
CS 5670: Introduction to Computer Vision

Lecture 21: Structure from motion

Most slides from Noah Snavely and David Fouhey



Announcements

• PS5 out tonight (panorama stitching)



Triangulation

Given projection pi of unknown 3D point X in two or 
more images (with known cameras Pi), find X

Source: D. Fouhey



Triangulation

p1 p2

X?

Given projection pi of unknown 3D point X in two or more 
images (with known camera projection matrices Pi), find X

Source: D. Fouhey



Triangulation

Rays in principle should intersect, but in practice 
usually don’t exactly due to noise, numerical errors.

p1 p2

X?

Source: D. Fouhey



Triangulation: Geometry

p1 p2

X

Find shortest segment between viewing rays, set X 
to be the midpoint of the segment.

Source: D. Fouhey



Triangulation: Non-linear Optim.

p1 p2

X

Use nonlinear least squares. Find  that minimizes:𝑿
𝑑(𝒑1, P1𝑿)2 + 𝑑(𝒑2, P2𝑿)2

P1X P2X

Source: D. Fouhey

where  is distance in image space.𝑑



Triangulation: Linear method

p1 p2

X

P1X P2X

Source: D. Fouhey



First: A better way to handle homogeneous 
coordinates in linear optimization

𝒑𝒊 ≡ P𝑿𝒊

𝒑𝒊 = 𝜆P𝑿𝒊,  𝜆 ≠ 0

i.e., PXi & pi are proportional/scaled copies of 
each other

Source: D. Fouhey

Projection in homogeneous coordinates.

𝒑𝒊 × P𝑿𝒊 = 𝟎

This implies their cross product is 0, since 
.a × b = ∥a∥∥b∥ sin(θ)

Handles the “divide by 0” issue when solving.



Triangulation: Linear method

𝒑𝟏 ≡ P𝟏𝑿
𝒑𝟐 ≡ P𝟐𝑿

[𝒑𝟏𝒙]P𝟏𝑿 = 𝟎
[𝒑𝟐𝒙]P𝟐𝑿 = 𝟎

𝒑𝟏 × P𝟏𝑿 = 𝟎
𝒑𝟐 × P𝟐𝑿 = 𝟎

[𝒑𝟏𝒙]P𝟏𝑿 = 𝟎
[𝒑𝟐𝒙]P𝟐𝑿 = 𝟎

([𝒑𝟏𝒙]P𝟏)𝑿 = 𝟎
([𝒑𝟐𝒙]P𝟐)𝑿 = 𝟎

Two equations 
per camera for 
3 unknown in X

𝒂 × 𝒃 =  
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

𝑏1
𝑏2
𝑏3

= [𝒂𝑥]𝒃
Cross product 
as matrix

Source: D. Fouhey



Camera calibration
• Can we estimate camera pose from points? Known as camera calibration or 

camera resectioning. 
• Given n points with known 3D coordinates Xi and known image projections pi, 

estimate the camera parameters. Xi

pi

Source: S. Lazebnik and D. Fouhey



Camera Calibration: Linear Method
𝒑𝒊 ≡ P𝑿𝒊

𝒑𝒊 = 𝜆P𝑿𝒊,  𝜆 ≠ 0

Remember (from geometry): this implies MXi & 
pi are proportional/scaled copies of each other

𝒑𝒊 × P𝑿𝒊 = 𝟎
Recall that this implies their cross product is 0

Source: D. Fouhey



Camera Calibration: Linear Method
𝒑𝒊 × P𝑿𝒊 = 𝟎

𝑢𝑖
𝑣𝑖

1
×

P𝟏P𝒊

P𝟐𝑿𝒊

P𝟑𝑿𝒊

= [
0
0
0]

𝟎𝑻

𝑿𝑻
𝒊

−𝒗𝒊𝑿𝑻
𝒊

−𝑿𝑻
𝒊

𝟎𝑻

𝒖𝒊𝑿𝑻
𝒊

𝒗𝒊𝑿𝑻
𝒊

−𝒖𝒊𝑿𝑻
𝒊

𝟎𝑻

P𝑻
𝟏

P𝑻
𝟐

P𝑻
𝟑

= [
0
0
0]

Using these constraints, you can derive:

where  is row  of Pi i P Adapted from D. Fouhey



• The linear solution does not optimize the right 
objective function.

∑ proj(P𝑿𝒊) − [𝑢𝑖, 𝑣𝑖]𝑇
2

2

• Can initialize using the linear solution. 
• Other advantages: can also add radial distortion, 

not optimize over known variables, add constraints

Camera calibration

• Optimize using nonlinear least squares:

Source: D. Fouhey



Structure from motion
• We can estimate points from cameras and cameras from 

points. Can we do both at once? 
• Given many images, how can we… 

1. Figure out where they were all taken from? 
2. Build a 3D model of the scene? 

This is the structure from motion problem.
15 Adapted from: N. Snavely



Today

• Structure from motion 
• Multi-view stereo 
• Radiance fields

16



Structure from motion

• Input: images with pixels in correspondence       pi,j  = (ui,j,vi,j) 

• Output 
• Structure: 3D location xi for each point pi 
• Motion: camera parameters Rj , tj possibly Kj 

• Objective function: minimize reprojection error 

Reconstruction (side) (top)

17
Source: N. Snavely



Camera calibration & triangulation

• Suppose we know 3D points 
– And have matches between these points and an image 
– Computing camera parameters similar to homography estimation 

• Suppose we have know camera parameters, each of which 
observes a point 
– We can solve for the 3D location 

• Seems like a chicken-and-egg problem, but in SfM we can 
solve both at once

18
Source: N. Snavely



© 2006 Noah Snavely

15,464 

76,389 

37,383 
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Example: Photo Tourism

Source: N. Snavely



Example: Photo Tourism

Source: N. Snavely



Feature detection
• Same process as with homography estimation 

• Detect features using SIFT

21
Source: N. Snavely



Feature matching
Match features between each pair of images

22
Source: N. Snavely



Feature matching
• Remove bad matches using ratio test. 

• Other tricks: throw out matches that aren’t on epipolar lines. 

23
Source: N. Snavely



Image connectivity graph

24
Source: N. Snavely



Correspondence estimation
• Track each feature across the dataset. 
• Link up pairwise matches to form connected 

components of matches across several images. 

Image 1 Image 2 Image 3 Image 4

25
Source: N. Snavely



Correspondence estimation

Image 1 Image 2 Image 3 Image 4
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A point track: the same 3D point projects to all 4 image positions.



Structure from motion

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2
R3,t3

X1

X4

X3

X2

X5

X6

X7

minimize
g(R, T, X)

p1,1

p1,2

p1,3

<latexit sha1_base64="8aSOBTqsDXJHkboYZdD3QSI/AS8=">AAACAHicbZC7TsMwFIZPuJZyCzAwsFhUSExVgipgrGBhLBK9SG0UOa7TWrWTyHaQqigLr8LCAEKsPAYbb4PTZoCWI9n69P/nyD5/kHCmtON8Wyura+sbm5Wt6vbO7t6+fXDYUXEqCW2TmMeyF2BFOYtoWzPNaS+RFIuA024wuS387iOVisXRg54m1BN4FLGQEayN5NvHLT9z815xoYFiAiUG3bzq2zWn7swKLYNbQg3Kavn212AYk1TQSBOOleq7TqK9DEvNCKd5dZAqmmAywSPaNxhhQZWXzRbI0ZlRhiiMpTmRRjP190SGhVJTEZhOgfVYLXqF+J/XT3V47WUsSlJNIzJ/KEw50jEq0kBDJinRfGoAE8nMXxEZY4mJNpkVIbiLKy9D56LuXtYb941a86aMowIncArn4MIVNOEOWtAGAjk8wyu8WU/Wi/VufcxbV6xy5gj+lPX5AwwGlWo=</latexit>

P1X1 → p11

27
Source: N. Snavely



Structure from motion
• Minimize sum of squared reprojection errors: 

• Minimizing this function is called bundle adjustment. 
– Optimized using non-linear least squares 

• Lots of outliers: use robust loss functions (e.g., Huber) and solve incrementally

predicted  
image location

observed 
image location

indicator variable: 
is point i visible in image j ?

28
Source: N. Snavely



Incremental structure from motion

29
Source: N. Snavely



Incremental structure from motion

Source: N. Snavely



Incremental structure from motion

Source: N. Snavely
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Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours on 352 cores

Source: N. Snavely



Is SfM always uniquely solvable?
No. Consider the Necker cube:

Source: N. Snavely



Is SfM always uniquely solvable?

Two interpretations:

Image source: Wikipedia



• Under orthographic camera, object rotation by  produces same image as mirror image 
rotated by . 

• Can occur in perspective cameras, e.g., when objects are far from the camera

θ
−θ

Failure case: Necker reversal

Adapted from N. Snavely



Ambiguity up to similarity transformation

39

𝒙 ≅ 𝑷𝑿 = (𝑷𝑸−𝟏
𝑆 )(𝑸𝑆𝑿)

𝑸𝑆 = [𝑠𝑹 𝒕
𝟎𝑇 1]

  
rotation 
matrix

3 × 3  
translation 

vector

3 × 1

Adapted from S. Lazebnik

• Special case: scale ambiguity 

𝒙 ≅ 𝑷𝑿 = (𝑷 
1
s )(s𝑿)



40
https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf Source: S. Lazebnik

Repetitive structures cause catastrophic failures

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf
https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf


Repetitive structures cause catastrophic failures

41 R. Kataria et al. Improving Structure from Motion with Reliable Resectioning. 3DV 2020 Source: S. Lazebnik

https://rajbirkataria.com/assets/ImprovingStructurefromMotionwithReliableResectioning.pdf
https://rajbirkataria.com/assets/ImprovingStructurefromMotionwithReliableResectioning.pdf


Can also reconstruct from video

Source: N. Snavely



Applications: Visual Reality & Augmented Reality  

Hololens
https://www.youtube.com/watch?
v=FMtvrTGnP04

Oculus
https://www.youtube.com/watch?
v=KOG7yTz1iTA 

Source: N. Snavely

https://www.youtube.com/watch?v=FMtvrTGnP04
https://www.youtube.com/watch?v=FMtvrTGnP04
https://www.youtube.com/watch?v=KOG7yTz1iTA
https://www.youtube.com/watch?v=KOG7yTz1iTA


Application: Simultaneous localization and mapping (SLAM)

Scape: Building the ‘AR Cloud’: Part Three —3D Maps, the 
Digital Scaffolding of the 21st Century 
https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-
maps-the-digital-scaffolding-of-the-21st-century-465fa55782dd

Source: N. Snavely

https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-scaffolding-of-the-21st-century-465fa55782dd
https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-scaffolding-of-the-21st-century-465fa55782dd


Today

• Structure from motion 
• Multi-view stereo 
• Stereo matching algorithms
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Multi-view stereo

Source: N. Snavely

Can we estimate depth, now that we have pose?



reference view neighbor views

Source: Y. Furukawa

Is this a 
surface point?

Multi-view stereo



Source: Y. Furukawa

reference view neighbor views

Multi-view stereo
Evaluate the likelihood of a particular depth for a particular reference patch:

Patch from 
reference View

Corresponding 
patches at depth guess 

in other views

?



reference view neighbor views

Source: Y. Furukawa

Photometric 
error across 

different depths

Multi-view stereo



reference view neighbor views

Source: Y. Furukawa

Photometric 
error across 

different depths

Multi-view stereo



reference view neighbor views

Source: Y. Furukawa

Photometric 
error across 

different depths

Multi-view stereo



width of  
a pixel

What’s the optimal baseline? 
• Too small: large depth error 
• Too large: difficult search problem

Large Baseline Small Baseline

all of these 
points project 
to the same  
pair of pixels

Source: N. Snavely

Multiple-baseline stereo



Multiple-baseline stereo

z

width of  
a pixel

width of  
a pixel

z

pixel matching score

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,” IEEE Trans. on  Pattern Analysis and Machine Intelligence.

• For larger baselines, must search larger  
area in second image

• For short baselines, estimated depth will be 
less precise due to narrow triangulation

Source: N. Snavely



Next class: neural fields


