Lecture 22: Neural fields and learning-based 3D

CS 5670: Introduction to Computer Vision

Includes slides from V. Sitzmann and B. Mildenhall
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l[dea #1: Image-based rendering
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Point cloud Proxy geometry (a mesh) Reconstruction

To synthesize a new view, select colors from existing views using proxy geometry.

5 Figure source: [Riegler and Koltun, 2020]
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[Riegler and Koltun, 2020]



|[dea #2: voxel representation
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[Source: Sitzmann et al., "DeepVoxels”, 2019]




|[dea #2: voxel representation

PP T X R . o L .
v W P R Position Viewing direction Color Density
ANIEFE LR \ l l e
AW
&
?
®
»

hegsenir — Vi, y,z2,0,90]l = (R, G, B, 0)

s RO

Input views



|[dea #2: voxel representation
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|[dea #3: neural radiance tield (NeRF)

E;-“'; 4+ Fo(x,y,2,0,¢) = (R, G, B, 6)
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revsswswws  ®Represent using a neural radiance field.
Input views
® Function that maps a (x, vy, z, 8, ¢) to a color and density.
® Typically parameterized as a multi-layer perceptron (MLP)

® Goal: find parameters ® for MLP that explain the images
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|dea #3: neural radiance tield (NeRF)

Learn volume:

color + occupancy (x,y,2,9»¢)—’[L|;1|[|—>(RGBa)

C

3D scene Viewpoints

[Mildenhall*, Srinivasan*, Tanick*, et al., Neural radiance fields, 202(



Volume Rendering

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral
Neural Radiance Fields, Mildenhall et al. 2021 12 Slide credit: Ben Mildenhall, via V. Sitzmann



Volume Rendering

Ray r(f) =0+ rd

>

Camera

It a ray traveling through the scene hits a
particle at ¢, we return its color ¢(7)

Neural Radiance Fields, Mildenhall et al. 2021 13 Slide credit: Ben Mildenhall



Volume Rendering

P[hit at {] = o(¢) dt

Probability that ray stops in a small interval arouna ¢ is () dt.
o is known as the Volume Density.

Neural Radiance Fields, Mildenhall et al. 2021 14 Slide credit: Ben Mildenhall



Volume Rendering

P[no hits before t] = T(1)

To determine if t is the first hit, need to know T(%):
probability that the ray didn't hit any particles earlier.

1(?) is called Transmittance.

Neural Radiance Fields, Mildenhall et al. 2021 15 Slide credit: Ben Mildenhall



Volume Rendering

P[no hits before t] = T(1)
Plhit at £] = o(¢) dt

o and T are related via

P[no hit beftore t + dt] = P[no hit before t] X P[no hit at 7]

Neural Radiance Fields, Mildenhall et al. 2021 16 Slide credit: Ben Mildenhall



Volume Rendering

P[no hits before t] = T(1)
Plhit at £] = o(¢) dt

o and T are related via
Pl Tt+dy =P T() |xPl 1-o0o)dt ]

Neural Radiance Fields, Mildenhall et al. 2021 17 Slide credit: Ben Mildenhall



Volume Rendering

Can show: no hits before f is equal to integral over density up until 7.

1(t) = exp (—J a(a)da>
0

1 — 7(#) can be seen as cumulative distribution function of
probability that ray hits something before reaching f.

Then T(t) = T(¢)o(1) is probability that ray stops exactly at ¢ .

Neural Radiance Fields, Mildenhall et al. 2021 18 Adapted from V. Sitzmann



Volume Rendering

Then T7(¢t) = T(t)o(?) is probability that ray stops exactly at t .

So the expected color returned by the ray will be

J Te(H)e(d) di

[

Note the nested integral

Neural Radiance Fields, Mildenhall et al. 2021 19 Slide credit: V. Sitzmann



Approximating the nested integral

4

We use quadrature to approximate the nested integral,

Neural Radiance Fields, Mildenhall et al. 2021 20 Slide credit; Ben Mildenhall



Approximating the nested integral

4

We use quadrature to approximate the nested integral,

splitting the ray up into n segments with endpoints {#,%,...,%,.}

Neural Radiance Fields, Mildenhall et al. 2021 27 Slide credit: Ben Mildenhall



Approximating the nested integral

“"Far Plane”

‘ "Near Plane”

We use quadrature to approximate the nested integral,
splitting the ray up into n segments with endpoints {#,%,...,%,.}

Neural Radiance Fields, Mildenhall et al. 2021 22 Slide credit: Ben Mildenhall



Approximating the nested integral

4

We use quadrature to approximate the nested integral,

splitting the ray up into n segments with endpoints {#,%,...,%,.}
with lengths 6, = ¢, | — ¢,

l

Neural Radiance Fields, Mildenhall et al. 2021 23 Slide credit: Ben Mildenhall



Approximating the nested integral

4

We assume volume density and color are

roughly constant within each interval

Neural Radiance Fields, Mildenhall et al. 2021 24 Slide credit: Ben Mildenhall



Summary: volume rendering integral estimate

Rendering model for ray r(r) = o + rd:

Ray
E 1.ac
Il 11
. \ et1
colors "Ear Plane”
weights
How much light is blocked earlier along ray: 3D volume
. A
i—1 1
1= -
. “Near Plane”
J=1
Camera

How much light is contributed by ray segment i:

a; = 1 — exp(—0,0,)

Neural Radiance Fields, Mildenhall et al. 2021 25 Slide credit: Ben Mildenhall



Learning a NeRF

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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[Source: Mildenhall et al., “"NeRF" 2020]



Neural rendering

5D Input Output
Position + Direction Color + Density

x2.09)~{[[[[]- (rGBo) -
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/\t‘}‘ ﬁw A
QP A

Volume Rendering
Rendering Loss

C(r) = /ttf T(t)o(r(t))c(r(t),d)dt, where T'(t) = exp (— /tt a(r(s))ds)

mn

Ray: r(t) = o+ td For color ¢ and density o.

mn

27
[Source: Mildenhall et al., "NeRF” 2020]



Neural rendering

Colorforrayr

C(r) = /t P00 (e(8)e(x(t), d)d, where T(£) — exp(— /t t a(r(s))ds)

n

Ray: |r(t) = o+ td For color ¢ and density 6.

A point distance t along r, centered at

28
[Source: Mildenhall et al., "NeRF” 2020]



Neural rendering

Color at 3D point r(?)
& direction d

C(r) = /t ! T(t)a(r(t))|c(r(t),d)dt, where T(t) = exp (— /t t a(r(s))d5>

n

Colorforrayr Weight

For color ¢ and density o.

Ray: r(t) — o0+ td

29
[Source: Mildenhall et al., "NeRF” 2020]



Neural rendering

Density at Probability that ray hasn
point r(7) been absorbed

O(r) = / IO le(fe(r(t), e, where T(0) = exp(~ [ o(r(s))ds

Ray: r(t) = o+ td For color ¢ and density o.

30
[Source: Mildenhall et al., "NeRF” 2020]



| oss function

Volume Rendering
Rendering Loss
o 7N\
Ray 1 / II -—g.t. 2
, 2 _ 2
Z =) [ICx) - C, I3
% Ray 2 /_\ 2
|| 3 res
o Minimize difference between
oredicted and observed colors.
In practice: coarse-to-fine and other tricks. 31

[Source: Mildenhall et al., “NeRF”, 2020]



Implementation details



Why is it good to be view-dependent?

33
[Source: Mildenhall et al., “"NeRF" 2020]



Representing the inputs
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Input views

® In theory, could just plugin 4 inputs x,y,z,0, ¢
® However, this leads to blurry results.

® Neural nets show a bias toward low frequency
functions [Tancik et al., 2020]

34



Fourier features

;’.s ué ¥ — F(H)(x,y,z, 0, ¢) = (R, G, B, o)
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Input views

e Use a positional encoding. Given a scalar p, compute:

v(p) = (sin(2%7p), cos(2°7p), - - - , sin(2¥~17p), cos(25~tnp) )

® Plug in the coordinate to sinusoids at different frequencies
(e.g.L=10).

35
[Source: Mildenhall et al., “NeRF”, 2020]



Why does this happen?

® Neural nets have trouble learning high

@ o 5 frequency functions
\'4 2
8 r' ® This mapping explicitly represents
g 5 different frequencies (forces net to pay
‘(é‘§§‘ LE B more attention high frequencies)
Z

N
X
X
a

-0-0 &5

-0-0 & ] TTSSRA

y (R)G)B) E°TI — Fequighing? — Pewttgml
(a) Coordinate-based MLP (b) Image regression See [Tancik et al., “"Fourier Féatu res Let Networks Learn High

(z,y) — RGB Frequency Functions in Low Dimensional Domains”, 2020]



MLP architecture

'r(X)
7(X)_>I_)I_)I_)I_)I_)I_)I_>I_) —>
'r(d)
v(p) = (sin(2%7p), cos(2%7p), - - - , sin(2X~17p), cos(2-~1mp) )

37
[Source: Mildenhall et al., “NeRF”, 2020]



Results for a novel viewpoint

38
[Source: Mildenhall et al., “"NeRF" 2020]



Results

[Mildenhall*, Srinivasan’é,QTanick*, et al. 202C



Results

[Mildenhall*, Srinivasan’é,OTanick*, et al. 202C



Results

[Mildenhall*, Srinivasan’é,1Tanicl<*, et al. 2020



NeRF with other tricks

N

[Barron et al., “"Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. 2025&]2



Extension: internet photo collections

[Martin-Brualla, Radwan et al. "NeRF in the Wild"” 2020]



Extension: internet photo collections

[Martin-Brualla, Radwan et al. /NeRF in the Wild",
20701
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What happens if we use fewer views?

Why does this

NeRF happen?

[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]
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[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]
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CNN Encoder

/

/ Image Features

[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]



[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]

49



\\\ . .

Location ‘
e I I I I =SS Color + Opacity
Image Feature '
MLP

[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]
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[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]



Input

T

=

Input

[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]
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Can we generate 3D models?



Generating 3D models

Do we actually need 3D supervision®?

Source: [Poole et al., 2023]



We already have good text-to-image models

“A blue jay standing on a
large basket of rainbow
macarons.”

Source: [Poole et al., 2023]



Could we fit a 3D model to this image?

Single image could “supervise” single viewpoint.

Source: [Poole et al., 2023]



DreamFusion: solve tor a NeRF that “looks right” from every viewpoint

$
e L) 4
V 4 . / :
N

V,: | normals x| | shading | rendering

P(light)

*

{ . . ' How do we measure
/# "/ E "looks right"?
deI;sity T | albed:) p  colorc P(camera) 9

NeRF MLP(; 6)

p(rendered 1mage | “a DSLR photo ot a peacock on a surtboard”)

Source: [Poole et al., 2023]



Can we use a pretrained diffusion model?

Diffusion: generate image by denoising

... but also it models p(image | text)!

Source: [Poole et al., 2023]



Score distillation sampling

Nolise estimator

Diffusion objective function:
Loitr(¢,X) = Einra(0,1),e~n(0,1) [w(t)||€p (0% + a6 ) — €[]
Noisy Image

Provides a lower bound on log(p(x)) [Ho et al., 2020, Kingma et al., 2021]

Source: [Poole et al., 2023]



Score distillation sampling

/"Score Distillation Sampling )

\_ Updates sample in pixel space: 2;_1 = ddpm_update(z;) Y, \Updates parameters with SGD: 6;.1 = opt.step(0;, Voﬁ(:l:i)y

Source: [Poole et al., 2023]



DreamFusion

)

: o | o1
P(light) : |
y | |
v, | normals n. " shading | rendering

*

@ .

~ colorc P(camera) 9

2

density 7

verw g
albedo p /

NeRF MLP(-; )

Solve for a NeRF such that, when it is rendered, it has high
probability under a text-to-image model.

Source: [Poole et al., 2023]



DreamFusion

Generate 3D from text yourself!

a DSLR photo of a squirrel | an intricate wooden carving
of a squirrel | a highly detailed metal sculpture of a

squirrel

[...] | wearing akimono | wearing a medieval suit of

armor | wearing a purple hoodie | wearing an elegant

ballgown

[...] | readingabook | riding a motorcycle | playing
the saxophone | chopping vegetables | sitting at a
pottery wheel shaping a clay bowl | ridinga
skateboard | wielding a katana | eating a

hamburger | dancing



DreamFusion

Generate 3D from text yourself! e

a DSLR photo of a squirrel | an intricate wooden carving
of a squirrel | a highly detailed metal sculpture of a

squirrel

[...] | wearing a kimono | wearing a medieval suit of
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[...] | readingabook | riding a motorcycle | playing
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DreamFusion




More recent text-to-3D
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[Shi et al., MVDream, 2023]



Text-to-4D

Optimize dynamic
3D Gaussians

Sample from multi-view
video diffusion model

Input video Generated multi-view videos Dynamic 3D scene

[Wu et al.,, CAT4D, 2024]
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Next class: light



