
CS 5670: Introduction to Computer Vision

Lecture 22: Neural fields and learning-based 3D

Includes slides from V. Sitzmann and B. Mildenhall
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Idea #1: Image-based rendering

Figure source: [Riegler and Koltun, 2020]5

To synthesize a new view, select colors from existing views using proxy geometry.

Proxy geometry (a mesh)Point cloud Reconstruction



Idea #1: Image-based rendering

[Riegler and Koltun, 2020]6



Idea #2: voxel representation

[Source: Sitzmann et al., “DeepVoxels”, 2019]
7



Idea #2: voxel representation

V[x, y, z, θ, ϕ] = (R, G, B, σ)

Position Viewing direction

Input views

Color Density
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Idea #2: voxel representation

V[x, y, z, θ, ϕ] = (R, G, B, σ)

Position Viewing direction

Input views

Color Density

Problem: A huge table! 𝒪(D3A2)

Training:
V[x, y, z, θ, ϕ]
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Idea #3: neural radiance field (NeRF)

FΘ(x, y, z, θ, ϕ) = (R, G, B, σ)

Input views
• Represent using a neural radiance field.  

• Function that maps a (x, y, z, , ) to a color and density. 

• Typically parameterized as a multi-layer perceptron (MLP) 

• Goal: find parameters  for MLP that explain the images

θ ϕ

Θ
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[Mildenhall*, Srinivasan*, Tanick*, et al., Neural radiance fields, 2020]

3D scene Viewpoints

Learn volume: 
color + occupancy
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Idea #3: neural radiance field (NeRF)



Volume Rendering
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Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral

Slide credit: Ben Mildenhall, via V. SitzmannNeural Radiance Fields, Mildenhall et al. 2021



Volume Rendering

13

If a ray traveling through the scene hits a 
particle at , we return its color t c(t)

Camera

Ray r(t) = o + td

t

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021



Volume Rendering
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Probability that ray stops in a small interval around  is .  
 is known as the Volume Density.

t σ(t) dt
σ

P[hit at t] = σ(t) dtt

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021



Volume Rendering
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To determine if  is the first hit, need to know : 
probability that the ray didn’t hit any particles earlier. 

 is called Transmittance.

t T(t)

T(t)

P[no hits before t] = T(t)

t

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021



Volume Rendering
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 and  are related via σ T
P[no hit before t + dt] = P[no hit before t] × P[no hit at t]

P[no hits before t] = T(t)

t P[hit at t] = σ(t) dt

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021



 and  are related via σ T
P[ T(t + dt) ] = P[ T(t) ] × P[ 1 − σ(t)dt ]

Volume Rendering
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P[no hits before t] = T(t)

t P[hit at t] = σ(t) dt

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021



Volume Rendering
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Can show: no hits before  is equal to integral over density up until .t t

T(t) = exp (−∫
t

0
σ(a)da)

Then  is probability that ray stops exactly at T′￼(t) = T(t)σ(t) t .

 can be seen as cumulative distribution function of  
probability that ray hits something before reaching .

1 − T(t)
t

Neural Radiance Fields, Mildenhall et al. 2021 Adapted from V. Sitzmann



Volume Rendering

19

Then  is probability that ray stops exactly at T′￼(t) = T(t)σ(t) t .

So the expected color returned by the ray will be 


Note the nested integral!

∫
t1

t0

T(t)σ(t)c(t) dt

Neural Radiance Fields, Mildenhall et al. 2021 Slide credit: V. Sitzmann



Approximating the nested integral
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We use quadrature to approximate the nested integral,  

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021



Approximating the nested integral
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We use quadrature to approximate the nested integral,  
splitting the ray up into  segments with endpoints  n {t1, t2, …, tn+1}

tN

t1

tn+1

ti

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021



Approximating the nested integral
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We use quadrature to approximate the nested integral,  
splitting the ray up into  segments with endpoints  n {t1, t2, …, tn+1}

tN

t1

tn+1

ti

Slide credit: Ben Mildenhall

“Far Plane”

“Near Plane”

Neural Radiance Fields, Mildenhall et al. 2021



Approximating the nested integral
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We use quadrature to approximate the nested integral,  
splitting the ray up into  segments with endpoints  
with lengths 

n {t1, t2, …, tn+1}
δi = ti+1 − ti

tN

t1

tn+1

δi

ti

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021



Approximating the nested integral
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We assume volume density and color are 
roughly constant within each interval

tN

ti

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021



Summary: volume rendering integral estimate
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Rendering model for ray : 

How much light is blocked earlier along ray: 

How much light is contributed by ray segment i: 

r(t) = o + td

3D volume
t1

tN

Camera

Ray

colors

weights

c ≈
n

∑
i=1

Tiαici

Ti =
i−1

∏
j=1

(1 − αj)

αi = 1 − exp(−σiδi)

tn+1

t1 Ti

αi

ti

Slide credit: Ben MildenhallNeural Radiance Fields, Mildenhall et al. 2021

“Far Plane”

“Near Plane”



Learning a NeRF

[Source: Mildenhall et al., “NeRF”, 2020]
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Neural rendering

[Source: Mildenhall et al., “NeRF”, 2020]

Ray: For color  and density . c σ
27



Neural rendering

[Source: Mildenhall et al., “NeRF”, 2020]

Ray: For color  and density . c σ
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Color for ray r

A point distance  along , centered at t r



Neural rendering

[Source: Mildenhall et al., “NeRF”, 2020]

Ray:
For color  and density . c σ
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Color for ray r
Color at 3D point  
& direction 

r(t)
dWeight



Neural rendering

[Source: Mildenhall et al., “NeRF”, 2020]

Ray: For color  and density . c σ
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Density at 
point r(t)

Probability that ray hasn’t  
been absorbed



Loss function

[Source: Mildenhall et al., “NeRF”, 2020]
31

ℒ = ∑
r∈ℛ

∥C(r) − Cgt(r)∥2
2

Minimize difference between  
predicted and observed colors.

In practice: coarse-to-fine and other tricks.



Implementation details



Why is it good to be view-dependent?

[Source: Mildenhall et al., “NeRF”, 2020]
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Representing the inputs

FΘ(x, y, z, θ, ϕ) = (R, G, B, σ)

Input views

• In theory, could just plug in 4 inputs  

• However, this leads to blurry results. 

• Neural nets show a bias toward low frequency 
functions [Tancik et al., 2020]

x, y, z, θ, ϕ

34



Fourier features

FΘ(x, y, z, θ, ϕ) = (R, G, B, σ)

Input views

• Use a positional encoding. Given a scalar , compute:p

• Plug in the coordinate to sinusoids at different frequencies 
(e.g. L = 10).

[Source: Mildenhall et al., “NeRF”, 2020]
35



Why does this happen?

See [Tancik et al., “Fourier Features Let Networks Learn High 
Frequency Functions in Low Dimensional Domains”, 2020]

• Neural nets have trouble learning high 
frequency functions 

• This mapping explicitly represents 
different frequencies (forces net to pay 
more attention high frequencies)

freq weighting↑



MLP architecture

[Source: Mildenhall et al., “NeRF”, 2020]
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[Source: Mildenhall et al., “NeRF”, 2020]

Results for a novel viewpoint
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Results

[Mildenhall*, Srinivasan*, Tanick*, et al. 2020]39



[Mildenhall*, Srinivasan*, Tanick*, et al. 2020]40

Results



[Mildenhall*, Srinivasan*, Tanick*, et al. 2020]41

Results



42[Barron et al., “Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. 2023]

NeRF with other tricks
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Extension: internet photo collections

[Martin-Brualla, Radwan et al. “NeRF in the Wild”, 2020]



44[Martin-Brualla, Radwan et al. “NeRF in the Wild”, 
2020]

Extension: internet photo collections
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46
[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]

What happens if we use fewer views?

Why does this 
happen?
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[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]
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[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]
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[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]
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[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]



51[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]
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[Yu et al., “pixelNeRF: Neural Radiance Fields from One or Few Images”, 2021]
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Can we generate 3D models?



“a DSLR photo of a squirrel”Do we actually need 3D supervision?

Generating 3D models

Source: [Poole et al., 2023]



We already have good text-to-image models

“A blue jay standing on a 
large basket of rainbow 

macarons.”

Source: [Poole et al., 2023]



But how would you deal with other viewpoints?

Could we fit a 3D model to this image?

Single image could “supervise”  single viewpoint.
Source: [Poole et al., 2023]



DreamFusion: solve for a NeRF that “looks right” from every viewpoint

How do we measure 
“looks right”?

p(rendered image | ′￼′￼a DSLR photo of a peacock on a surfboard′￼′￼)

Source: [Poole et al., 2023]



Can we use a pretrained diffusion model?

Diffusion: generate image by denoising

… but also it models !p(image | text)
Source: [Poole et al., 2023]



Score distillation sampling

Noise estimator

Noisy image

Provides a lower bound on    [Ho et al., 2020, Kingma et al., 2021]log(p(x))

Noise

Reverse diffusion process:

xT xt xt−1 x0

Diffusion objective function:

Source: [Poole et al., 2023]



Score distillation sampling

Source: [Poole et al., 2023]



DreamFusion

Solve for a NeRF such that, when it is rendered, it has high 
probability under a text-to-image model.

Source: [Poole et al., 2023]



DreamFusion



DreamFusion



DreamFusion



More recent text-to-3D

[Shi et al., MVDream, 2023]



Text-to-4D

[Wu et al., CAT4D, 2024]



[Wu et al., CAT4D, 2024]



Next class: light


