| ecture 24: Embodied vision

CS 5670: Introduction to Computer Vision




Today

® Formalisms for intelligent agents (environment, state, action, policy)
® |mitation learning
® Reinforcement learning
® Policy gradient algorithm
® Q-learning
® This is just a very high-level overview

® See Sutton & Barto [http://incompleteideas.net/book/RLbook?2018.pdf] for more.
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http://incompleteideas.net/book/RLbook2018.pdf

THE INTERNATIONAL WEEXLY JOURNAL OF SCIENCE

At last — a computer program that
can beat a champion Go player PAGE 484

ALL SYSTEMS GO

[Silver et al., 2016]

Agent observation raw pixels

3:4Y

Indoor map overview

[Jaderberg et al. 2018]
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The whole purpose of visual perception, in humans, is to
make good motor decisions.

"“We move in order to see and we see in order to move” — J. J. Gibson
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Intelligent agents
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Intelligent agents
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How to represent a state? How to represent policy?

state: pixels! policy: action classifier
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Can we use supervised learning?

Training data

{$1,y1}
{mzyyz}
{$3,y3}

— lLearner
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(supervised learning, applied to learn policies)

Training data

Imitation learning

(from an expert)
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Imitation learning
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From images to actions
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a goal capturing expert’s intentions, Command C :> ﬁ
e.g. "Turn right at the next intersection.” (or vector to goal) | UL C(c)

[See Codevilla et al., “End-to-end driving via conditional imitation learning”, 201¢



End-to-end Driving via
Conditional Imitation Learning

Felipe Codevilla, Matthias Mueller, Alexey Dosovitskiy, Antonio Lopez, Vladlen Koltun

Submitted to ICRA 2018
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Segmentation

Exploiting other knowledge

Albedo

® Can use mid-level representations like
depth, motion.

® Or do transfer learning from pretrained net

[See Zhou et al., "Does computer vision matter for action?”, 2019]



Teleoperation

ALOHA 2 &

f‘ﬁ Google DeepMind

[ALOHA 2: An Enhanced Low-Cost Hardware for Bimanual Teleoperation, 2024]



Teleoperation for manipulation tasks
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Predicting actions from video

Noise
8O 81 82 848 849 850
Proj. Proj. Proj. Proj. Proj.  Proj.
CNN
X-Attn
CNN
Proj. Proj. Proj. Proj. Proj.  Proj.
CNN A, t& 9 t+E a,+E, Aug + €489 T €49 A5 * &g
Noisy Actions
Proprioception MLP Diffusion
Timestep

[Zhao et al., "ALOHA Unleashed: A Simple Recipe for Robot Dexterity”, CoRL 2024]



Behavior c\oning for object manipulation
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Behavior cloning for object manipulation
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Reinforcement learning

Data
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What's a good policy? (what's the learning objective?)
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Reinforcement learning

e

Observations Actions

Rewards /

Learn a policy that takes actions that maximize reward
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Reinforcement learning
No training data, have to play

Imitation learning

Hand-curated training data

around and collect the data yourself
+ No need for labeled data
+ Can learn things no human knows

+ Instructive examples
+ Follows a curriculum

- Expensive how to do

- Limited to teacher’s . .
- Less instructive

knowledge .
- No curriculum

- Have to explore
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Reinforcement learning

State, Reward Actions
St+15 Tt (¢

\ Environment ‘/

f . St, At —7 St41
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Reinforcement learning

Policy

T .St — Q¢ \ . o
Stato|Reward Actions Markov decision process (MDP)
St11,7T¢ A+

\ Environment /
f D Sty At —7 St41

A sample from the MPD is called a trajectory 7 — (80, aop,7o,S1,A1,7T1, .. )
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Reinforcement learning

Policy
/ TS = g \ Trajectory T = (SQ,CLQ,TQ,Sl,al,Tl,...)

State, Reward Actions
St+15T¢ A

\ o / Discounted rewards R(T ) — Z vtT‘t, o~ (O, 1)
t=0

f D Sty At —7 St41

L earn a policy that takes actions that maximize expected rewara

" =argmaxE, .| R(7)]

26 Source: Isola, Torralba, Freeman



27

Reinforcement learning

lLearner
Objective
R(7)
Data
Hvpothesis space

Neural network

Optimizer

Can't, in general, differentiate through the environment!

/
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Environment is not differentiable! — How to optimize?

Policy gradients: Run a policy for a while. See what actions led to high
rewards. Increase their probability.

raw pixels hidden layer

B
Pong * *

[Adapted from Andrej Karpathy: http://karpathy.github.io/
2016/05/31/rl/]
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Policy gradients: Run a policy for a while. See what actions led to high

rewards. Increase their probability.

DOWN DOWN DOWN

UP

@ @ >®
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[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]
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Fventual return
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m(a|s) = probability of choosing action a given state s
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Fventual return
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m(a|s) = probability of choosing action a given state s
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Policy gradient

Goal: take derivatives of expected reward w.r.t. the policy parameters.

0 _ 0
SErml B = 2 [ p(rio)R()dr

— [ p(r16) | 55 loeto(r10)| Rir)a

[0 |
Seny | g OB (TIO)R(T)

® Do actions with high rewards more often, and low rewards less often
® Thisis called the REINFORCE algorithm.

® [Estimate gradients, do gradient ascent
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Policy gradient

Looks a lot like stochastic gradient descent on policy:

1. Sample a rollout, e.g. play the game with current policy

T = (SOaaOaslvala . '75T7aT)

2. Compute reward, e.g. what was our game score?
T
r(T) =) R(st)
t=0

3. Do a gradient update:

0
0 < 0+ ar(T)%m(aﬂst)

33 Slide adapted from R. Grosse and J. Ba



Approximated via sampling

l

Action conditional Expected

Policy output

expected return return

® " —> —

Down
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. . Estimate gradient using REINFORCE
Vol U(7)] = Errmy [1(7) Vg log mo| «— ancll do g::dielnt d:s::egt
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Policy gradient

1. Start with an arbitrary initial policy.

2. Roll out this stochastic policy many times, sampling different random
actions each time.

3. Update your policy to place higher probability on actions that led to
higher returns.

Mathematically, this approximates gradient ascent on policy parameters, so
as to maximize reward.
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Policy gradient

What happens in a rollout? Recall we're taking a step:  E,.,, 5 log(p(70)) R(7)
0 log(p(T|0)) ~ 9
_ T _—
90 g 2 90 Ogﬂ'g CbtlSt

All actions become more likely if the reward is high.

Doesn't do credit assignment.

36 Slide adapted from R. Grosse and J. Ba



How good is a state?

Value function: expected future reward from starting in s.

Vi(s) =E ZVt"“t | Sp =8,

£>0

| I | I
r r r r

I Iy o ey 0
rpEE e

e One advantage is credit assignment: we know which state/action was useful.

e Sometimes more sample efticient, and updates have less variance.
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How good is a state-action pair?

® Could we learn the value function and use it to choose actions?
- We need more than that. You'd also need to know the dynamics, i.e.
what state you'd end up with if you took each action.

® |[nstead, learn action-value function (or Q function).

Q(s,a) =E ZRt S =S,a; = a

t=>0

® Optimal action for a state: argmax Q(S, a)
a

38 Adapted from R. Grosse and J. Ba



Finding a good Q function

® Good Q function should satisfy a recurrence relation called the
Optimal Bellman Equation:

Quality of state/action pair Where will | end up? What if | take the very best next action?

/ / /

Q*(S,CL) — T(S7a) T f’p(s’\s,a) HE}X Q*(St—l—lgal) ‘ St = 8,0 = Q
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Finding a good Q function

® Measuring the Bellman error for Q:

r(st,at) + Vmgx Q(St+1,a) — Q(8¢, az)

® Approximate Q with a neural net Q(s, a; 8). For each episode i:

1. Do the policy induced by Q and get a trajectory:

T — (SQ,CLQ,TQ,Sl,al,Tl, ' )

2. Update the parameters using backprop, minimizing approximation error:

ti = 1(8¢,a¢) + 7 Hax Q(st+1,a;50;-1)

L(Qi) — (ti — Q(St,@t; 97;))2

40
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Playing Atari games with deep Q-learning

Input:

4 |last frames:
84 x 84 x 4

Convolution
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Output:
Q(s, a) for each action a
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[Mnih et al., “Playing Atari with Deep Reinforcement Learning”, 20



Playing Atari games

100 Training Episodes




Model-based control

® | earn the dynamics of the environment:p(si+1 | St, at)

® \Where do | end up in the future if | perform this action?

® |f states are images, we want to predict the future after you do an action



Model-based control

® | earn the dynamics of the environment: p(s¢+1 | 5¢, ar)

® \Where do | end up in the future if | perform this action?

® |f states are images, we want to predict the future after you do an action

Designated Pixel

Pushing task oA 0w

Video prediction

From [Ebert et al., "Selt-Supervised Visual Planning with Temporal Skip Connections" 2017]



Observations

L 4

" Why vision?

Intelligent agents

A=
)
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Actions
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Berthold Klaus Paul Horn

Source: Isola, Torralba, Freeman



Why vision?

1. Human-like intelligence (and animal-like), often relies heavily on vision

We already know it works well!

(credit: Johannes Burge)

Source: Isola, Torralba, Freeman
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Why vision?

3. Structured representations

[Kanazawa, Tu\siani, et a\., ECCV 201 8] 48 Source: Isola, Torralba, Freeman



Why vision?

4. Lots of data (e.g., from the internet) for representation learning
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[Feichtenhofter et al., “"Masked Autoencoders As Spatiotemporal Learners”, 2022]



lmportance of perception

Reinforcement learning

\ /Representation

) learning

A hypothesis: if vision can give us
a good representation/model of p——_ 2. /
the world, then planning and o

control should be easy.

Yann LeCun’s “cake”
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Next class: detecting image manipulations
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