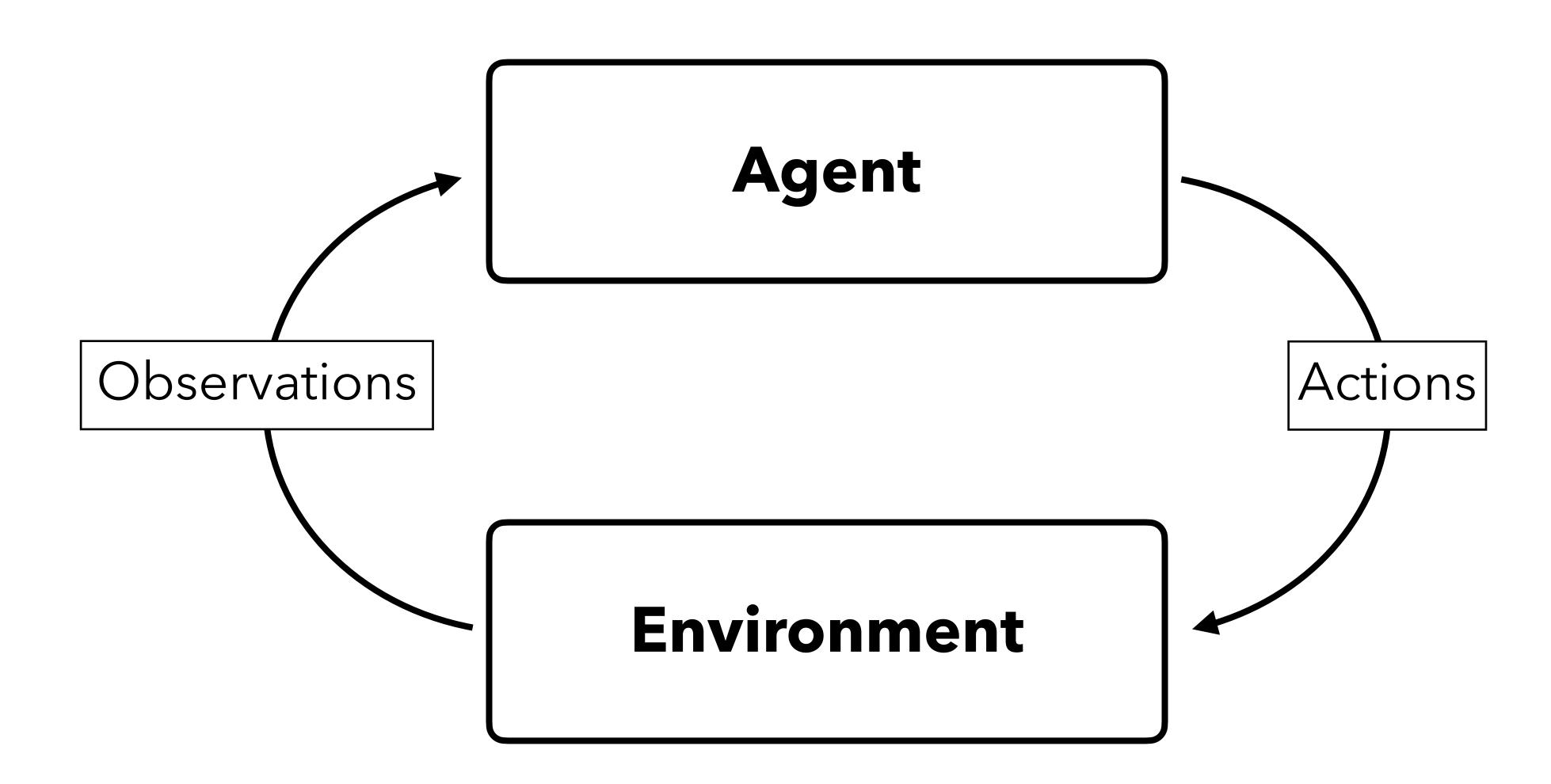
Indoor map overview

[Jaderberg et al. 2018]

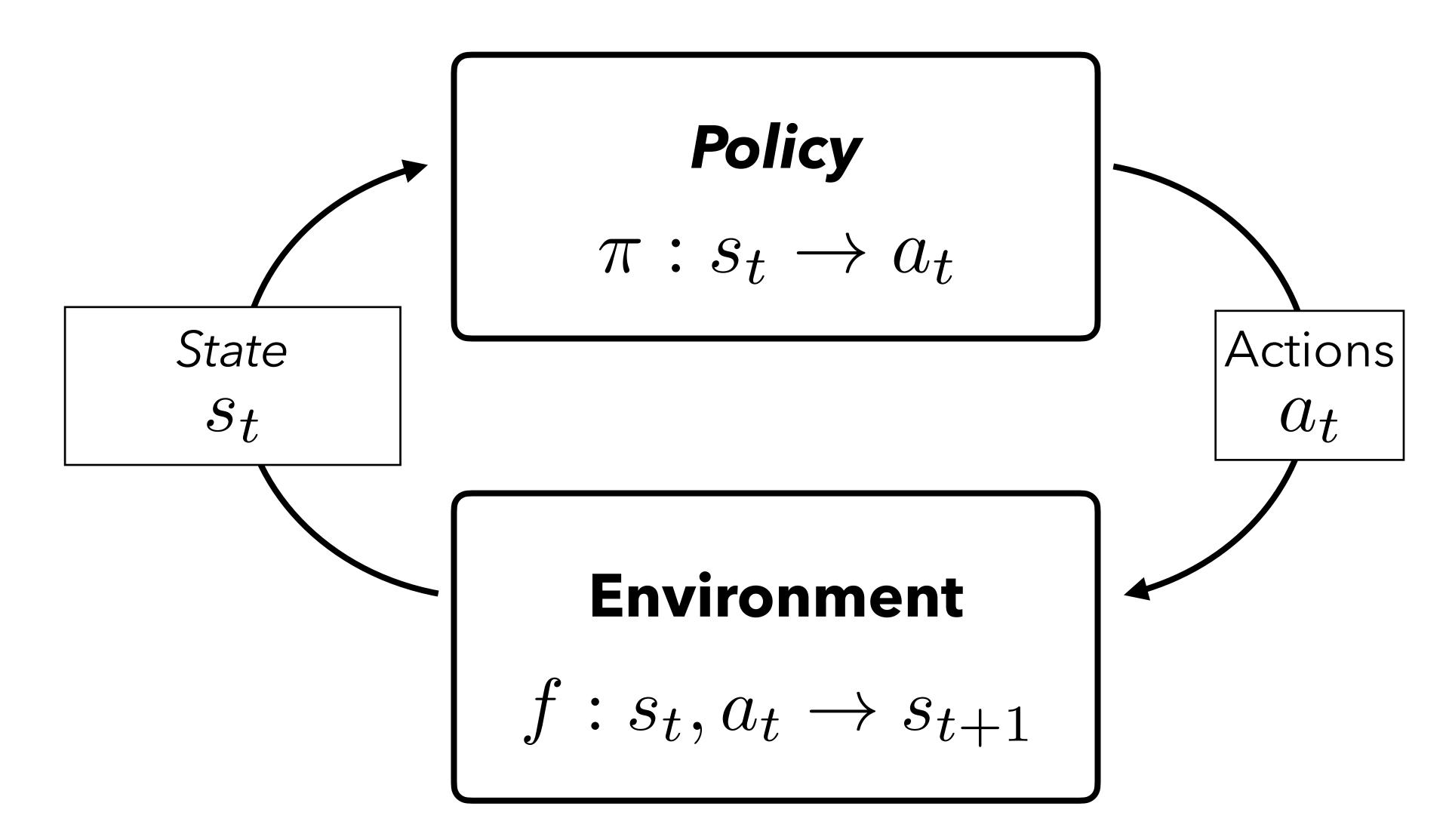
The whole purpose of visual perception, in humans, is to make good motor decisions.

"We move in order to see and we see in order to move" - J. J. Gibson

Intelligent agents

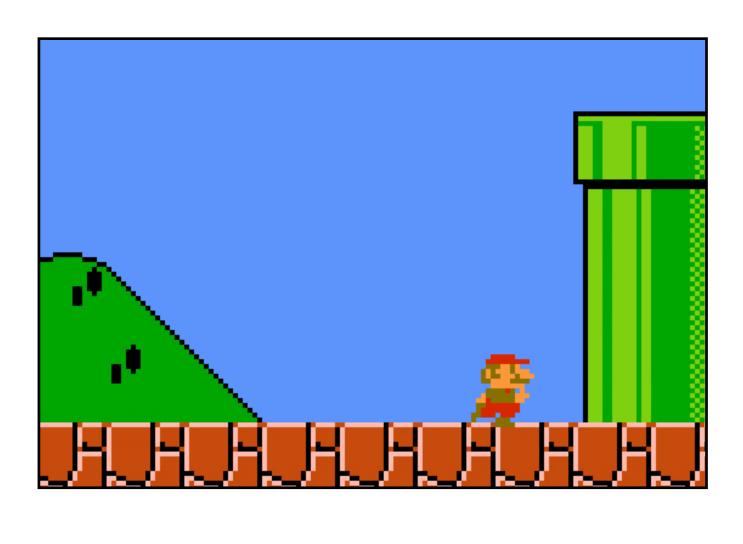


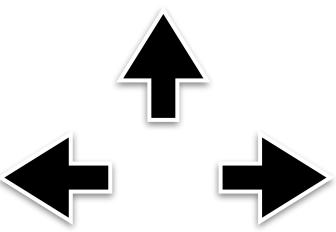
Intelligent agents



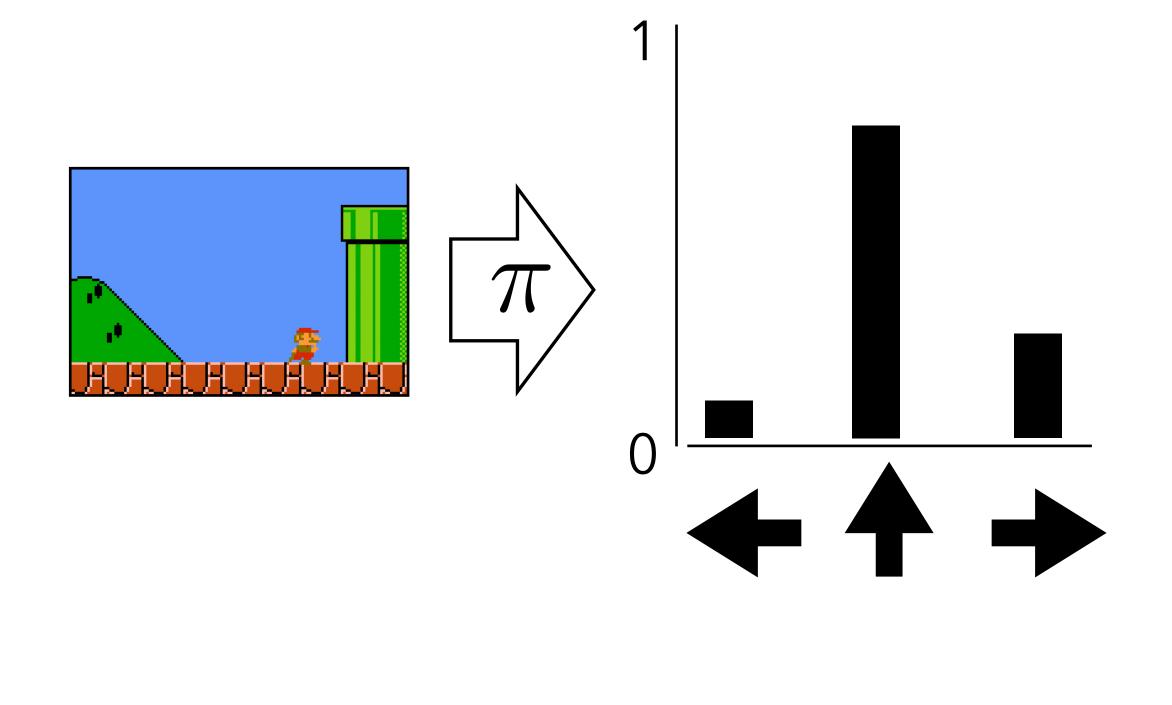
How to represent a state? How to represent policy?

state: pixels!





policy: action classifier



Can we use supervised learning?

Training data

9

 $f^* = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^{\infty} \mathcal{L}(f(x_i), y_i)$

Imitation learning

(supervised learning, applied to learn policies)

Training data

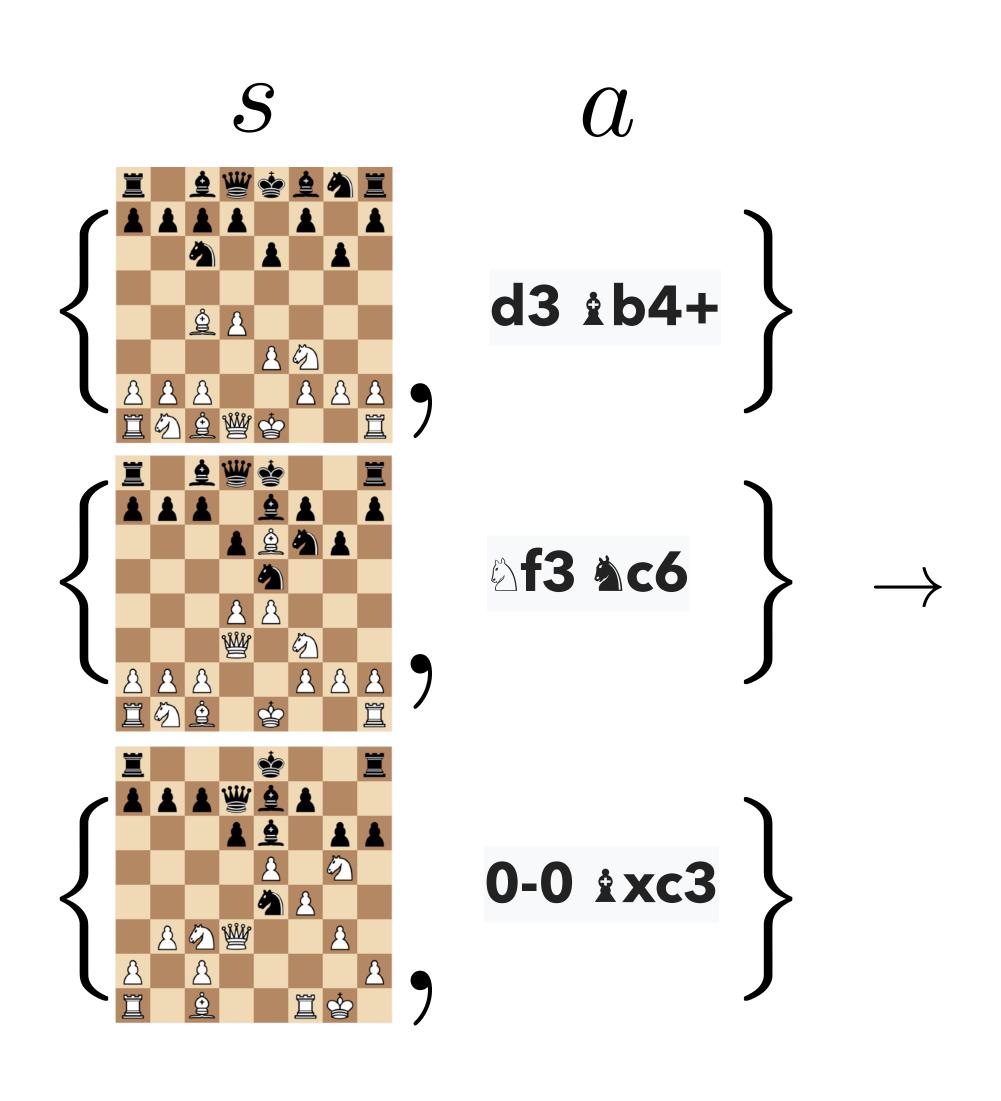
(from an **expert**)

$$\{s_1, a_1\}$$
 $\{s_2, a_2\}$ \rightarrow Learner $\rightarrow \pi: s \rightarrow a$
 $\{s_3, a_3\}$

• • •

$$\pi^* = \underset{\pi \in \Pi}{\operatorname{arg\,min}} \sum_{i=1}^{N} \mathcal{L}(\pi(s_i), a_i)$$

Imitation learning



Learner

Objective

$$\pi(s) = \operatorname{softmax}(g_{\theta}(s))$$

$$\mathcal{L}(a, \pi(s)) = \mathcal{L}_{CE}(a, \pi(s))$$

Hypothesis space

Convolutional neural net

Optimizer

Stochastic gradient descent

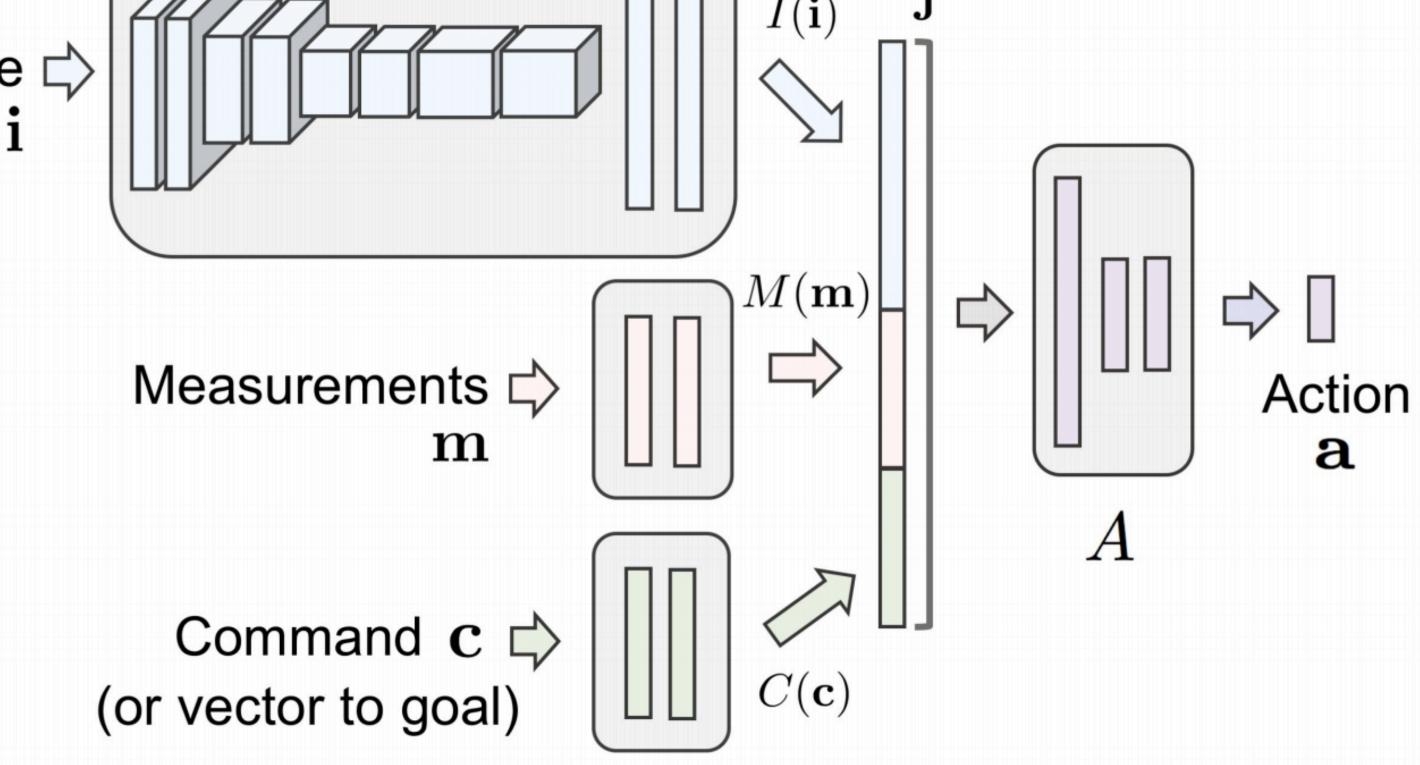
ightarrow π

From images to actions

Image ☐ $M(\mathbf{m})$

+ auxiliary measurements, e.g. speed.

+ a goal capturing expert's intentions, e.g. "Turn right at the next intersection."



[See Codevilla et al., "Engl-to-end driving via conditional imitation learning", 2018

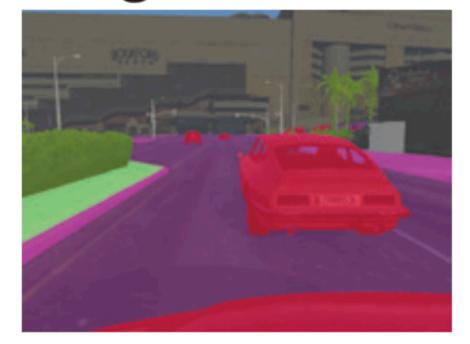
End-to-end Driving via Conditional Imitation Learning

Felipe Codevilla, Matthias Mueller, Alexey Dosovitskiy, Antonio Lopez, Vladlen Koltun

Submitted to ICRA 2018

Exploiting other knowledge

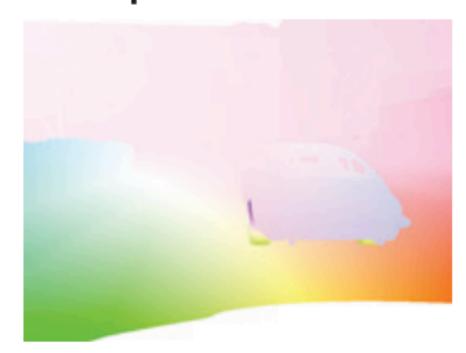
Segmentation



Depth

Albedo

Optical flow

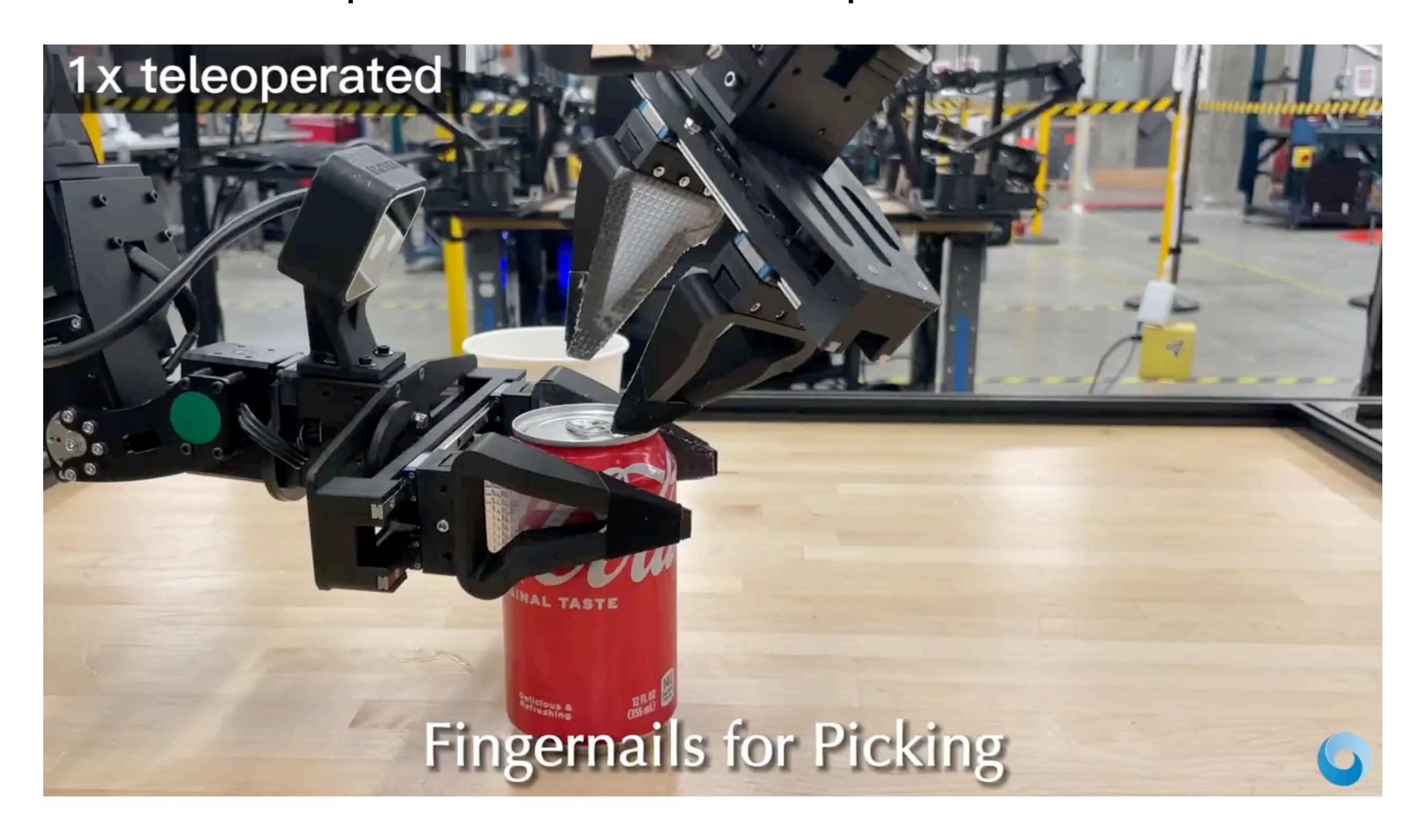


- Can use mid-level representations like depth, motion.
- Or do transfer learning from pretrained net

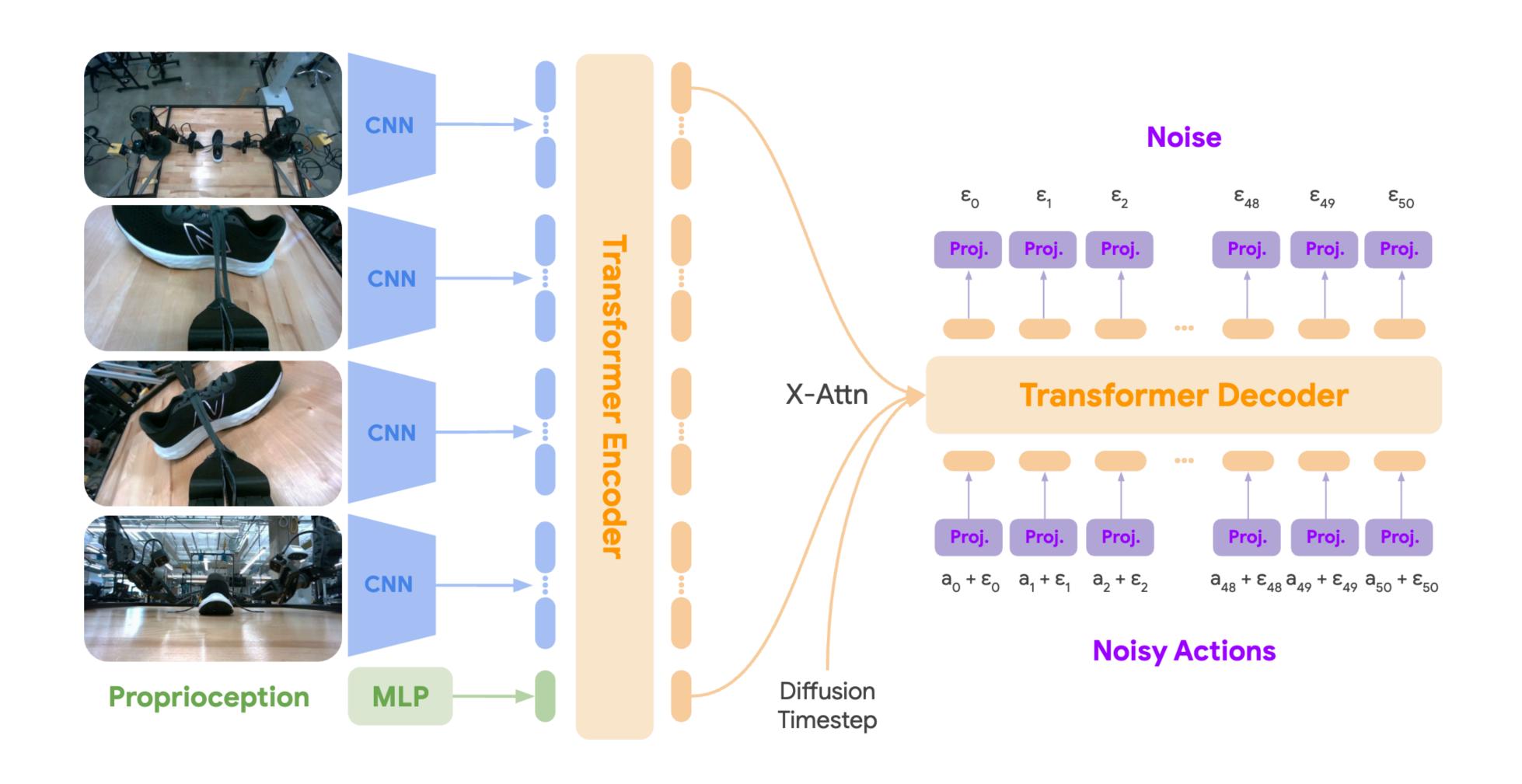
Teleoperation

[ALOHA 2: An Enhanced Low-Cost Hardware for Bimanual Teleoperation, 2024]

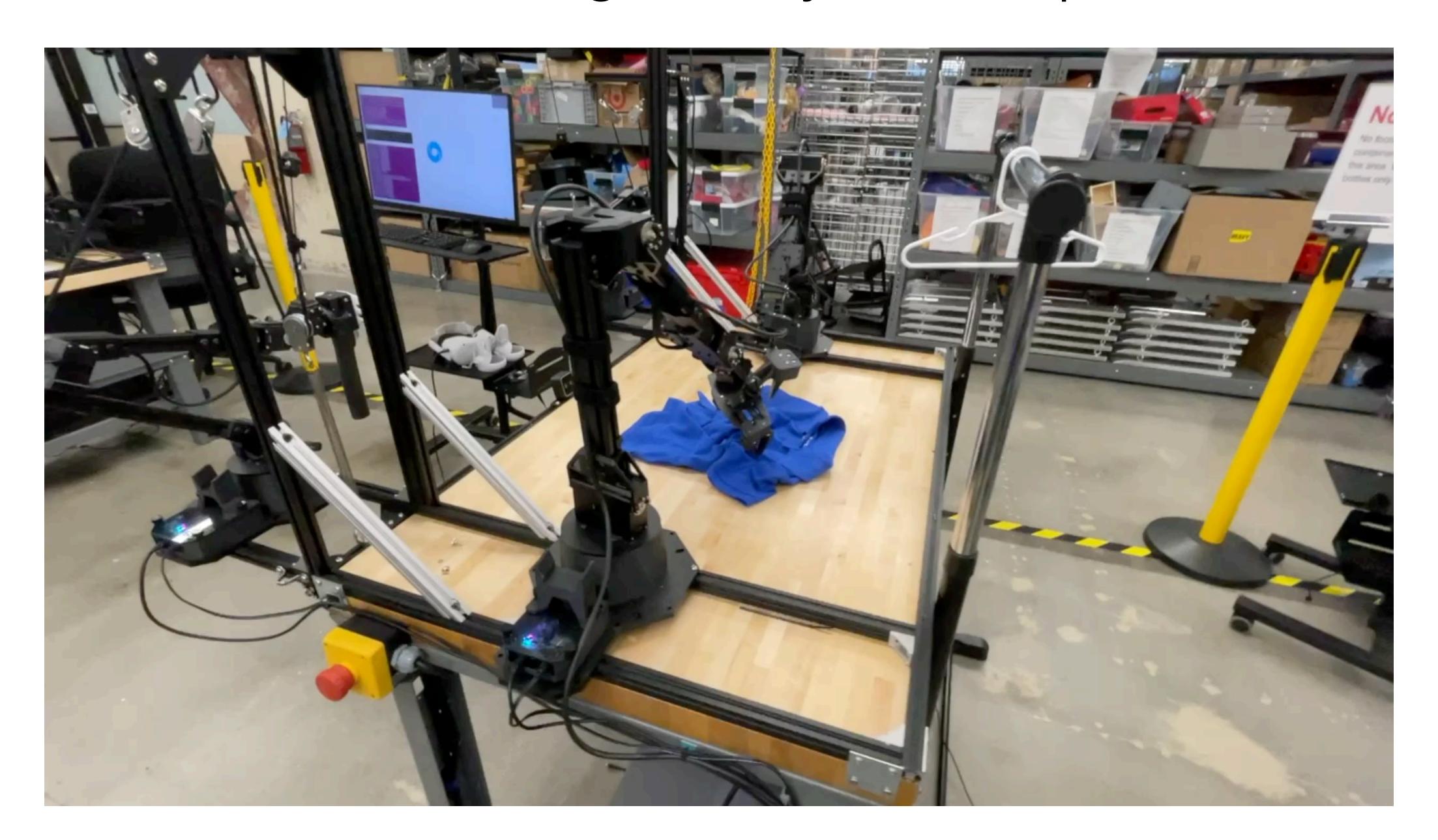
Teleoperation for manipulation tasks



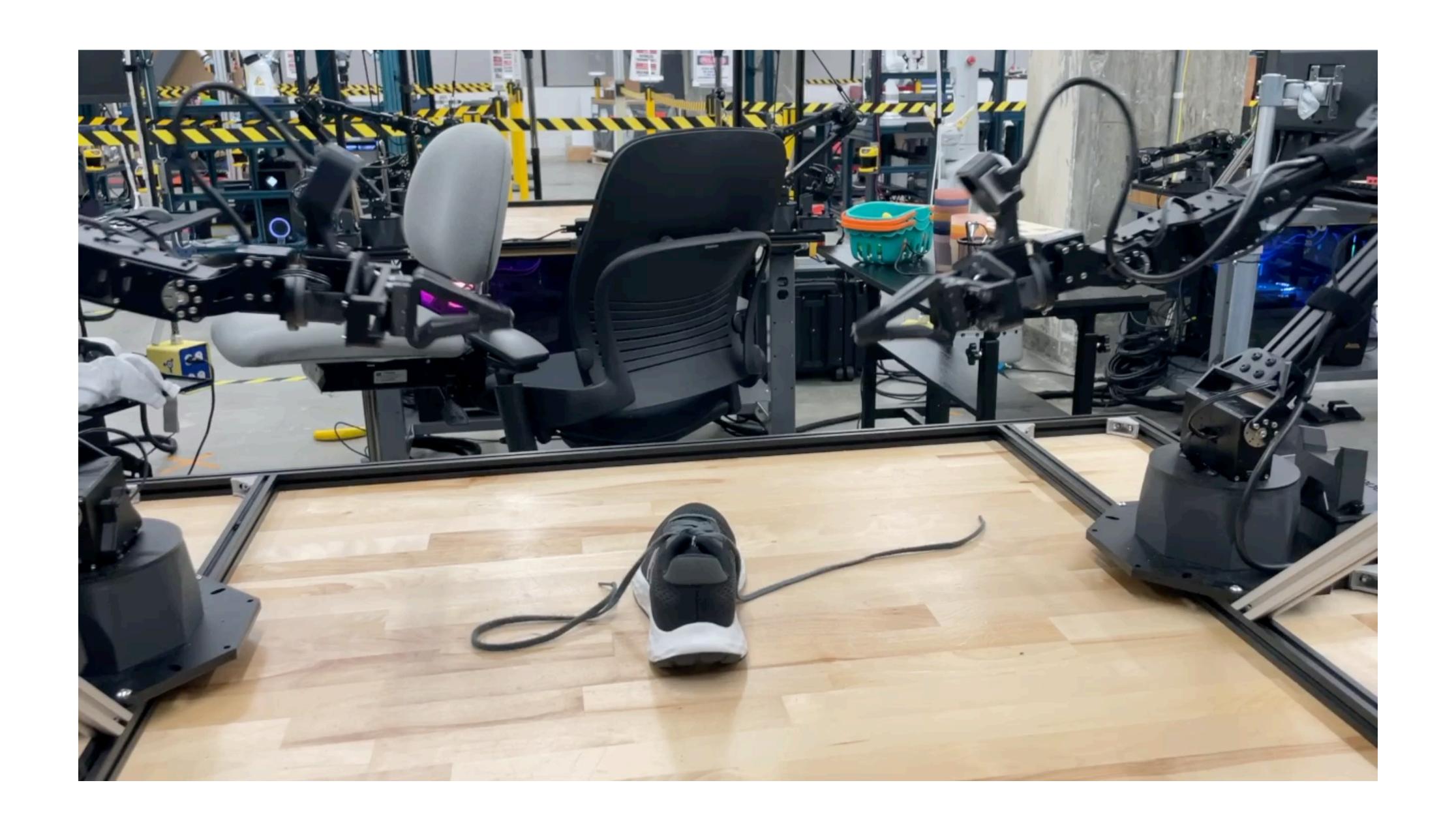
Predicting actions from video

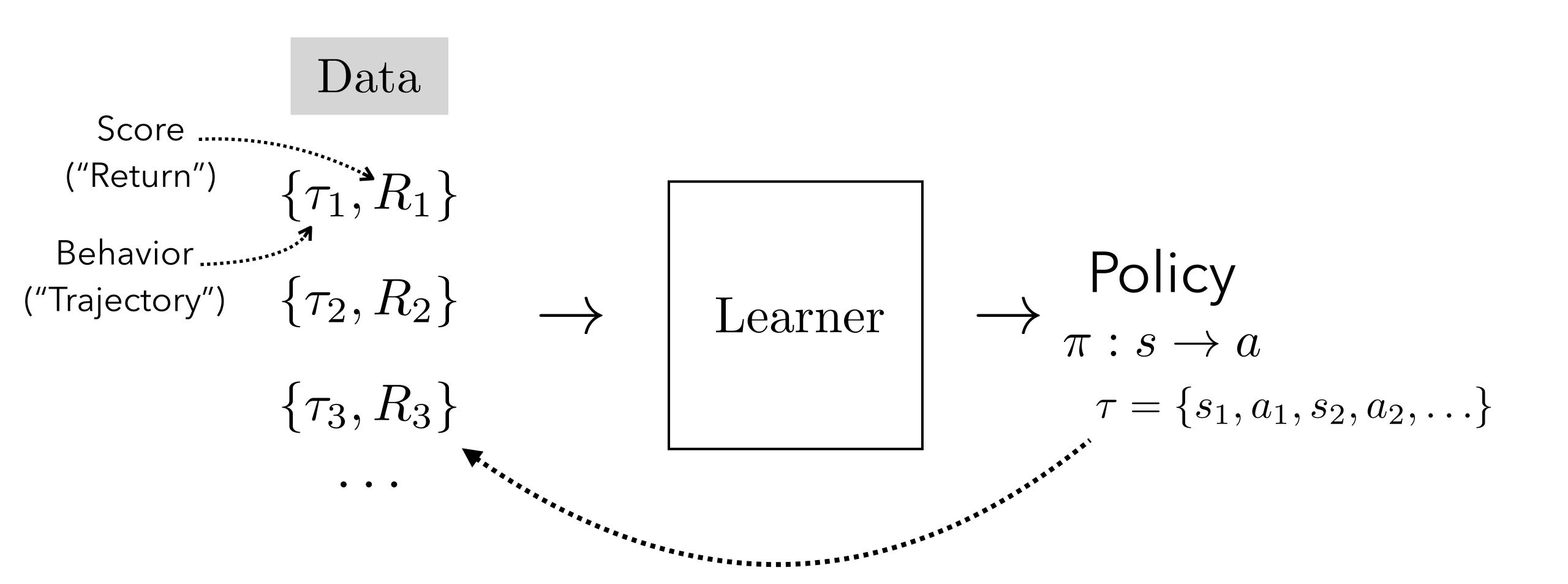


Behavior cloning for object manipulation

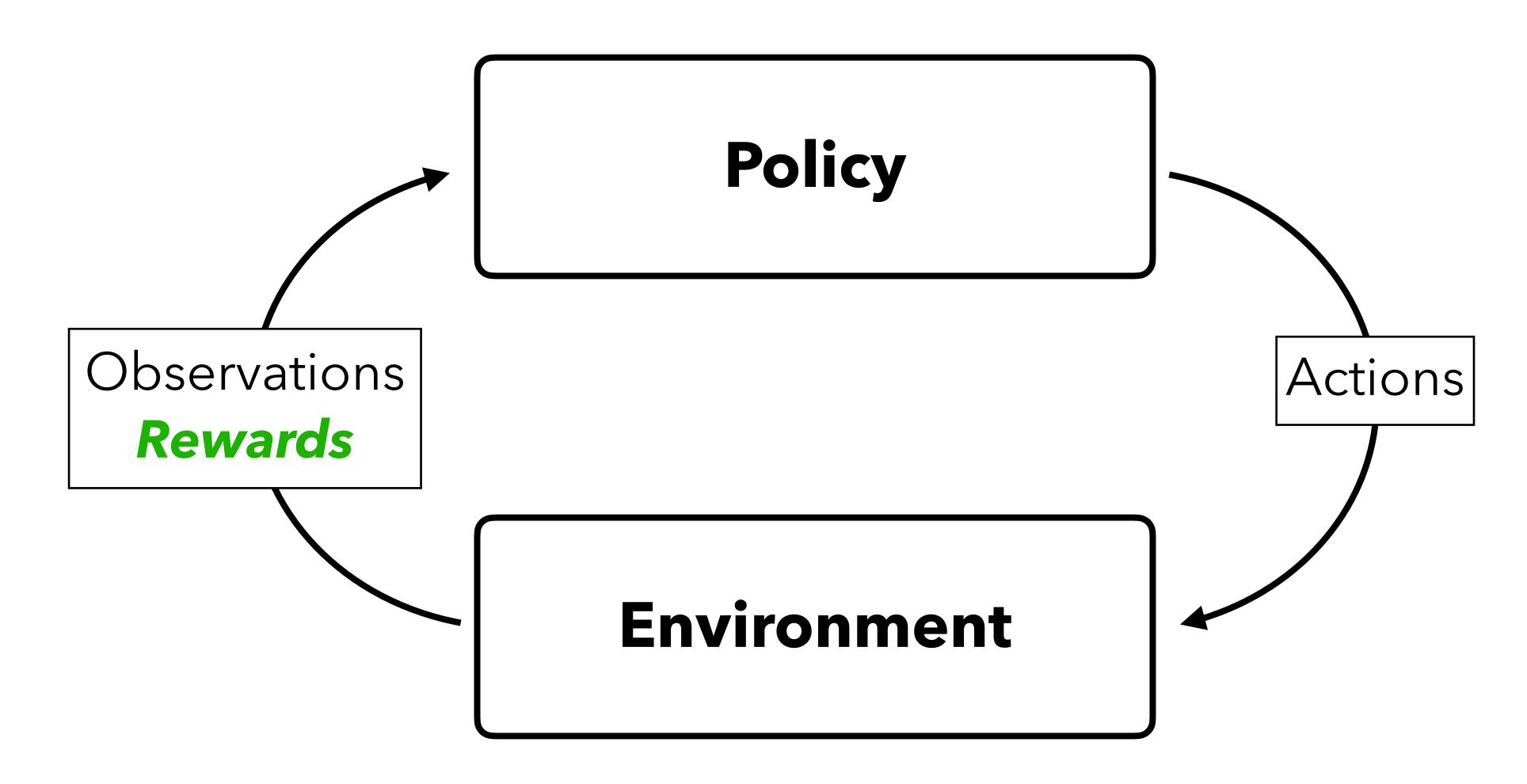


Behavior cloning for object manipulation





What's a good policy? (what's the learning objective?)



Learn a policy that takes actions that maximize reward

Imitation learning

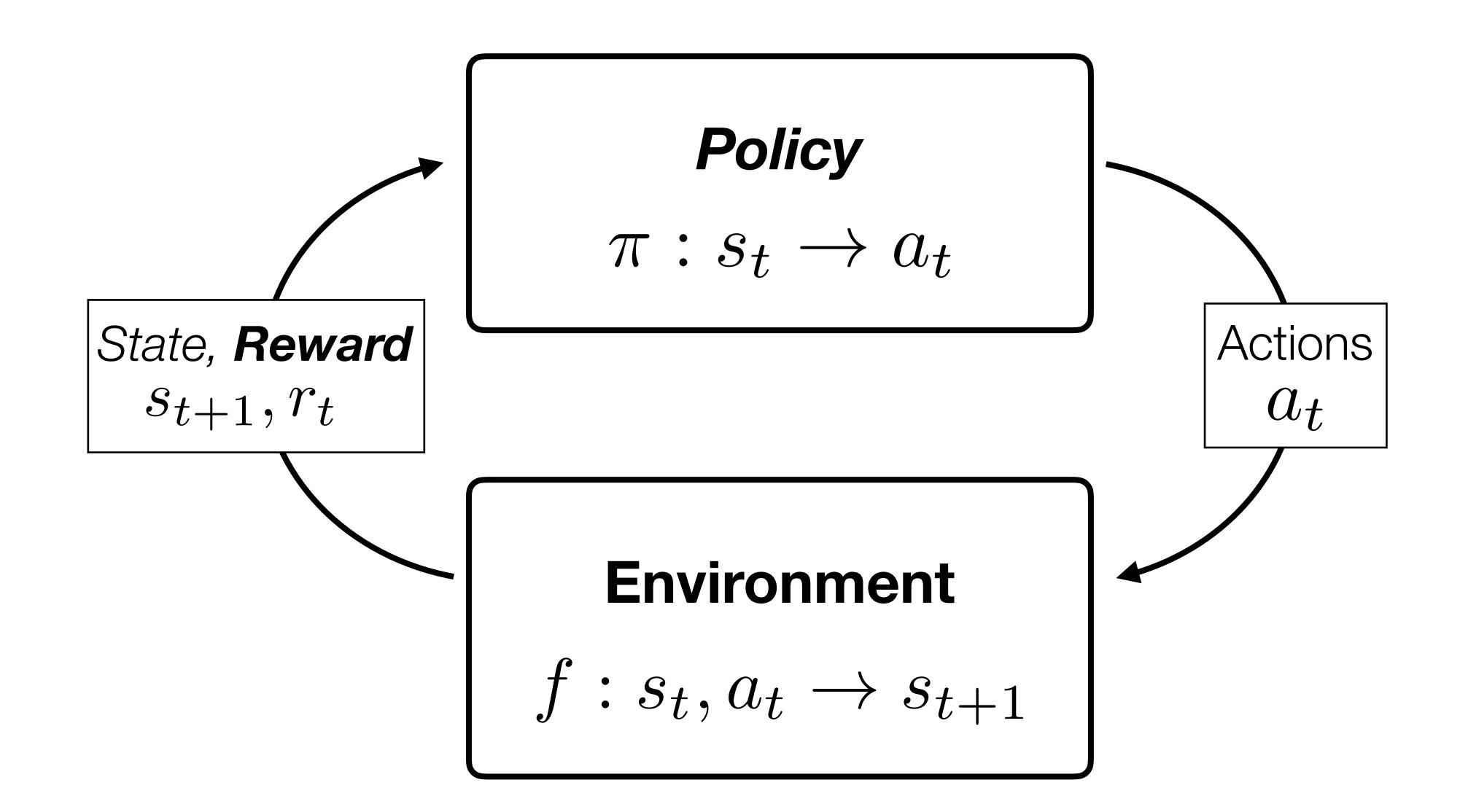
Hand-curated training data

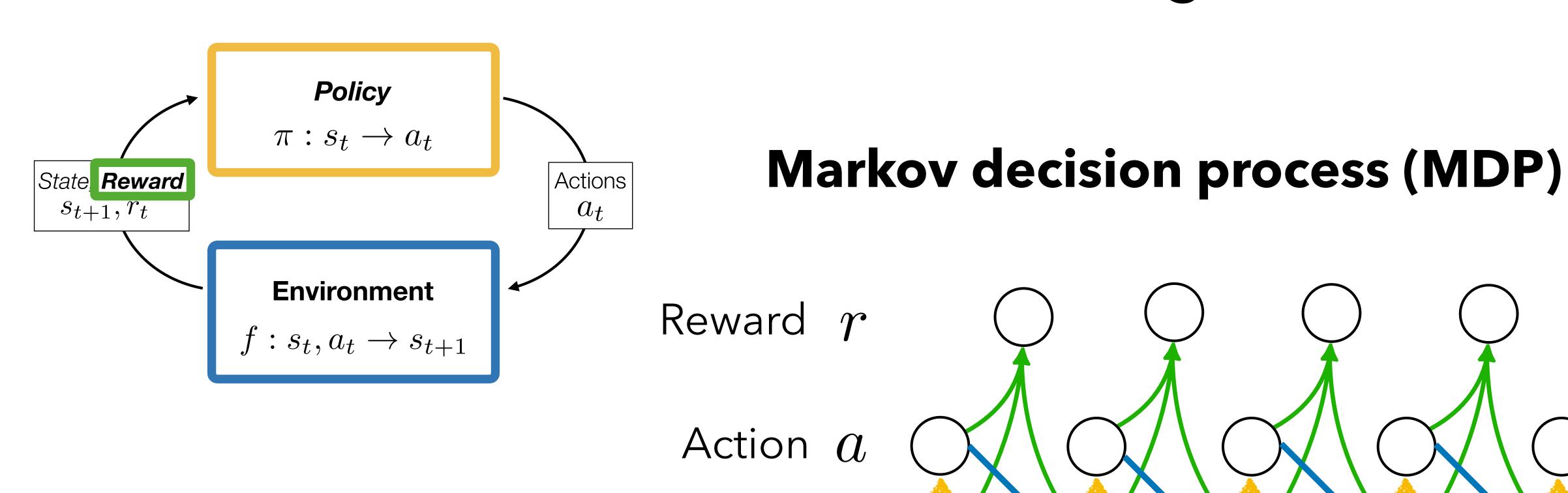
- + Instructive examples
- + Follows a curriculum
- Expensive
- Limited to teacher's knowledge

Reinforcement learning

No training data, have to play around and collect the data yourself

- + No need for labeled data
- + Can learn things no human knows how to do
- Less instructive
- No curriculum
- Have to explore



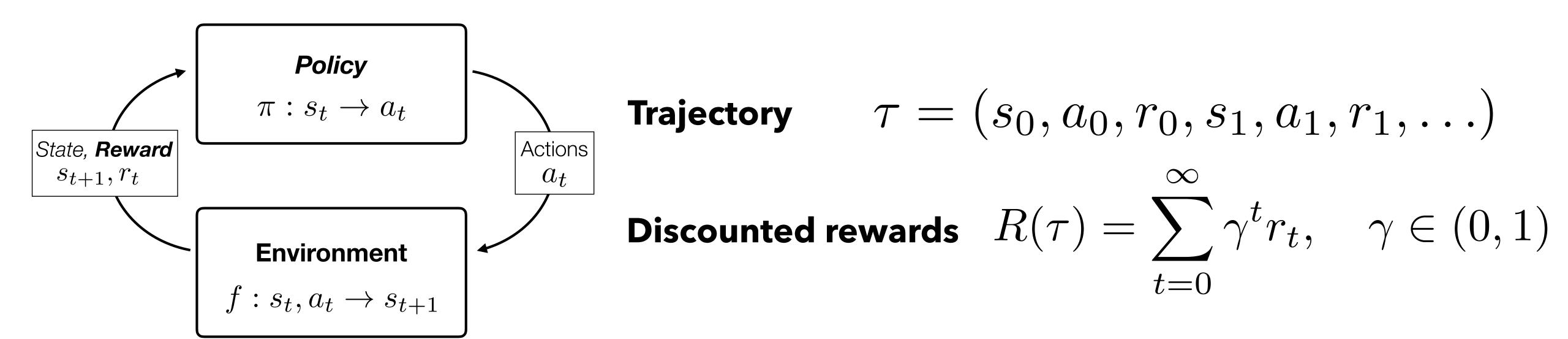


A sample from the MPD is called a **trajectory**

$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \ldots)$$

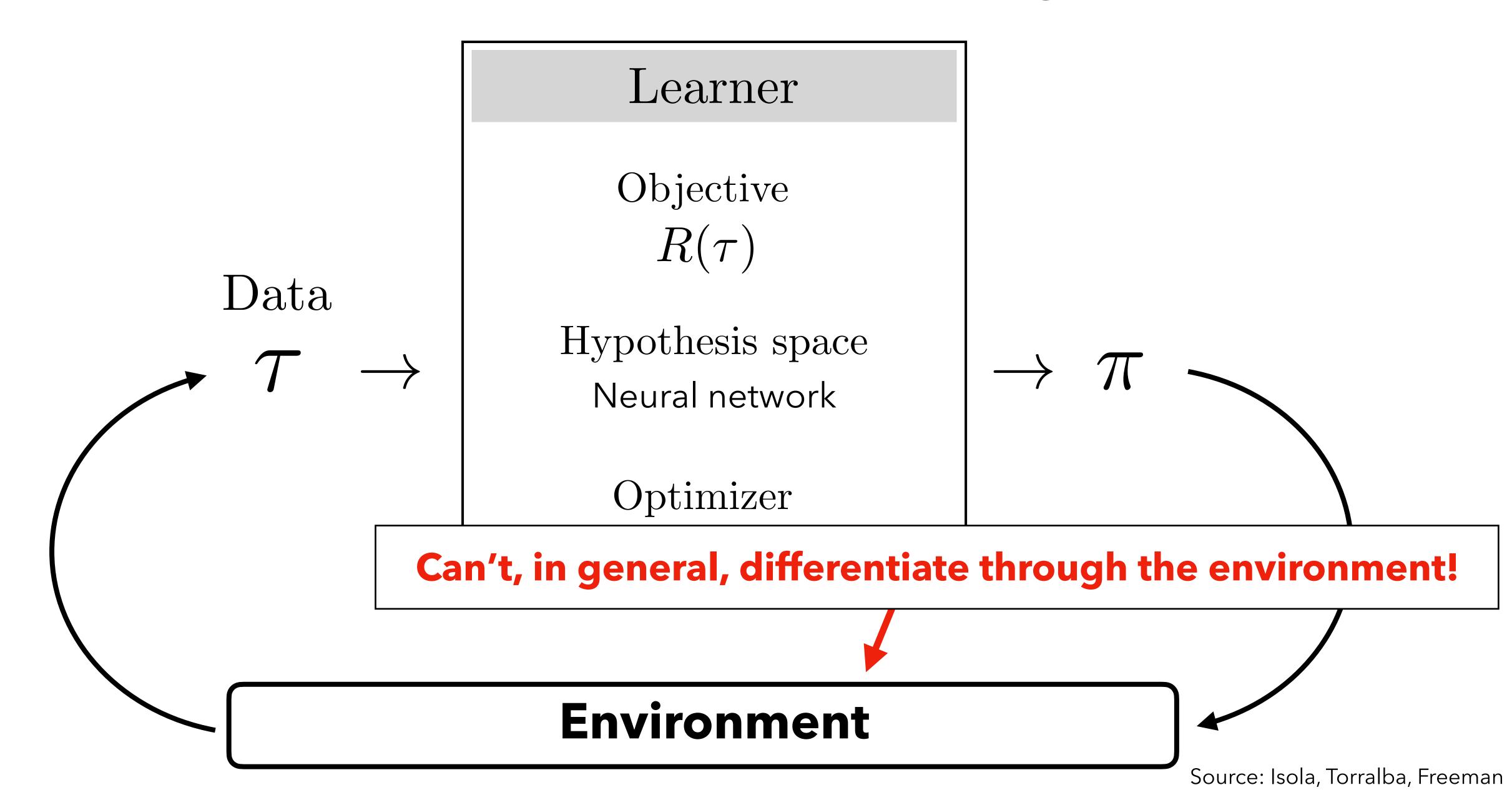
State

time



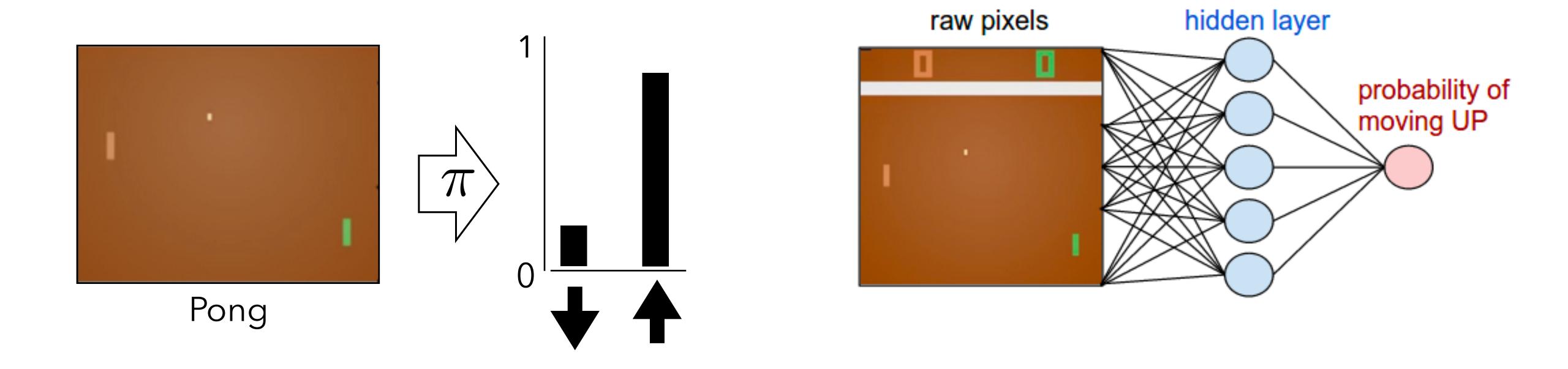
Learn a policy that takes actions that maximize expected reward

$$\pi^* = \underset{\pi}{\operatorname{arg\,max}} \mathbb{E}_{\tau \sim \pi}[R(\tau)]$$



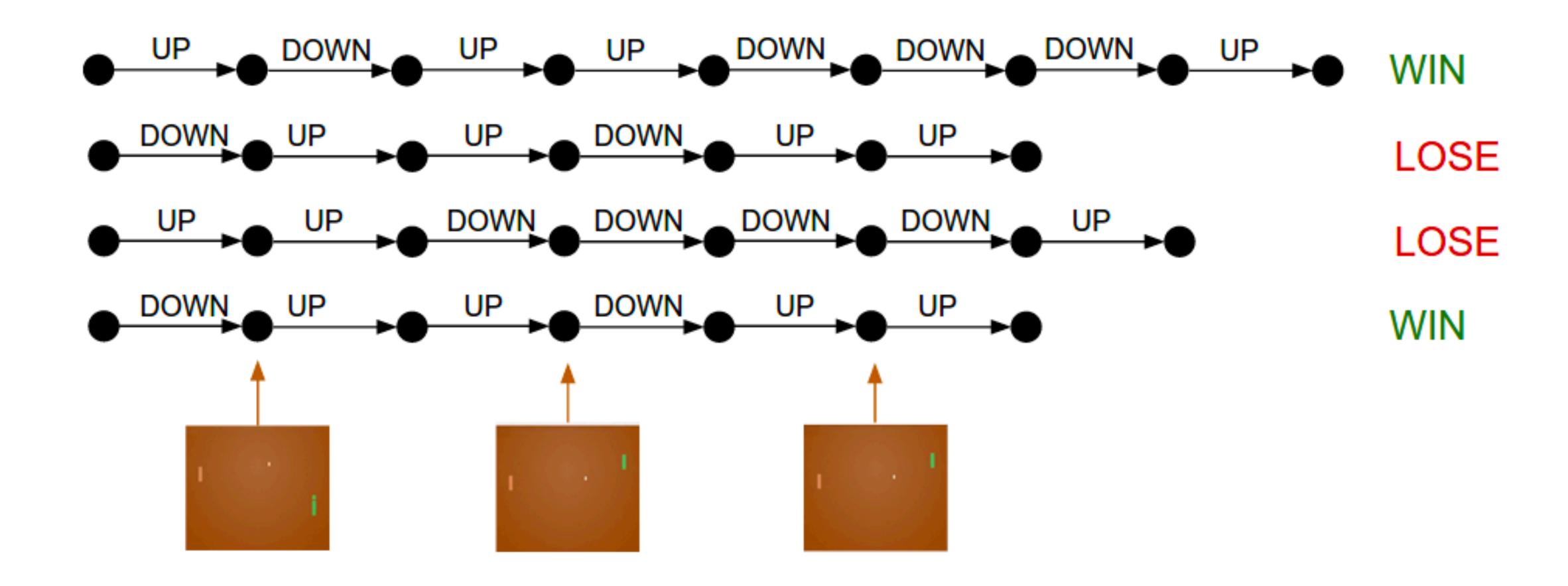
Environment is not differentiable! — How to optimize?

Policy gradients: Run a policy for a while. See what actions led to high rewards. Increase their probability.

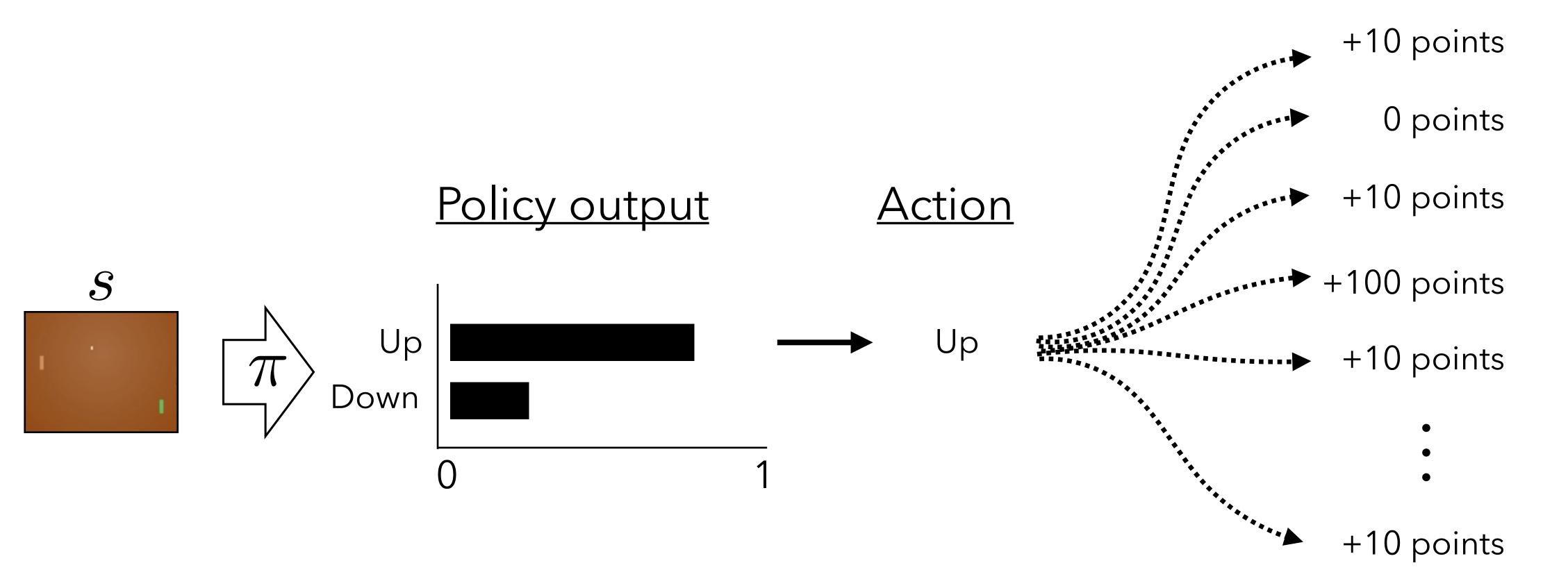


[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

Policy gradients: Run a policy for a while. See what actions led to high rewards. Increase their probability.

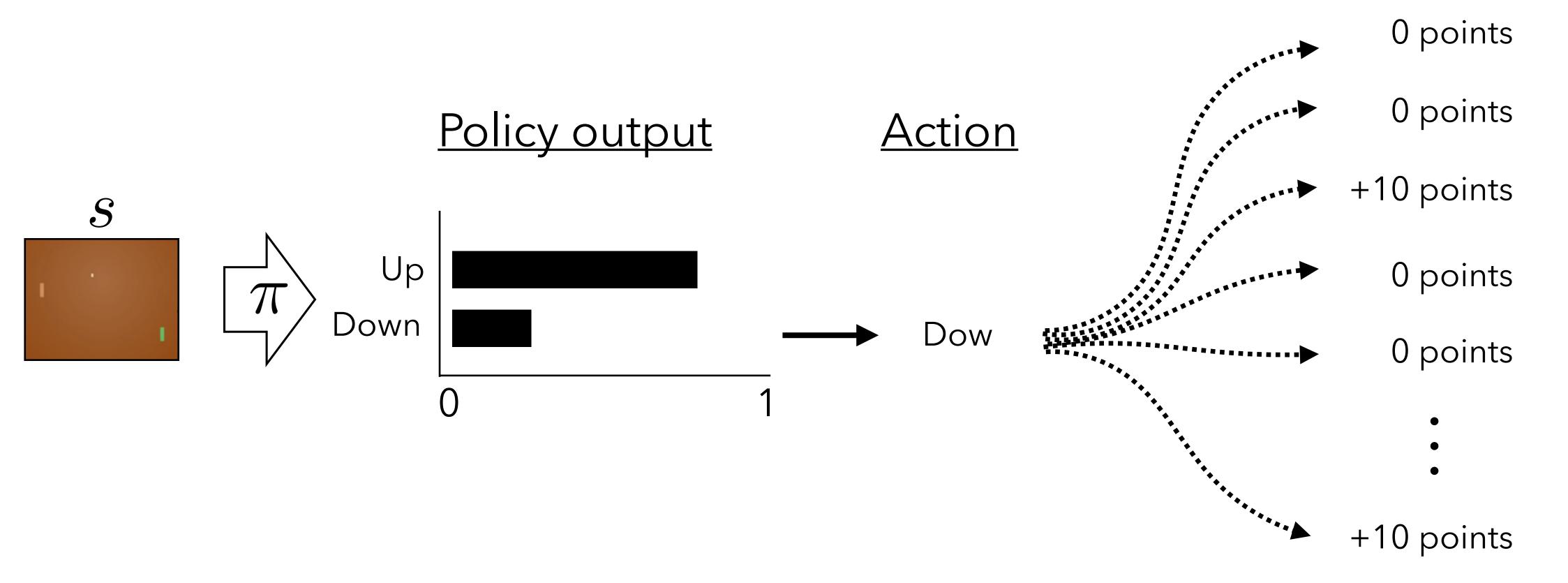


Eventual return



 $\pi(a|s)$ = probability of choosing action a given state s

Eventual return



 $\pi(a|s)$ = probability of choosing action a given state s

Policy gradient

Goal: take derivatives of expected reward w.r.t. the policy parameters.

$$\frac{\partial}{\partial \theta} \mathbb{E}_{\tau \sim \pi_{\theta}} [R(\tau)] = \frac{\partial}{\partial \theta} \int_{\tau} p(\tau|\theta) R(\tau) d\tau$$

$$= \int_{\tau} p(\tau|\theta) \left[\frac{\partial}{\partial \theta} \log(p(\tau|\theta)) \right] R(\tau) d\tau$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\frac{\partial}{\partial \theta} \log(p(\tau|\theta)) R(\tau) \right]$$

- Do actions with high rewards more often, and low rewards less often
- This is called the REINFORCE algorithm.
 - Estimate gradients, do gradient ascent

Policy gradient

Looks a lot like stochastic gradient descent on policy:

Sample a rollout, e.g. play the game with current policy

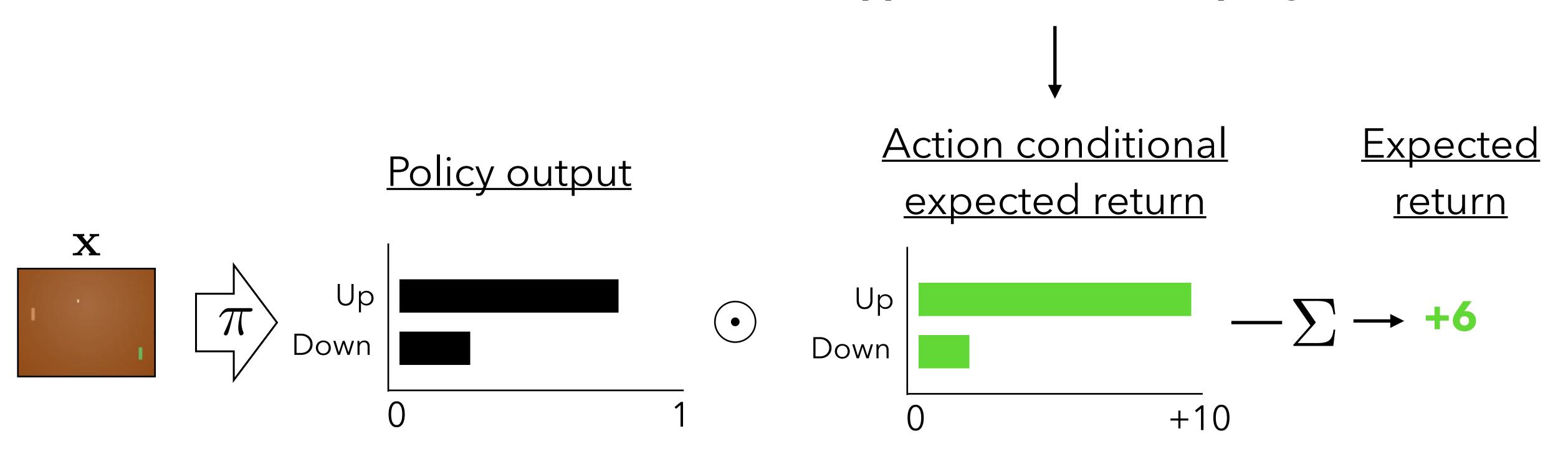
$$\tau = (s_0, a_0, s_1, a_1, \dots, s_T, a_T)$$

2. Compute reward, e.g. what was our game score?

$$r(\tau) = \sum_{t=0}^{T} R(s_t)$$

3. Do a gradient update:
$$\theta \leftarrow \theta + \alpha r(\tau) \frac{\partial}{\partial \theta} \pi_{\theta}(a_t | s_t)$$

Approximated via sampling



$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)] = \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)\nabla_{\theta}\log \pi_{\theta}] \longleftarrow \begin{array}{l} \text{Estimate gradient using REINFORCE} \\ \text{and do gradient descent} \end{array}$$

Policy gradient

- 1. Start with an arbitrary initial policy.
- 2. **Roll out** this *stochastic* policy many times, sampling different random actions each time.
- 3. Update your policy to place higher probability on actions that led to higher returns.

Mathematically, this approximates gradient ascent on policy parameters, so as to maximize reward.

Policy gradient

• What happens in a rollout? Recall we're taking a step:

$$\mathbb{E}_{\tau \sim \pi_{\theta}} \left[\frac{\partial}{\partial \theta} \log(p(\tau | \theta)) R(\tau) \right]$$

$$\frac{\partial}{\partial \theta} \log(p(\tau|\theta)) = \sum_{t=0}^{T} \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_t|s_t)$$

- All actions become more likely if the reward is high.
- Doesn't do credit assignment.

How good is a state?

Value function: expected future reward from starting in s.

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t \mid s_0 = s, \pi\right]$$



- One advantage is credit assignment: we know which state/action was useful.
- Sometimes more sample efficient, and updates have less variance.

How good is a state-action pair?

- Could we *learn* the value function and use it to choose actions?
 - We need more than that. You'd also need to know the dynamics, i.e. what state you'd end up with if you took each action.
- Instead, learn action-value function (or Q function).

$$Q(s,a) = \mathbb{E}\left[\sum_{t\geq 0} R_t \mid s_0 = s, a_t = a\right]$$

ullet Optimal action for a state: $rgmax\ Q(s,a)$

Finding a good Q function

 Good Q function should satisfy a recurrence relation called the Optimal Bellman Equation:

Finding a good Q function

Measuring the Bellman error for Q:

$$r(s_t, a_t) + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)$$

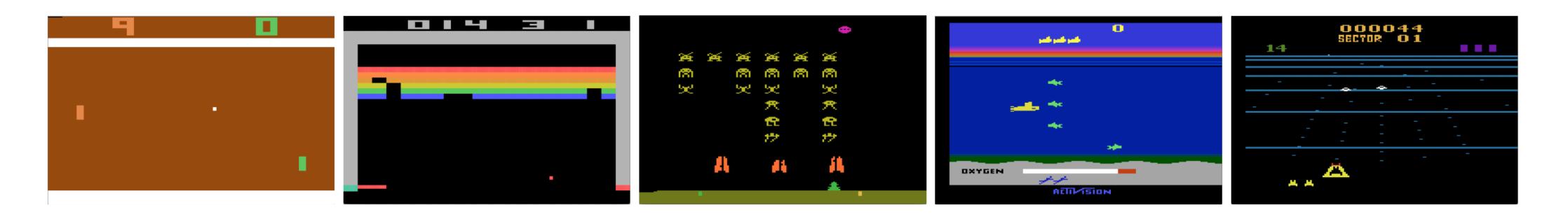
- Approximate Q with a neural net $Q(s, a; \theta)$. For each episode i:
 - 1. Do the policy induced by Q and get a trajectory:

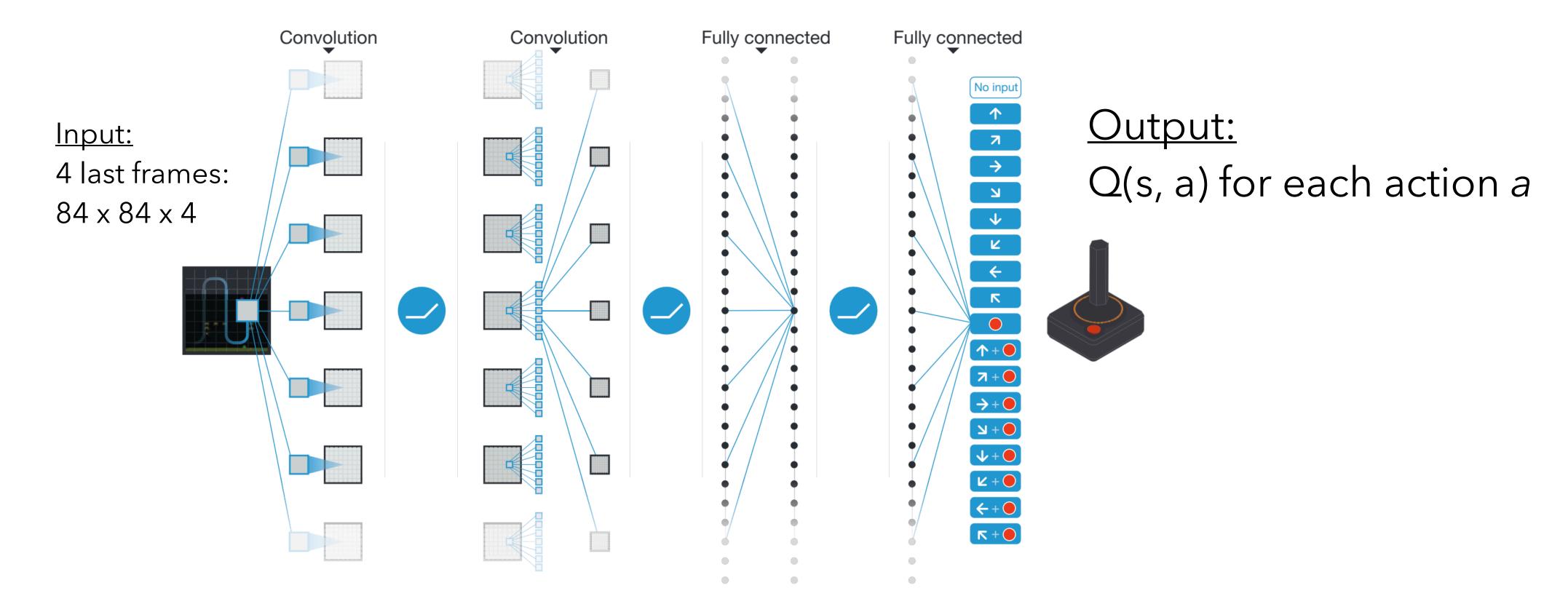
$$\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \ldots)$$

2. Update the parameters using backprop, minimizing approximation error:

$$t_{i} = r(s_{t}, a_{t}) + \gamma \max_{a} Q(s_{t+1}, a; \theta_{i-1})$$
$$L(\theta_{i}) = (t_{i} - Q(s_{t}, a_{t}; \theta_{i}))^{2}$$

Playing Atari games with deep Q-learning





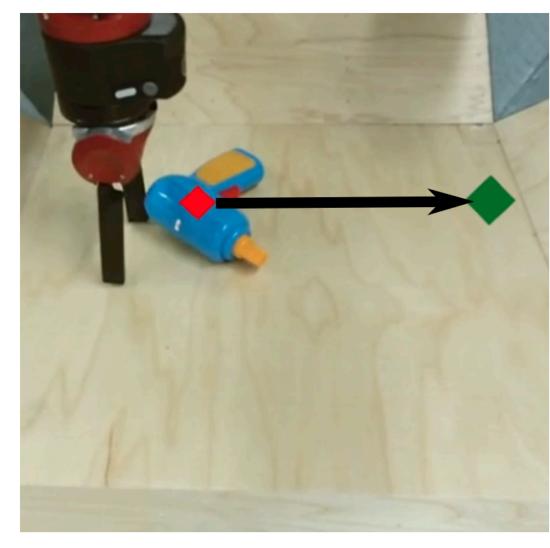
Playing Atari games

Model-based control

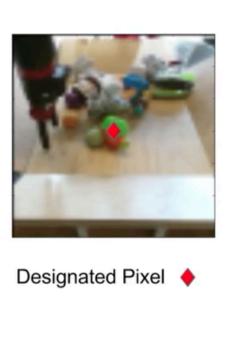
- Learn the **dynamics** of the environment: $p(s_{t+1} \mid s_t, a_t)$
- Where do I end up in the future if I perform this action?
- If states are images, we want to predict the future after you do an action

Model-based control

- Learn the **dynamics** of the environment: $p(s_{t+1} \mid s_t, a_t)$
- Where do I end up in the future if I perform this action?
- If states are images, we want to predict the future after you do an action

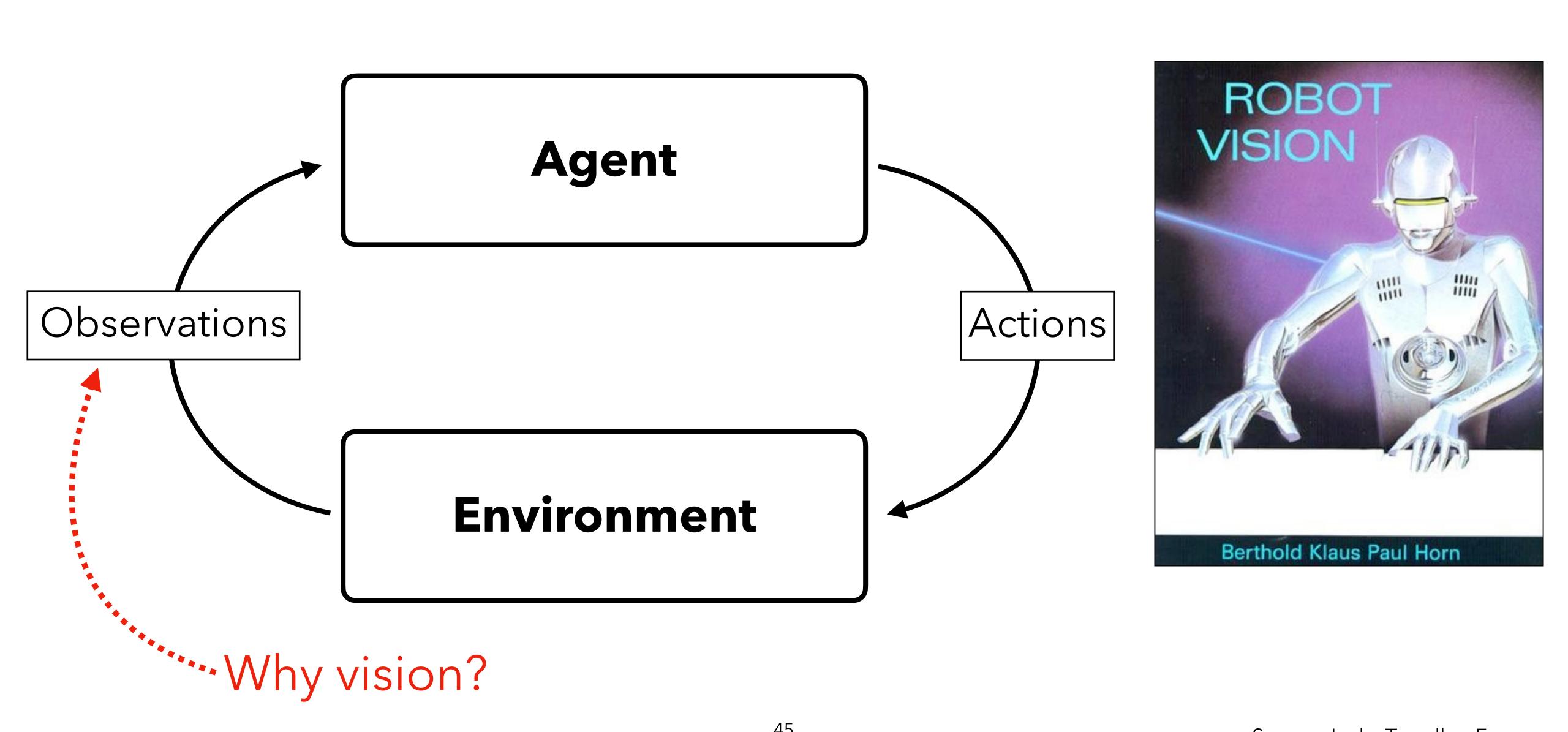


Pushing task



Video prediction

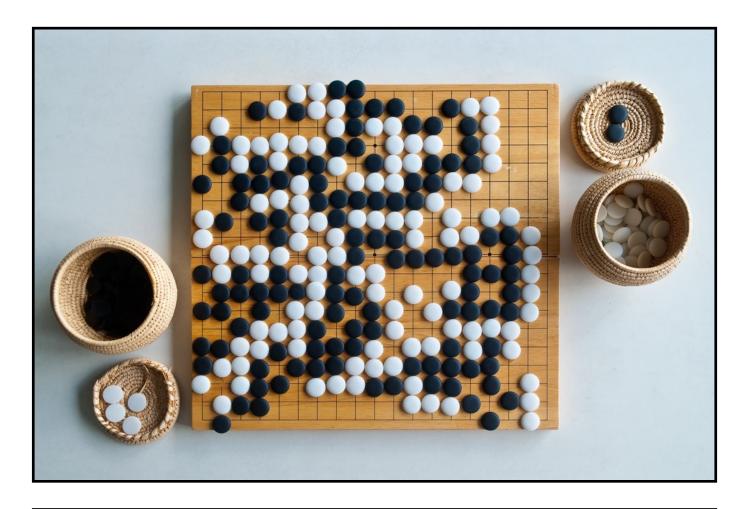
Intelligent agents

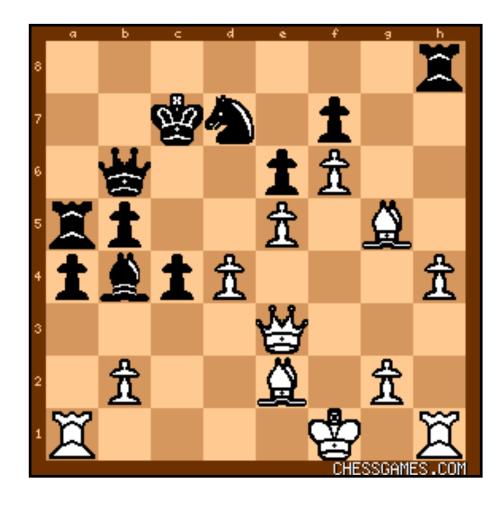


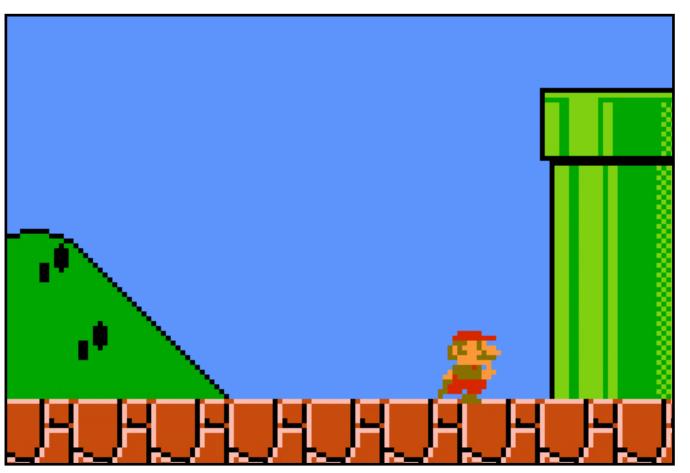
1. Human-like intelligence (and animal-like), often relies heavily on vision

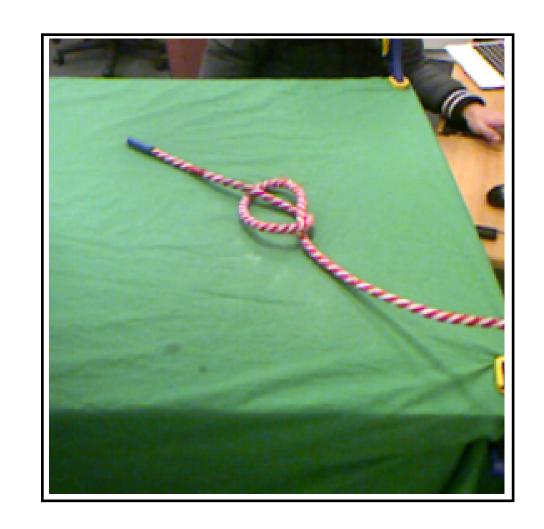
We already know it works well!

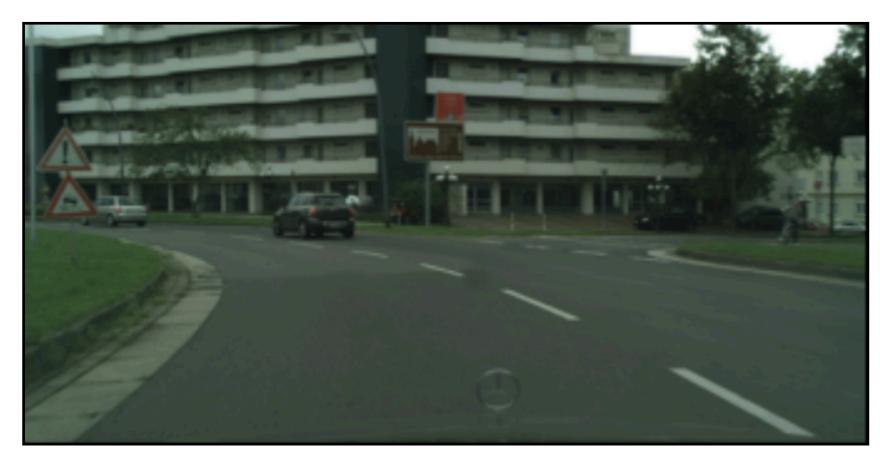
2. Universal interface





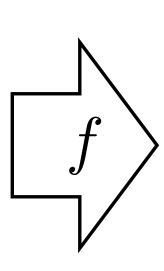




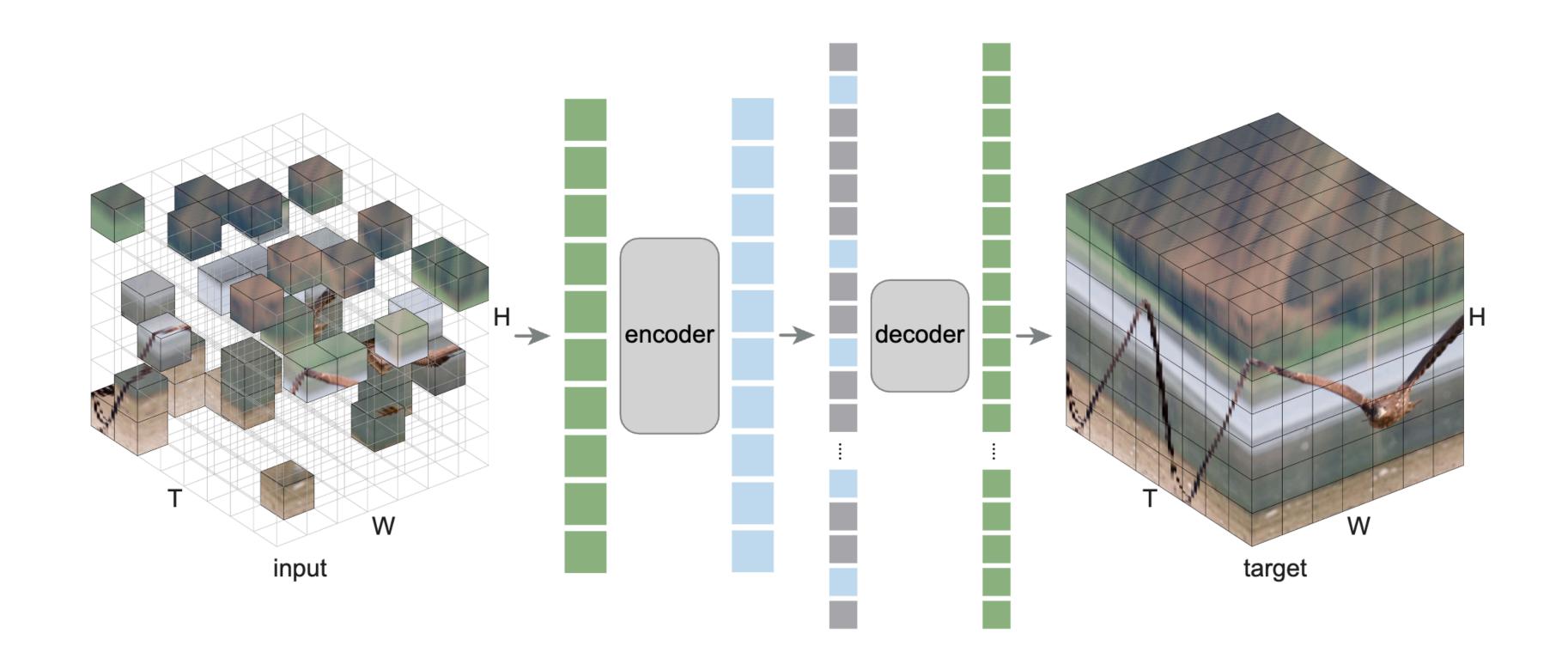


ŀ7

3. Structured representations



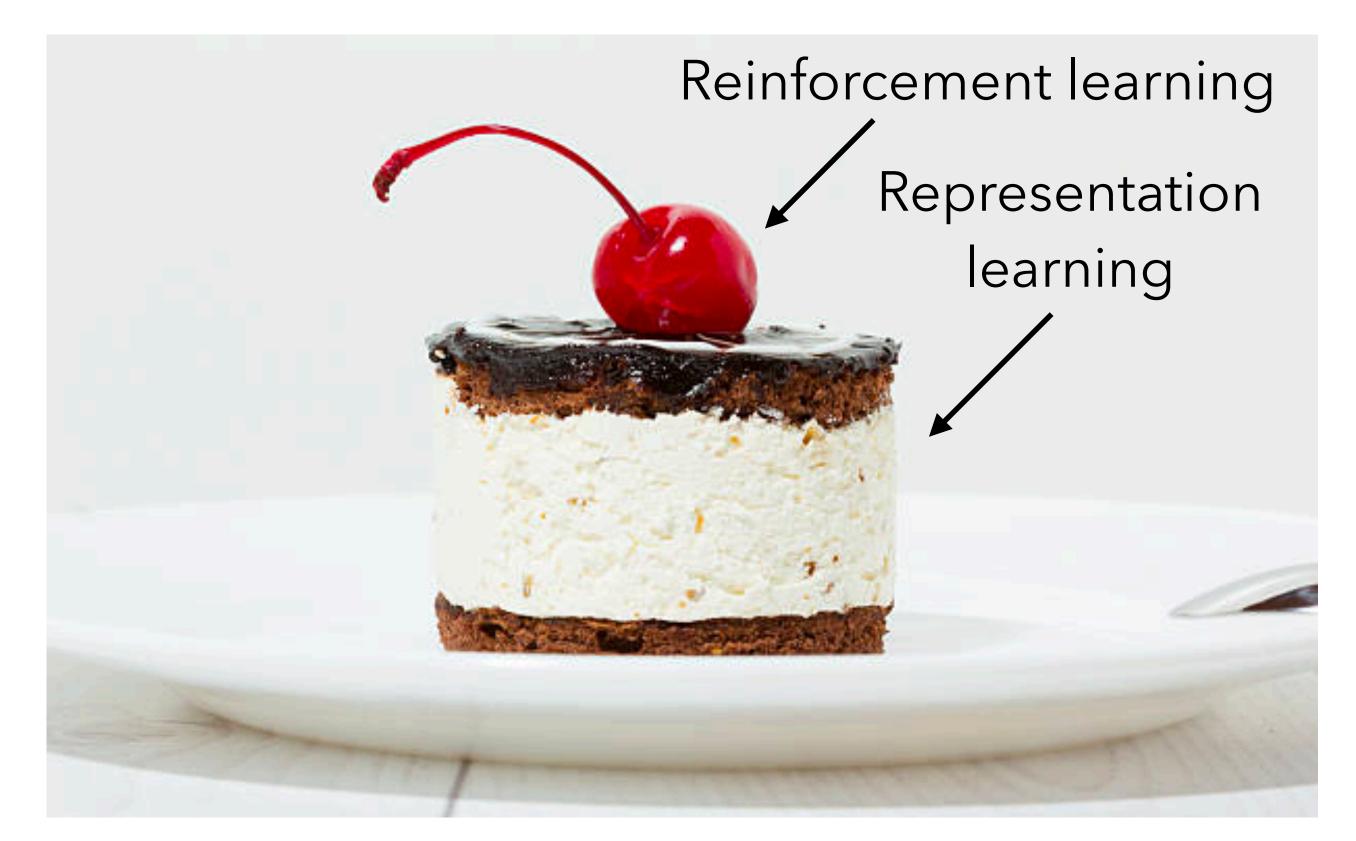
4. Lots of data (e.g., from the internet) for representation learning



[Feichtenhofer et al., "Masked Autoencoders As Spatiotemporal Learners", 2022]

Importance of perception

A hypothesis: if vision can give us a good representation/model of the world, then planning and control should be easy.



Yann LeCun's "cake"

Next class: detecting image manipulations