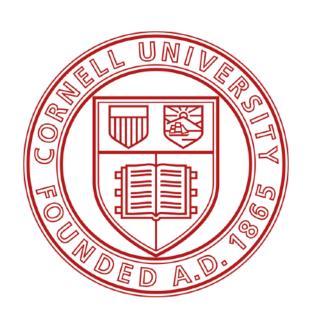
Lecture 20: Fitting geometric models

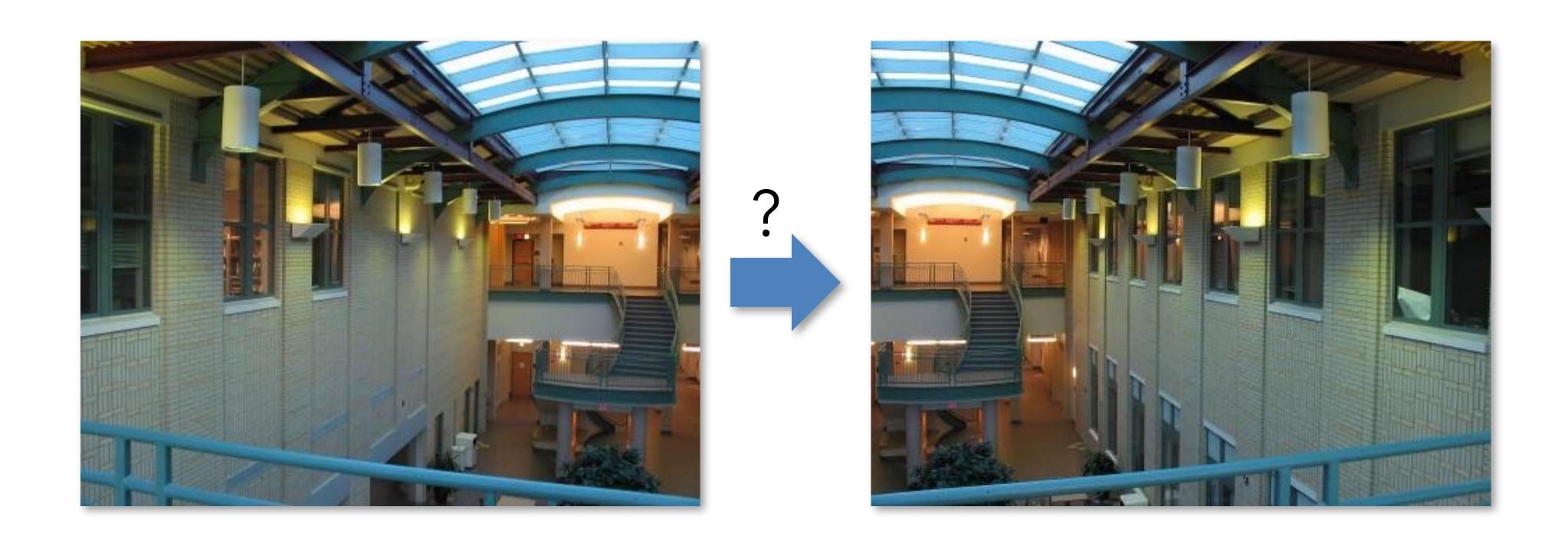
CS 5670: Introduction to Computer Vision



Today

- Finish discussion of two-view geometry
- Finding correspondences
- Fitting a homography
- RANSAC

Recall: What is the geometric relationship between these two images?



Recall: Image alignment



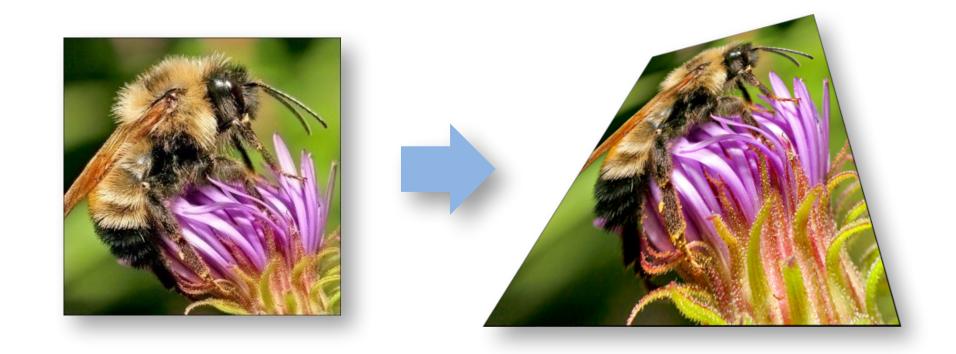
Why don't these image line up exactly?

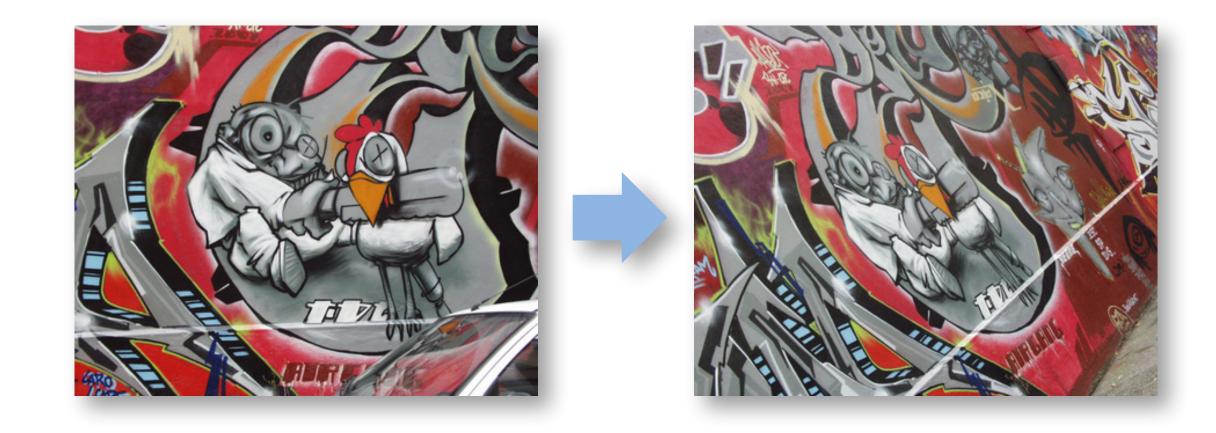
Recall: affine transformations

Recall: Projective Transformations aka Homographies aka Planar Perspective Maps

$$\mathbf{H} = \left[egin{array}{cccc} a & b & c \ d & e & f \ g & h & 1 \end{array}
ight]$$

Called a **homography**(or planar perspective map)





Homographies

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Note that this can be 0!

A "point at infinity"

$$\frac{ax+by+c}{gx+hy+1}$$

$$\frac{dx+ey+f}{dx+ey+1}$$

$$1$$

Homography

Example: two pictures taken by rotating the camera:

If we try to build a panorama by overlapping them:

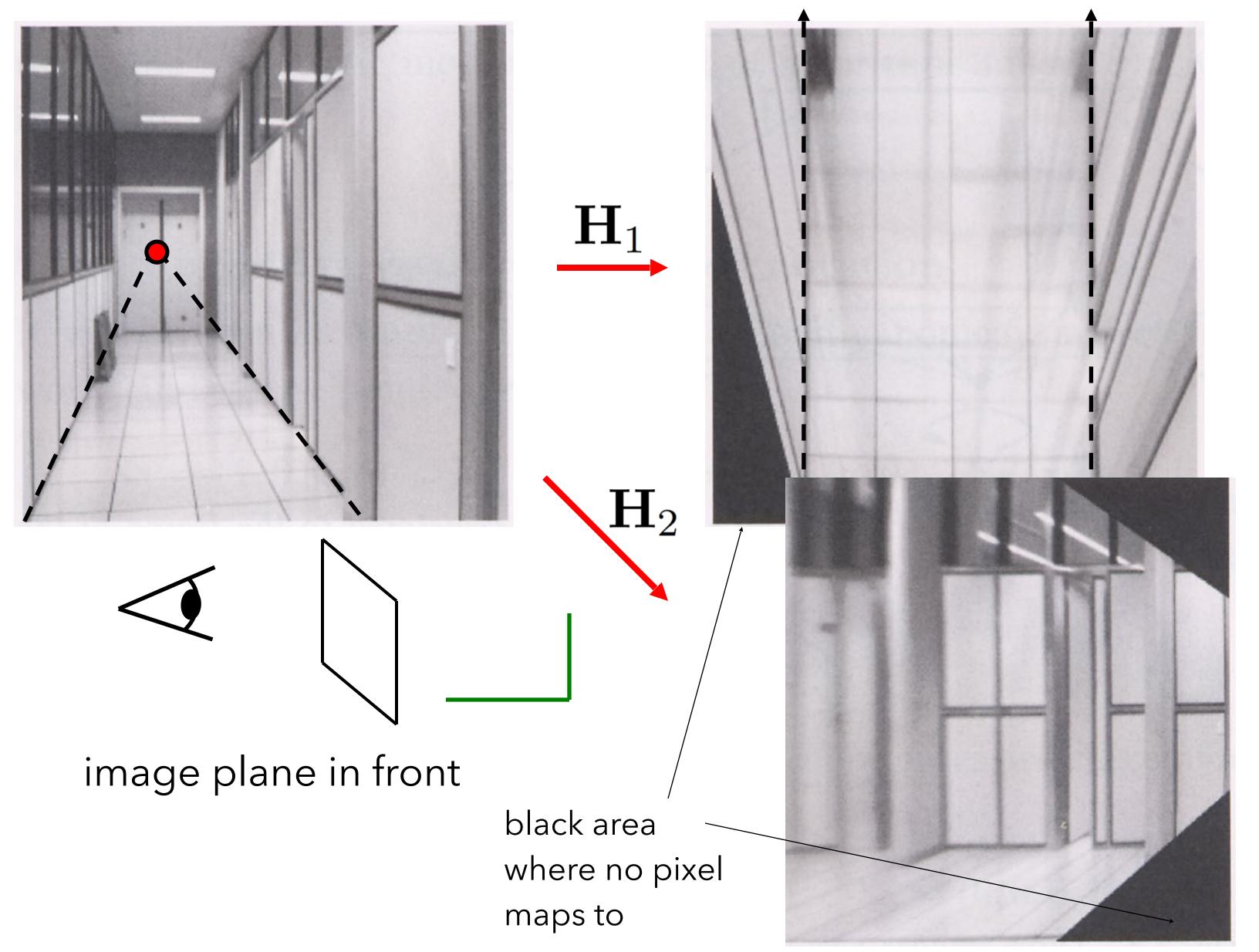
Homography

Example: two pictures taken by rotating the camera:

With a homography, you can map both images into a single camera:

We'll see why in PS5!

Plane-to-plane homography



Source: N. Snavely

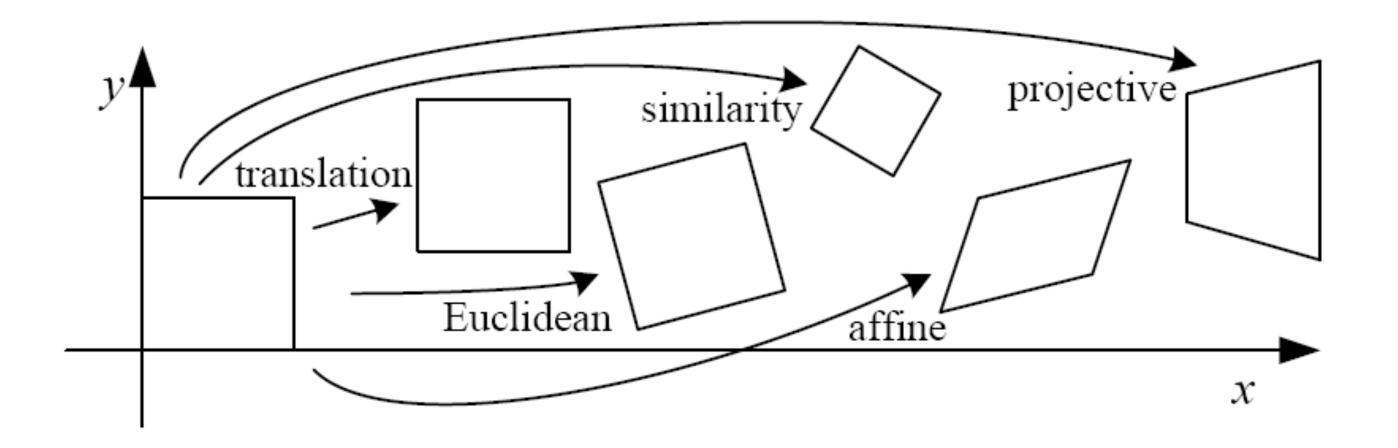
Homographies

- - Projective warps

• Homographies ...
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Closed under composition

2D image transformations

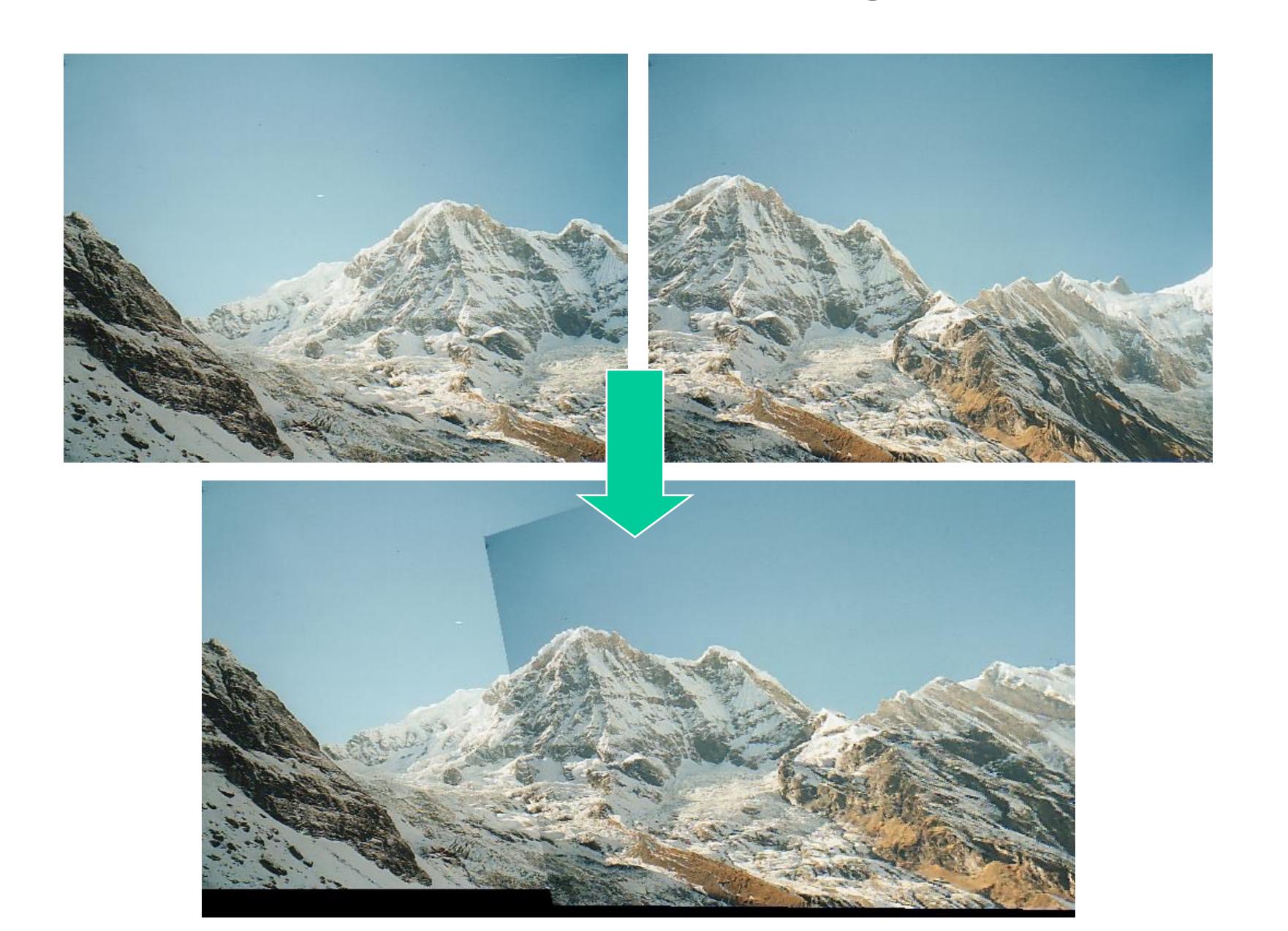


Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	2	orientation + · · ·	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3	lengths +···	
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles + · · ·	
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

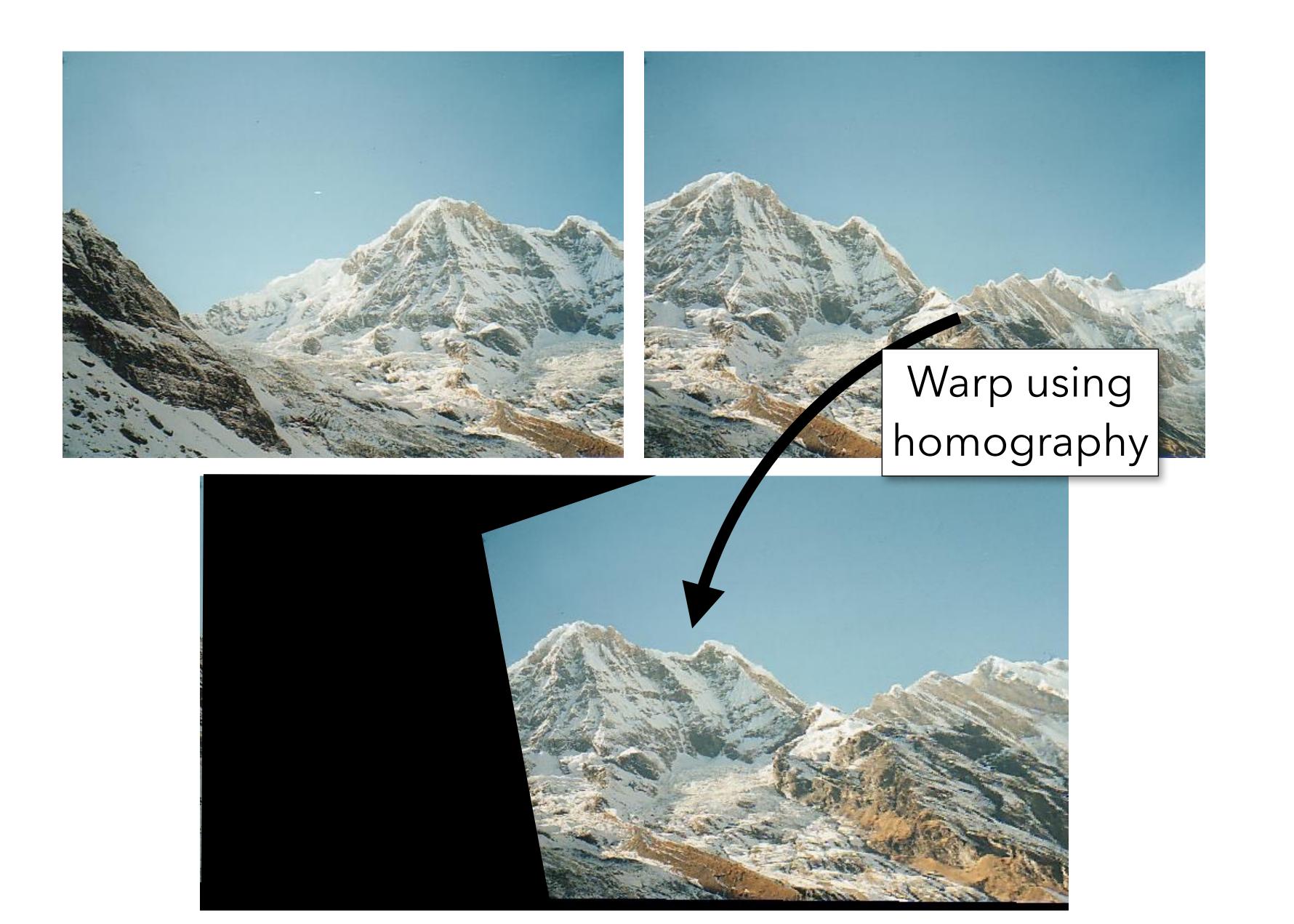
Source: N. Snavely

How do we perform this warp?

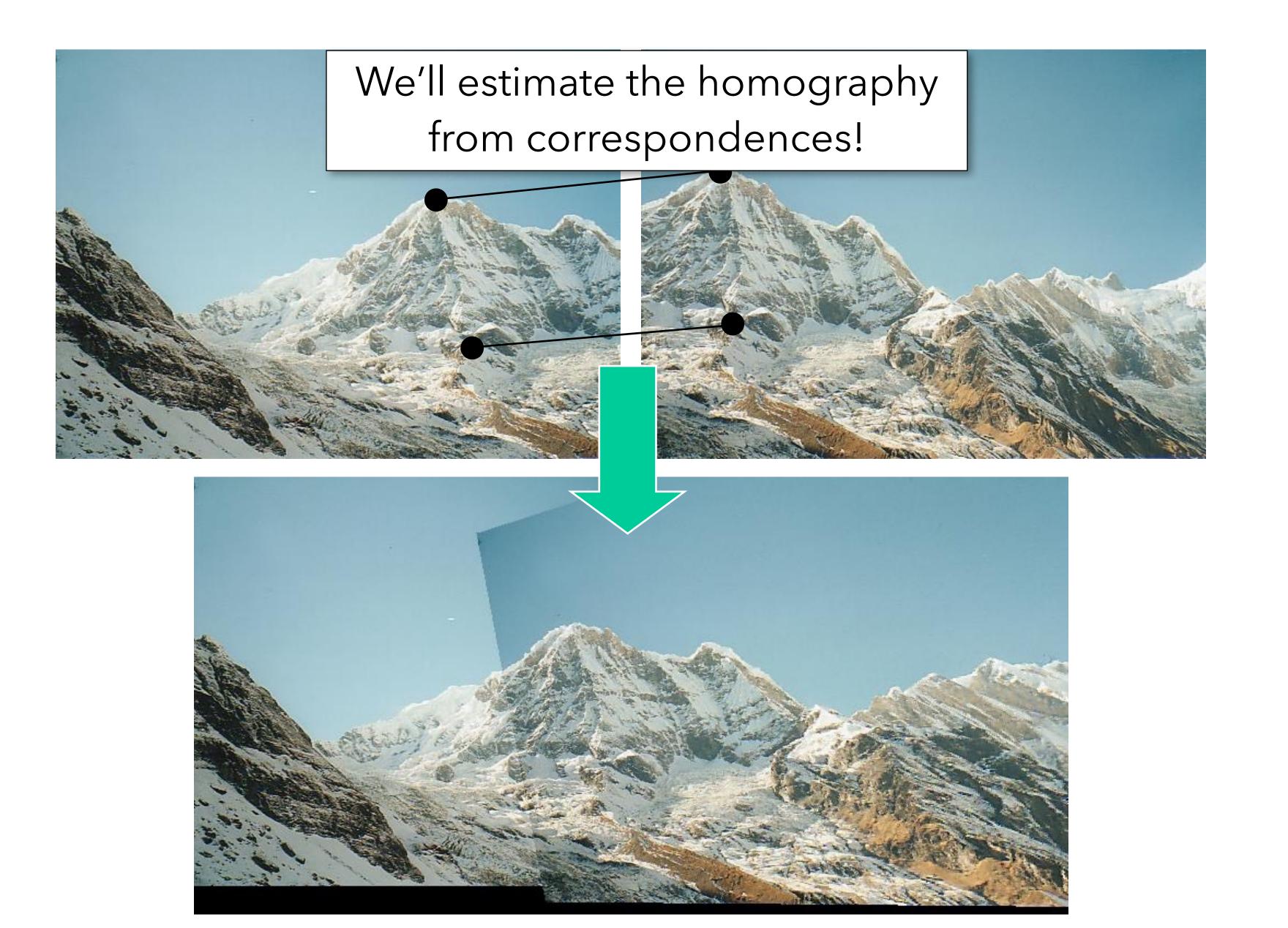
Panorama stitching (PS5)



Panorama stitching



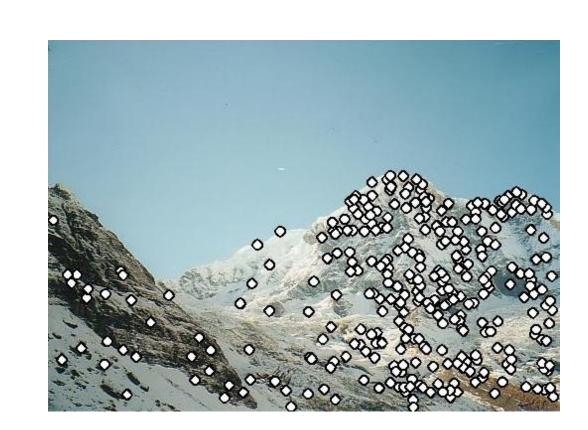
Panorama stitching



Finding correspondences with local features

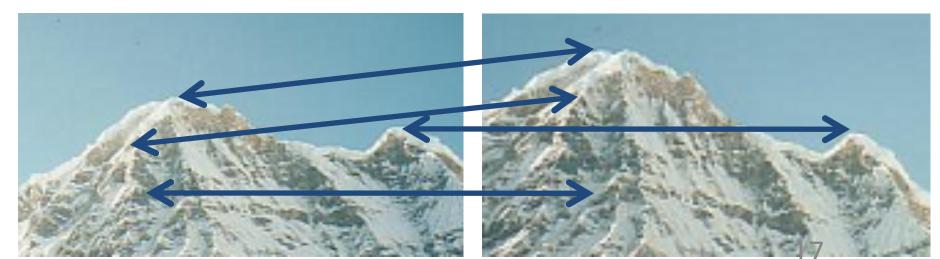
1) **Detection:** Identify the interest points (a.k.a. keypoints), the candidate points to match.

3) **Matching:** Determine correspondence between descriptors in two views

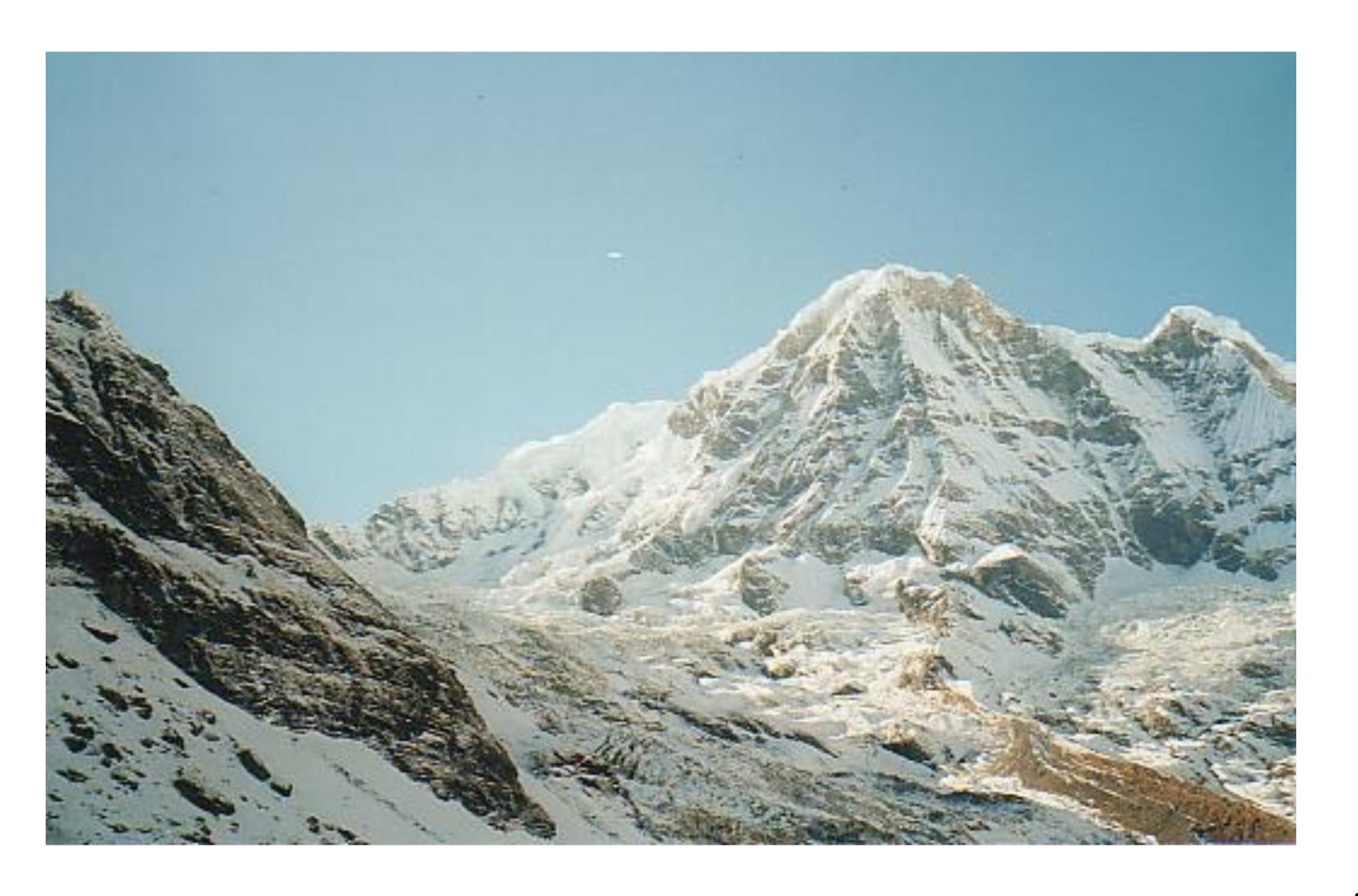


$$\mathbf{X}_{1} = [x_{1}^{(1)}, \dots, x_{d}^{(1)}]$$

$$\mathbf{X}_{2} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$

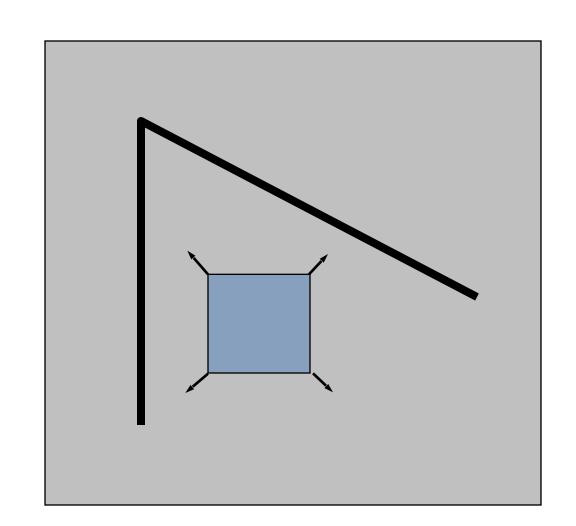


What are good regions to match?

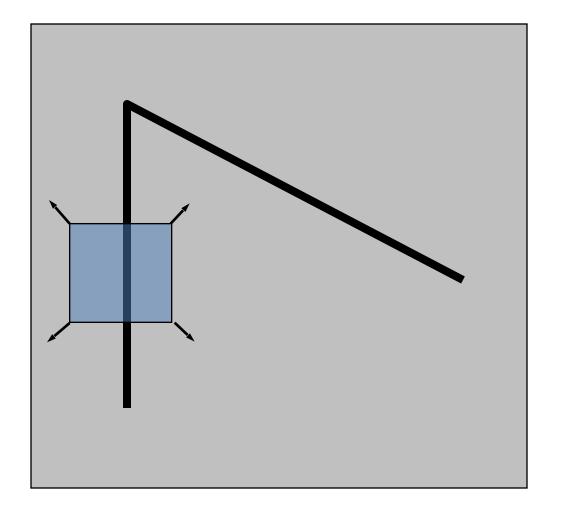


What are good regions to match?

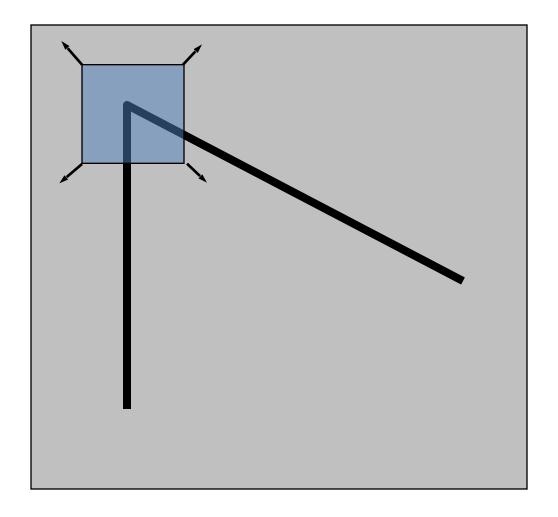
- How does the window change when you shift it?
- Shifting the window in any direction causes a big change



"flat" region:
no change in all
directions

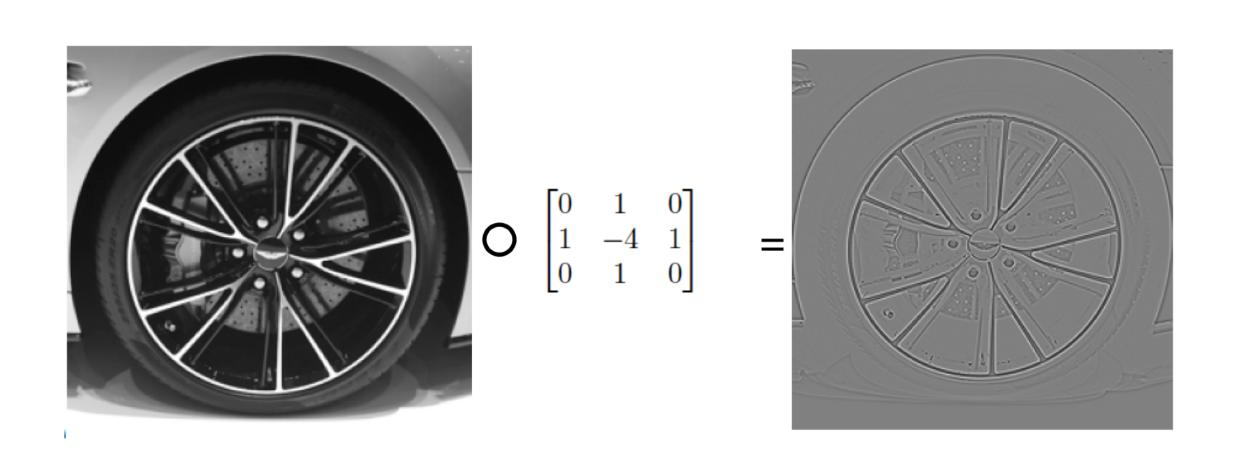


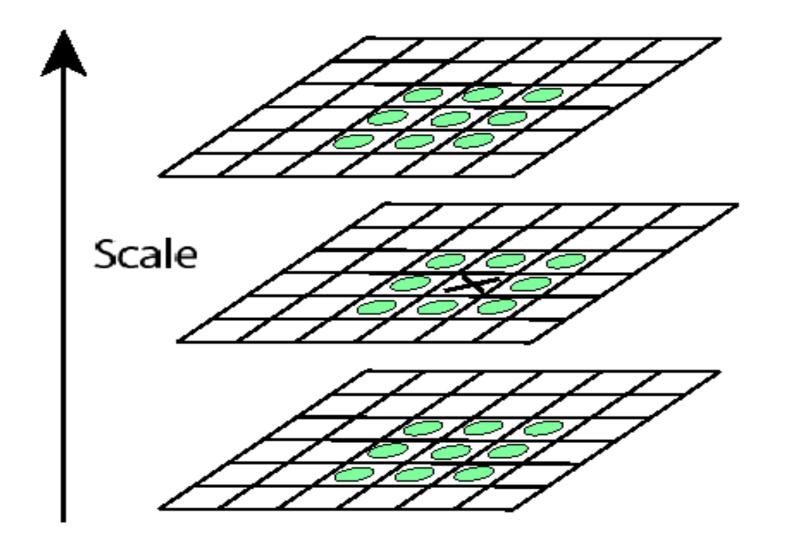
"edge":
no change along
the edge direction



"corner":
significant change
in all directions

Finding good key points to match



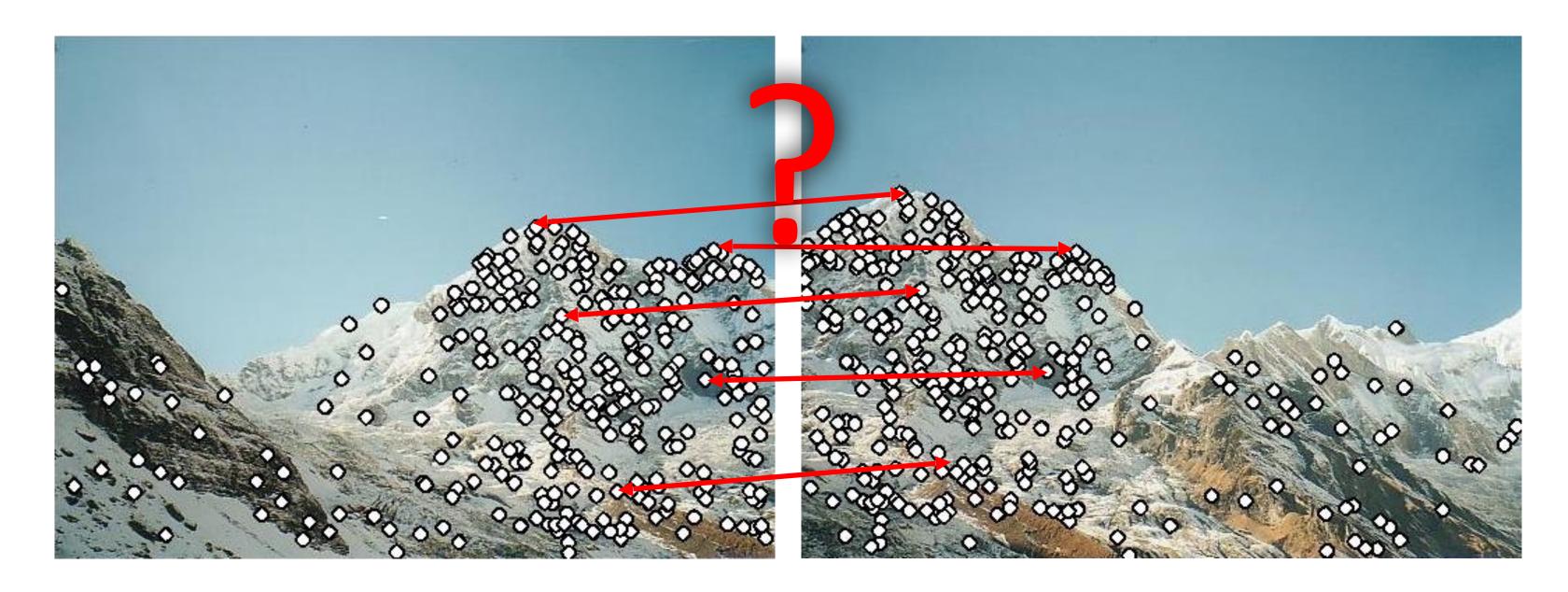


Compute difference-of-Gaussians filter (approx. to Laplacian).

Find local optima in space and scale using Laplacian pyramid.

Feature descriptors

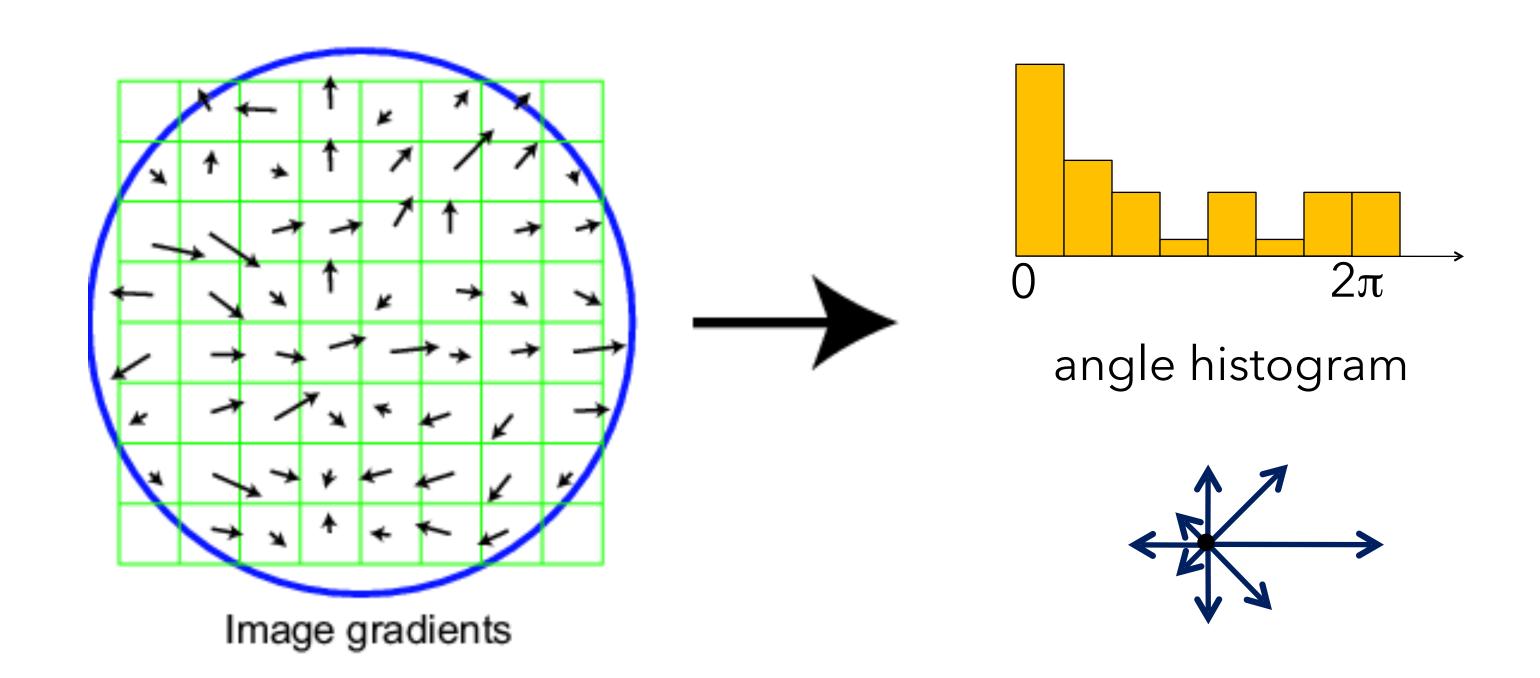
We know how to detect good points Next question: How do we match them?



Come up with a *descriptor* (feature vector) for each point, find similar descriptors between the two images

Scale Invariant Feature Transform (SIFT)

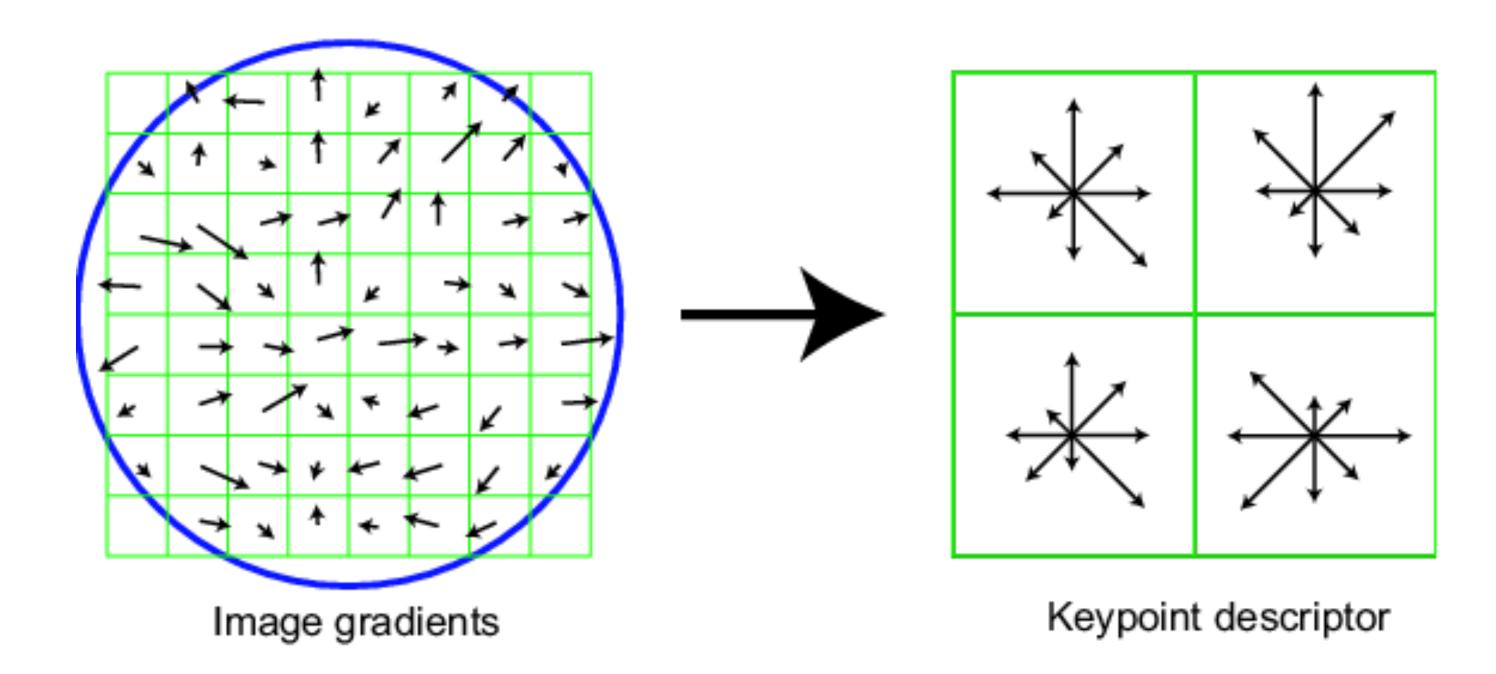
- Compute histograms of oriented gradients
- Take 16x16 square window around detected feature
- Compute edge orientation for each pixel
- Looks like a small, hand-crafted CNN



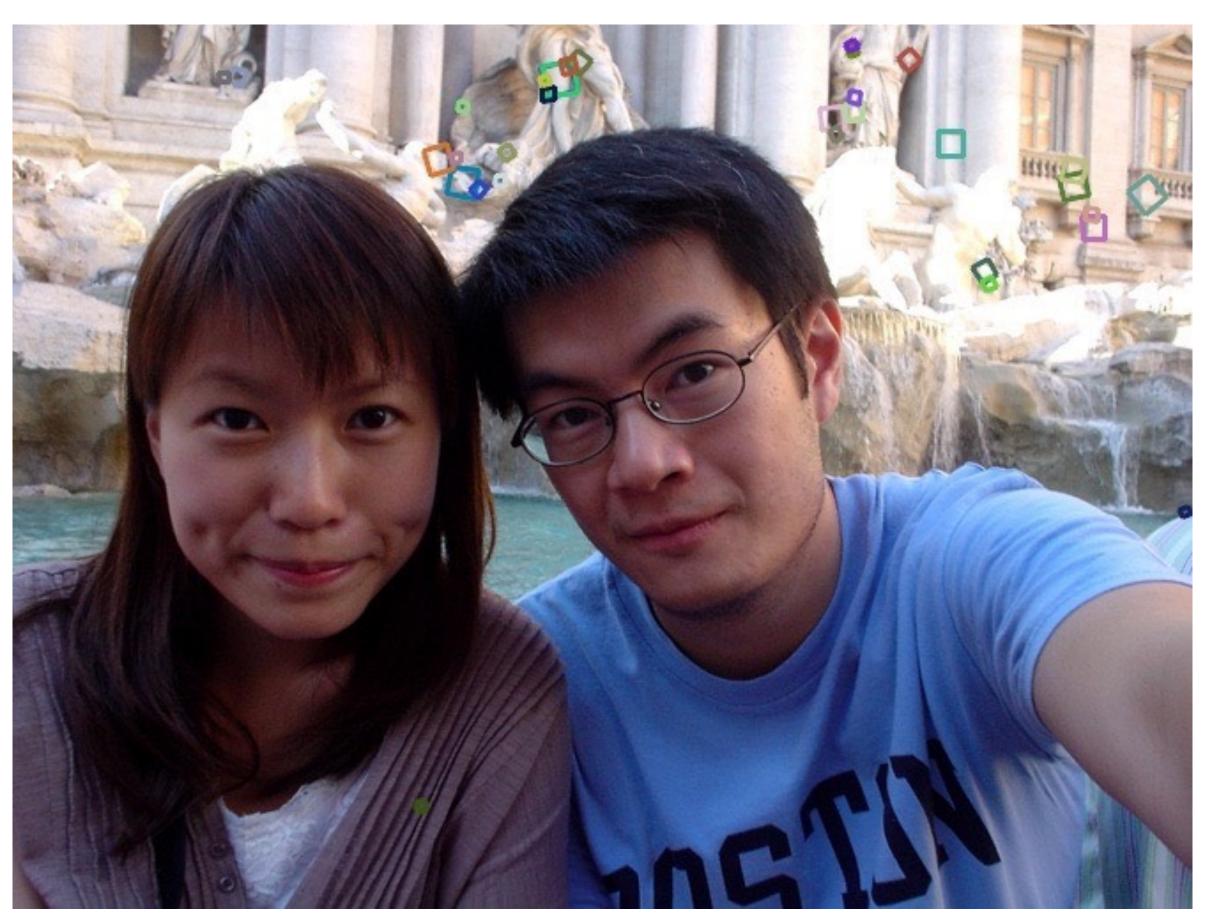
Scale Invariant Feature Transform

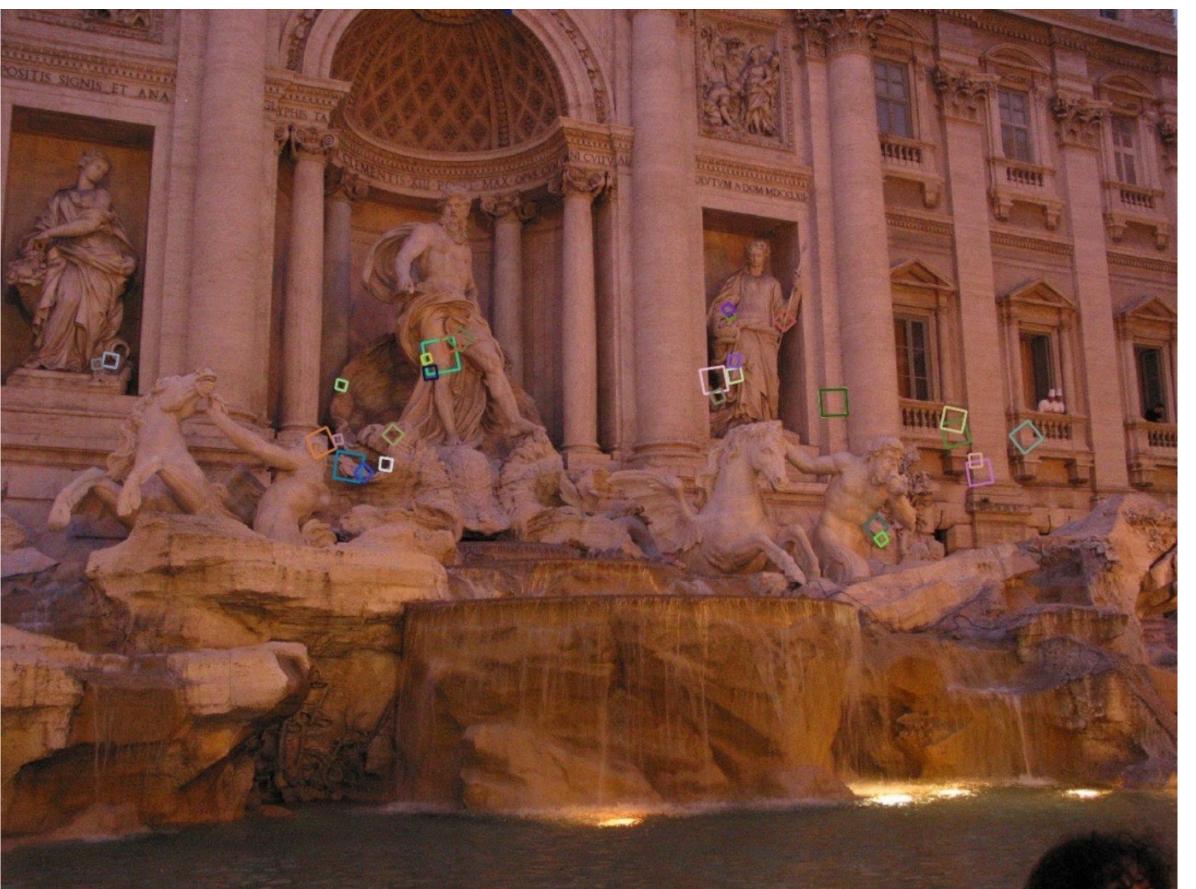
Create the descriptor:

- Rotation invariance: rotate by "dominant" orientation
- Spatial invariance: spatial pool to 2x2
- Compute an orientation histogram for each cell
- (4×4) cells $\times 8$ orientations = 128 dimensional descriptor



SIFT invariances

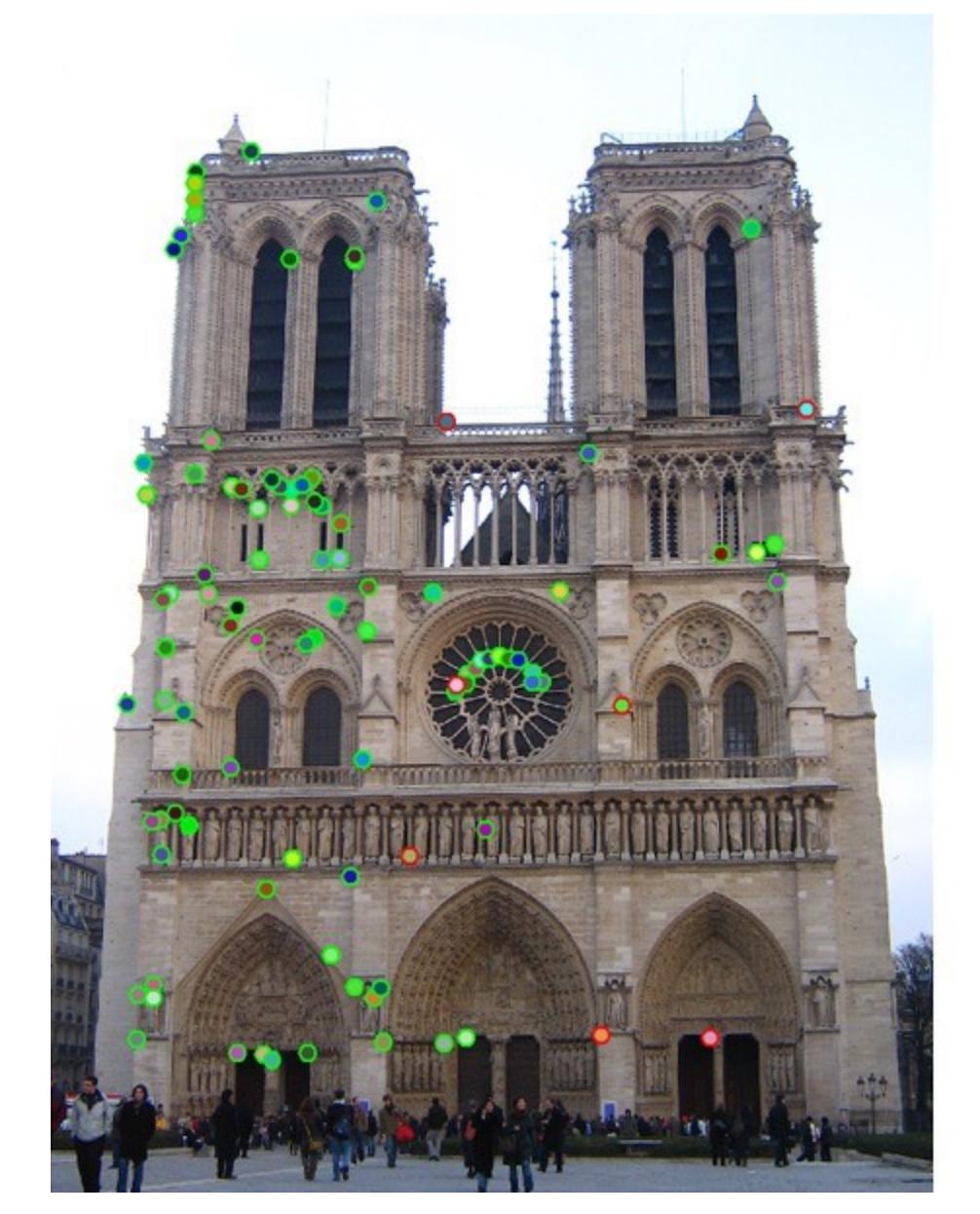


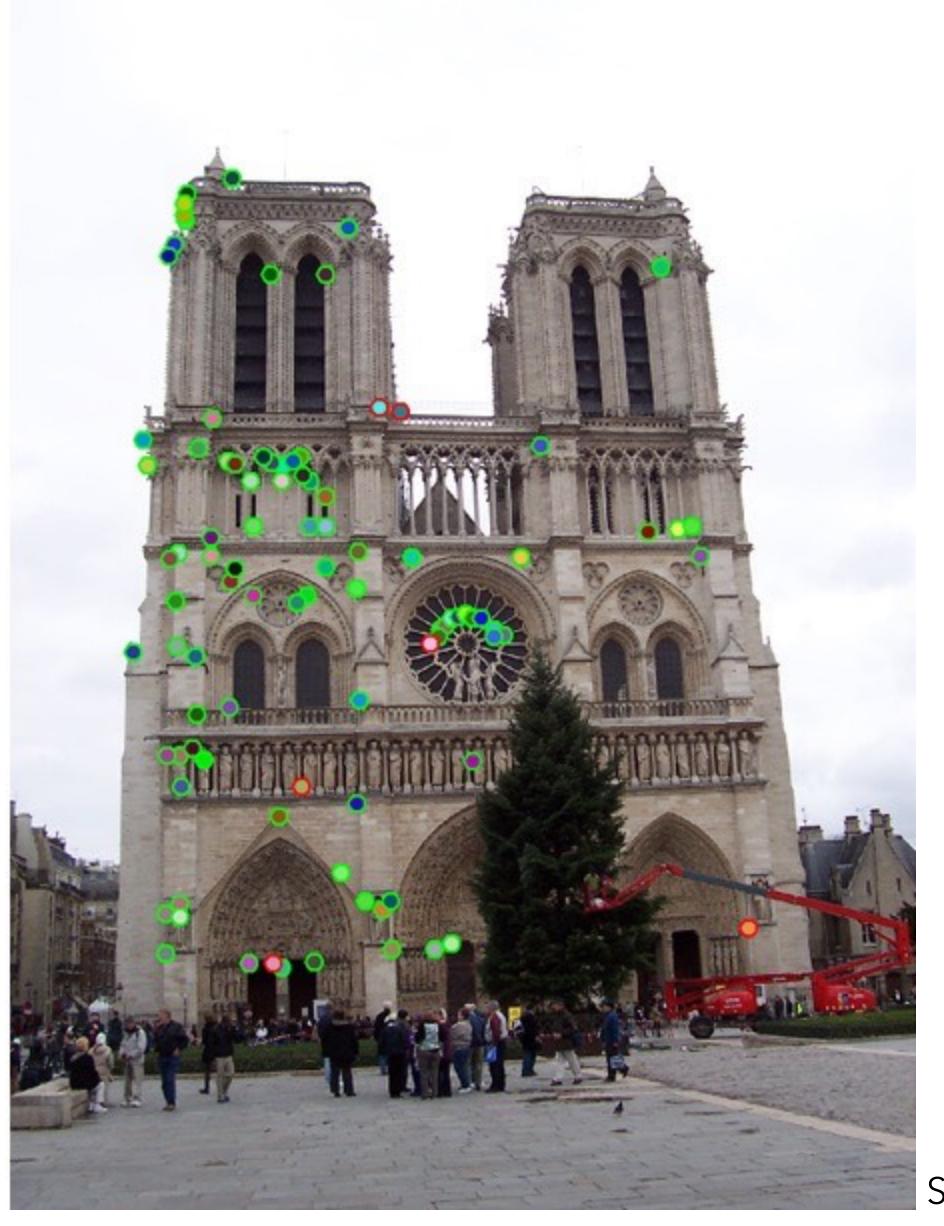


Today

- Finding correspondences
 - Computing local features
 - Matching
- Fitting a homography
- RANSAC

How can we tell whether two features match?





Source: N. Snavely

Feature matching

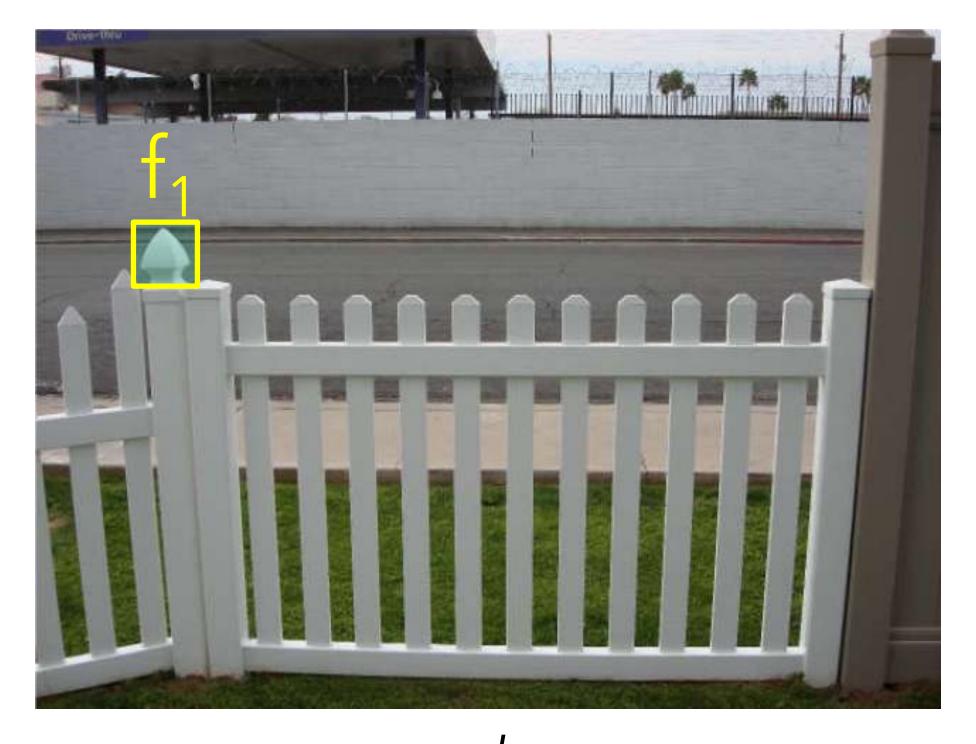
Given a feature in I_1 , how do we find the best match in I_2 ?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in I_2 , find the closest one.

Finding matches

How do we know if two features match?

- Simple approach: are they the nearest neighbor in L_2 distance, $\|f_1 - f_2\|$?

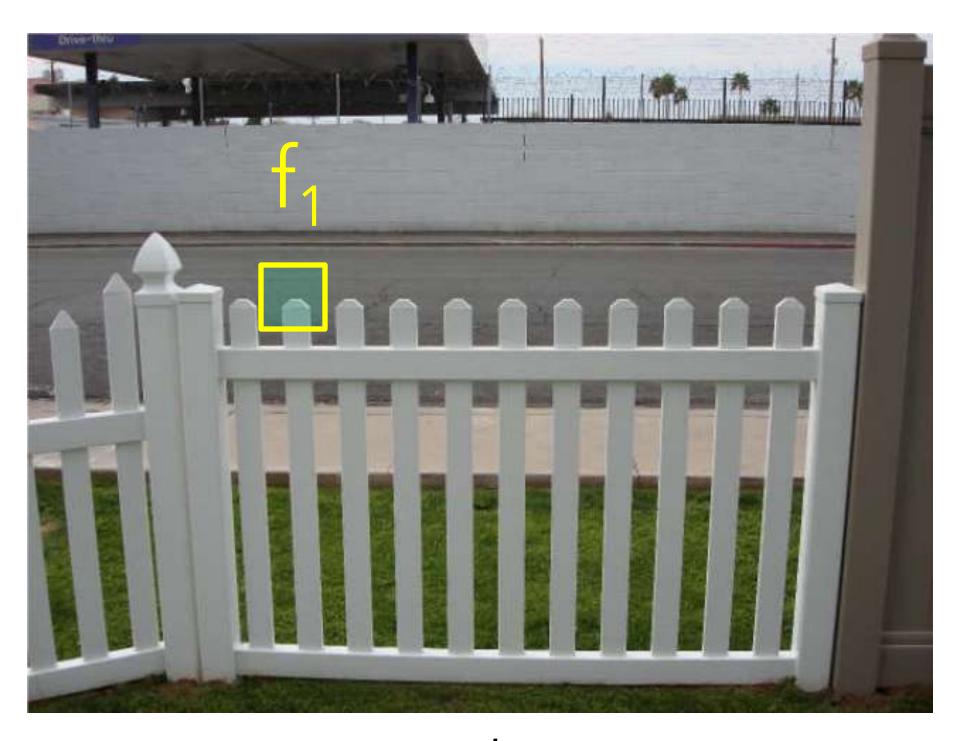


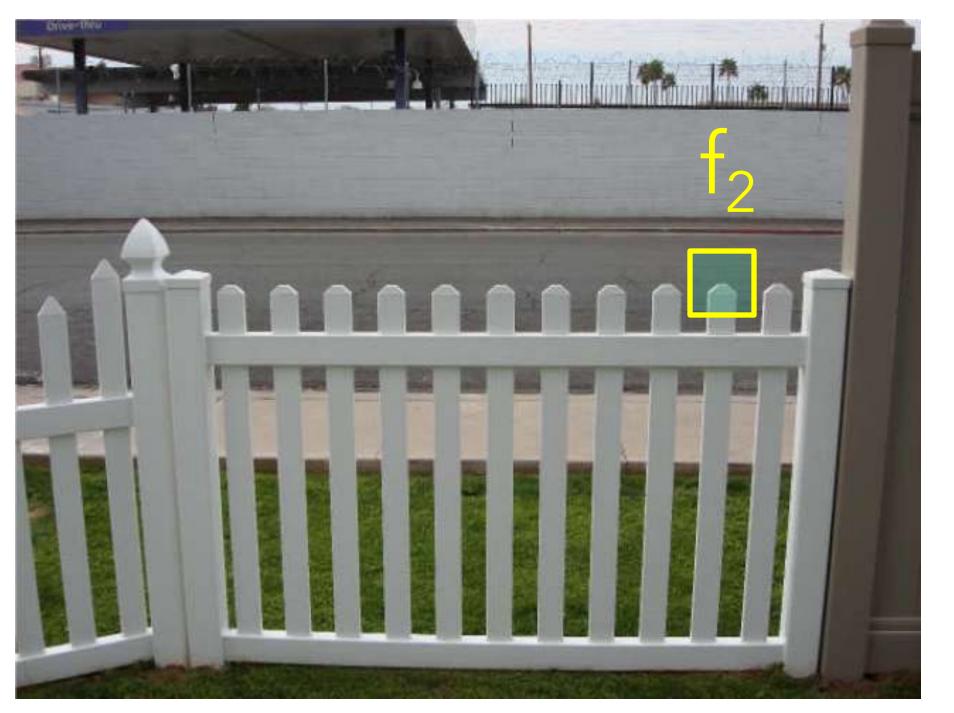
2

Finding matches

How do we know if two features match?

- Simple approach: are they the nearest neighbor in L_2 distance, $||f_1 f_2||$?
- Can give good scores to ambiguous (incorrect) matches.



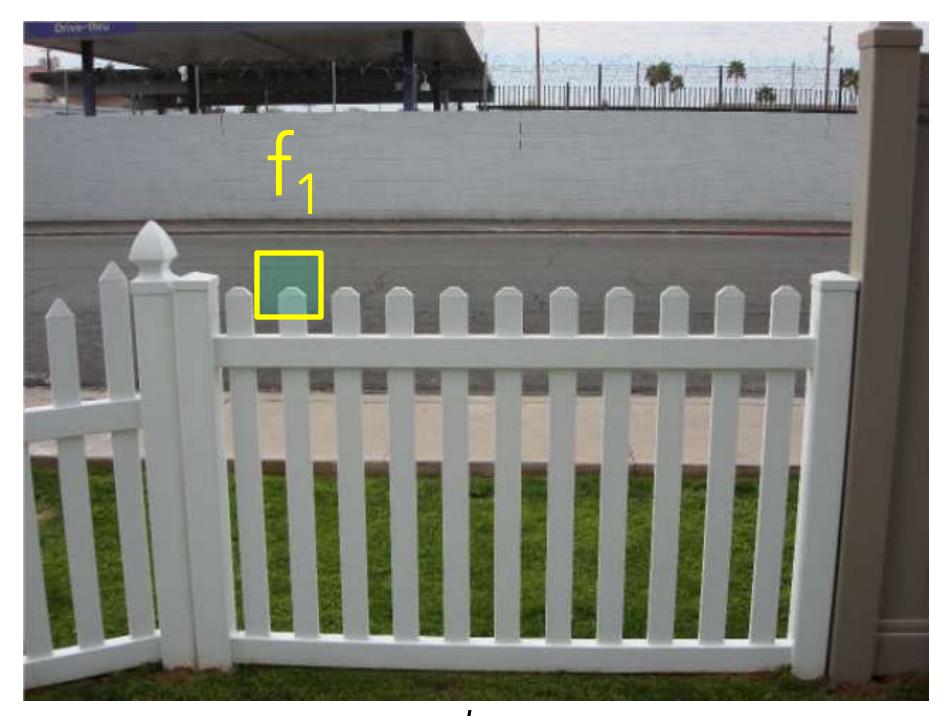


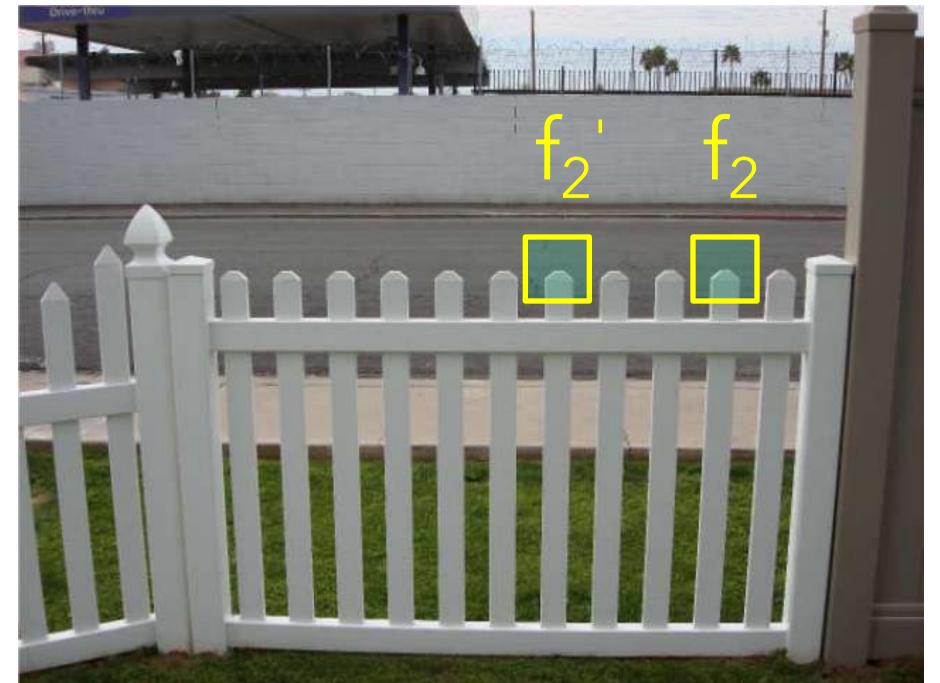
29

Finding matches

Throw away matches that fail tests:

- Ratio test: this by far the best match? Compare best and 2nd-best matches.
 - Ratio distance = $\|f_1 f_2\| / \|f_1 f_2'\|$
 - f_2 is best SSD match to f_1 in I_2
 - f₂' is 2nd best SSD match to f₁ in l₂
- Forward-backward consistency: f₁ should also be nearest neighbor of f₂

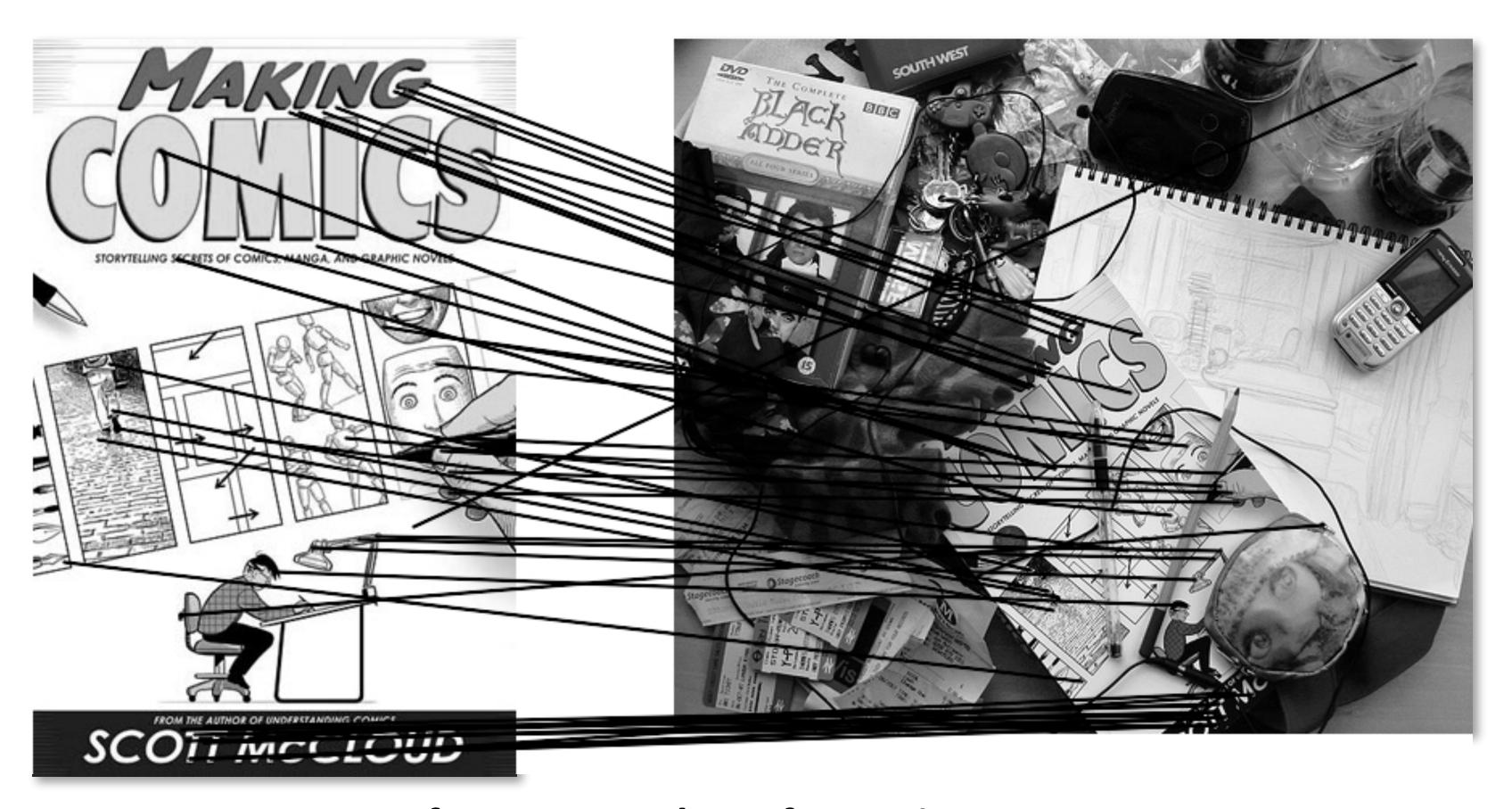




Source: N. Snavely

30

Feature matching example



51 feature matches after ratio test

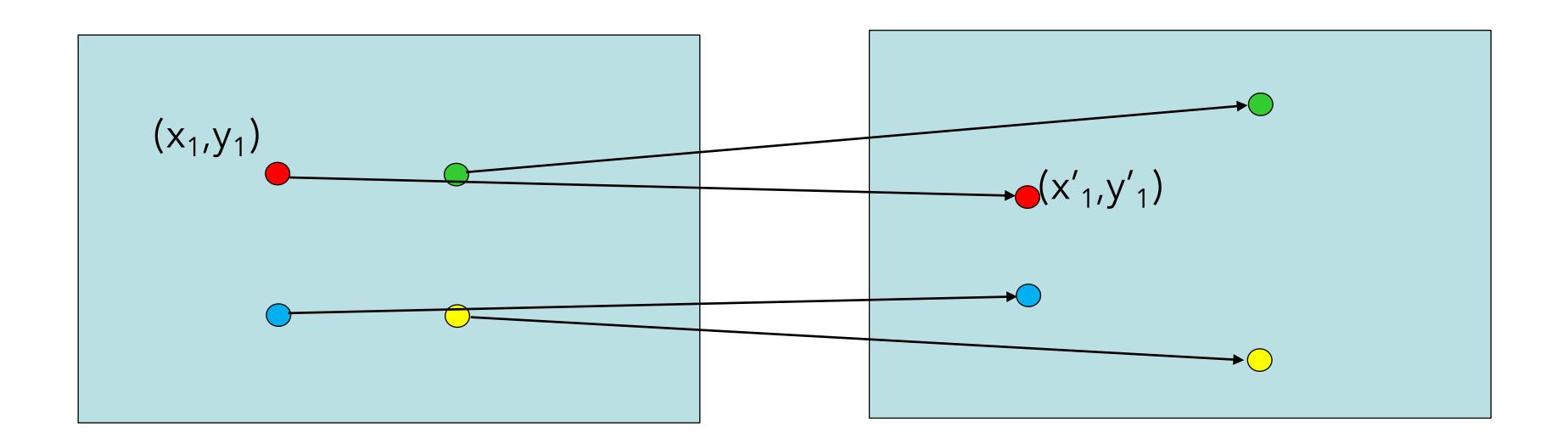
Feature matching example

58 feature matches after ratio test

Today

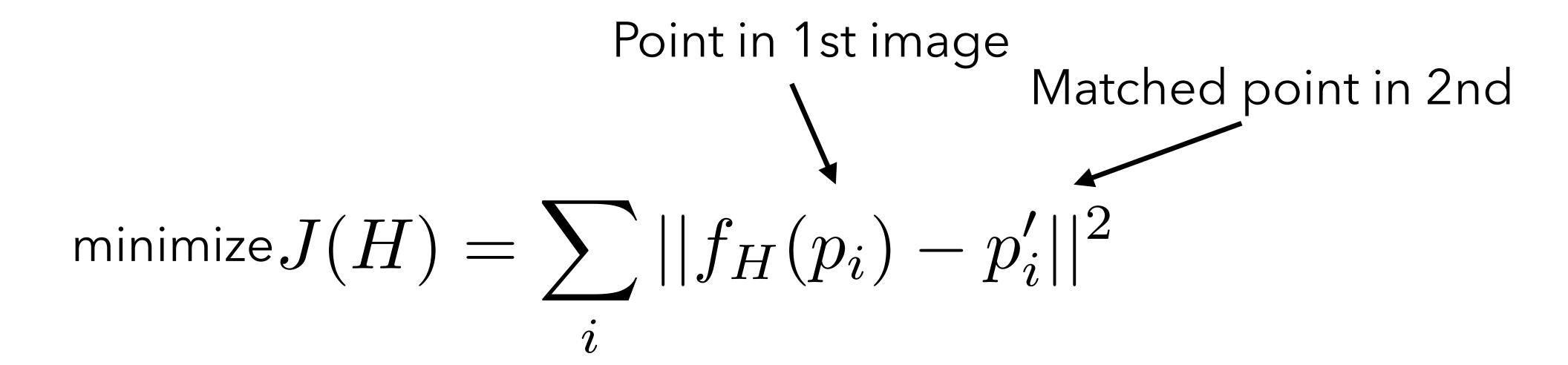
- Finding correspondences
 - Computing local features
 - Matching
- Fitting a homography
- RANSAC

From matches to a homography



$$\begin{bmatrix} x_1' \\ y_1' \\ w_1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

From matches to a homography



where $f_H(p_i) = Hp_i/(H_3^Tp_i)$ applies homography

Remember: homogenous coordinates. H_3 is the third row of H

Option #1: Direct linear transform

$$\begin{bmatrix} x_1' \\ y_1' \\ w_1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Leaving homogeneous coordinates:

$$x_{1}' = \frac{ax_{1} + by_{1} + c}{gx_{1} + hy_{1} + i}$$

$$y_{1}' = \frac{dx_{1} + ey_{1} + f}{gx_{1} + hy_{1} + i}$$

Re-arranging the terms:

$$gx_1x'_1 + hy_1x'_1 + ix_1' = ax_1 + by_1 + c$$

 $gx_1y'_1 + hy_1y'_1 + ix_1' = dx_1 + ey_1 + f$

Option #1: Direct linear transform

$$gx_1x'_1 + hy_1x'_1 + ix_1' = ax_1 + by_1 + c$$

 $gx_1y'_1 + hy_1y'_1 + ix_1' = dx_1 + ey_1 + f$

More rearranging:

$$gx_1x'_1 + hy_1x'_1+ix'_1 - ax_1 - by_1-c = 0$$

 $gx_1y'_1 + hy_1y'_1+iy'_1 - dx_1 - ey_1-f = 0$

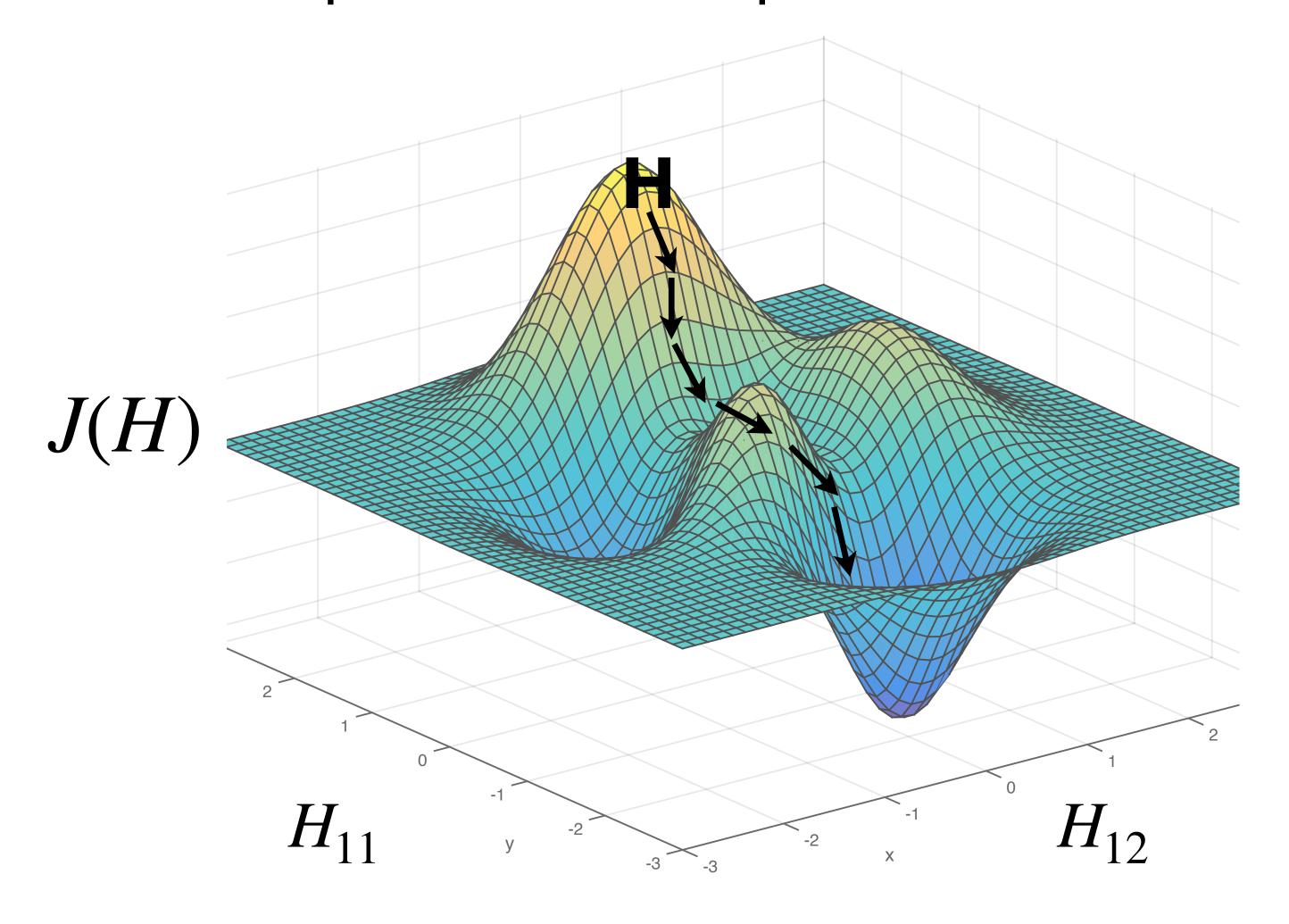
In matrix form:

$$\begin{bmatrix} -x_1 & -y_1 & -1 & 0 & 0 & 0 & x_1x'_1 & y_1x'_1 & x'_1 \\ 0 & 0 & 0 & -x_1 & -y_1 & -1 & x_1y'_1 & y_1y'_1 & y'_1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Can solve using Singular Value Decomposition (SVD). Avoids trivial solution (all 0).

Fast to solve (but not using "right" loss function). Uses an algebraic trick. Often used in practice for initial solutions!

Option #2: Optimization



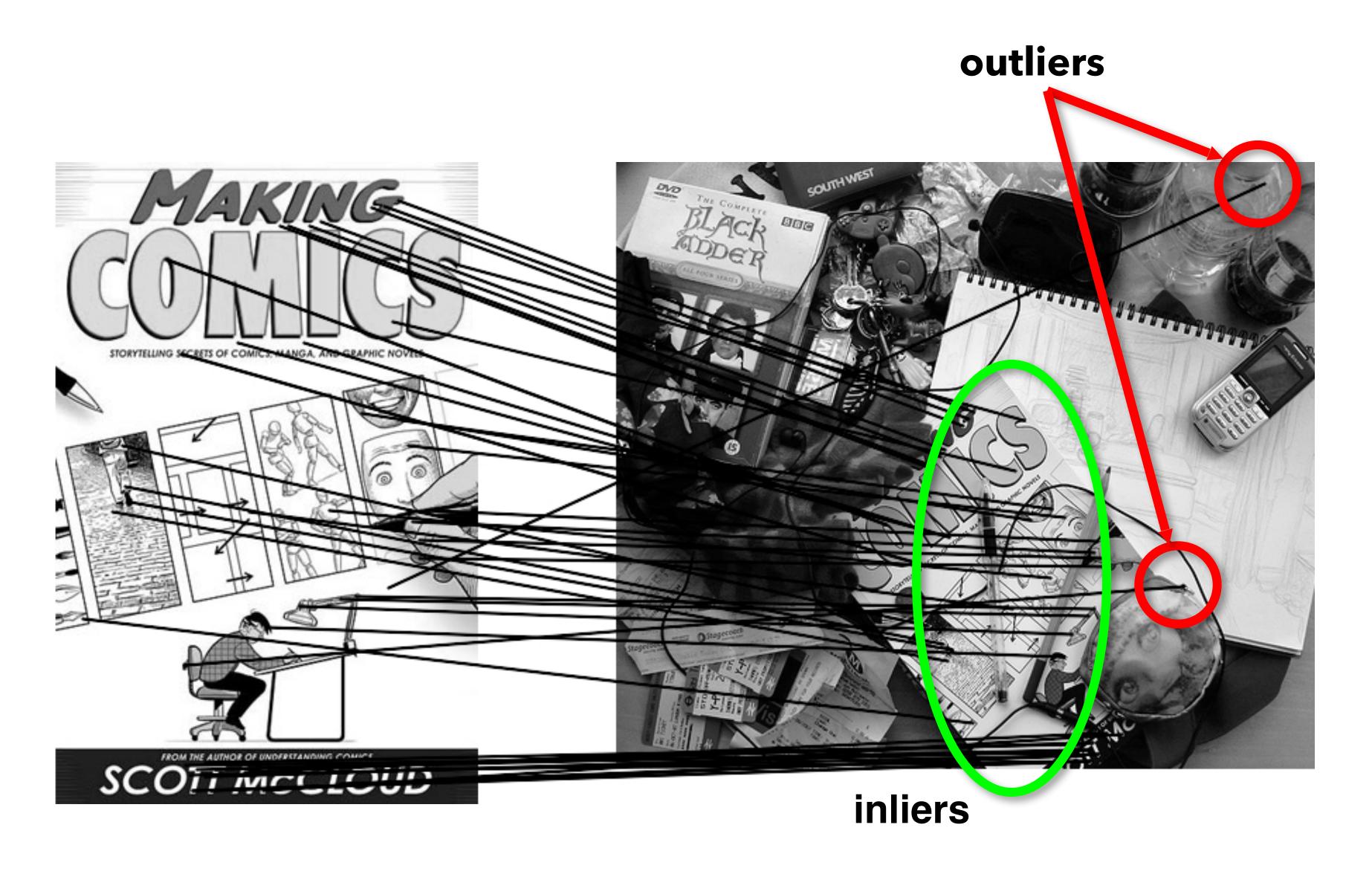
minimize
$$J(H) = \sum_{i} ||f_H(p_i) - p'_i||^2$$

Optimization

minimize
$$J(H) = \sum_{i} ||f_{H}(p_{i}) - p'_{i}||^{2}$$

- Can use gradient descent, just like when learning neural nets
- But while these problems are **smaller scale** than deep learning problems, they have **more local optima**:
 - Use 2nd derivatives to improve optimization
 - Can use finite differences or autodiff
- Can use special-purpose nonlinear least squares methods.
 - Exploits structure in the problem for a sum-of-squares loss.

Problem: outliers

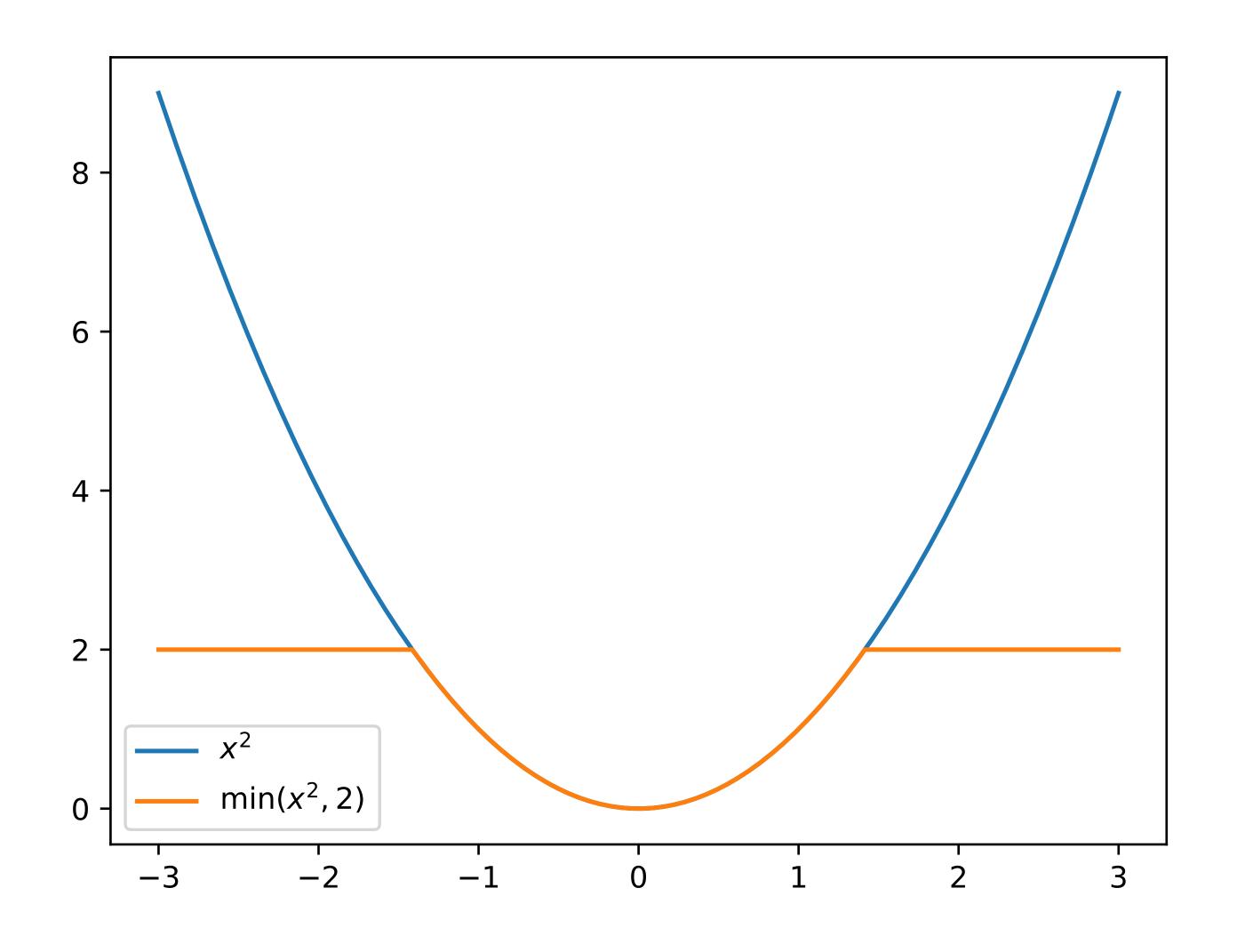


One idea: robust loss functions

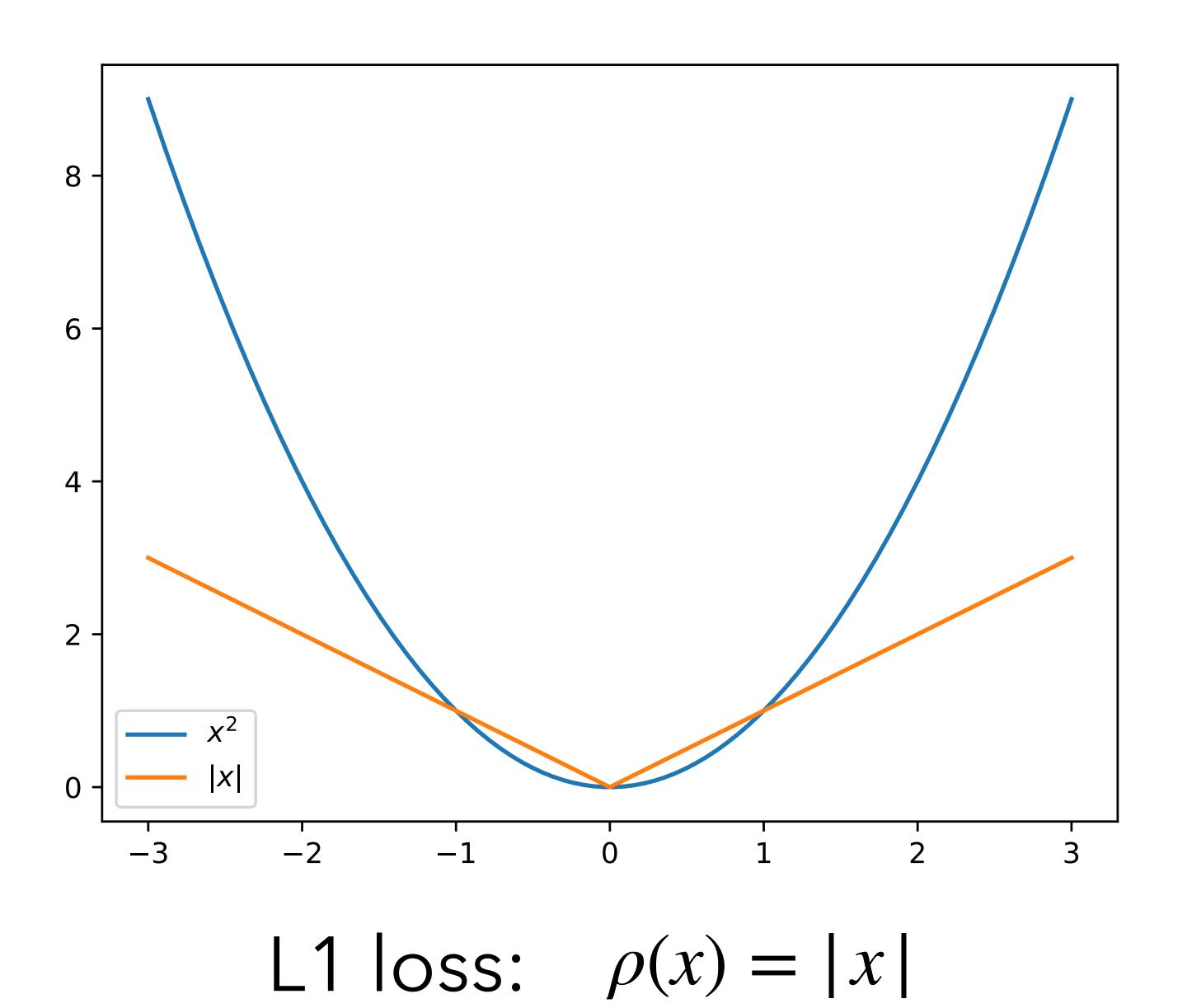
minimize
$$J(H) = \sum_{i=1}^{N} \sum_{j=1}^{2} \rho(f_H(p_{ij}) - p'_{ij})$$

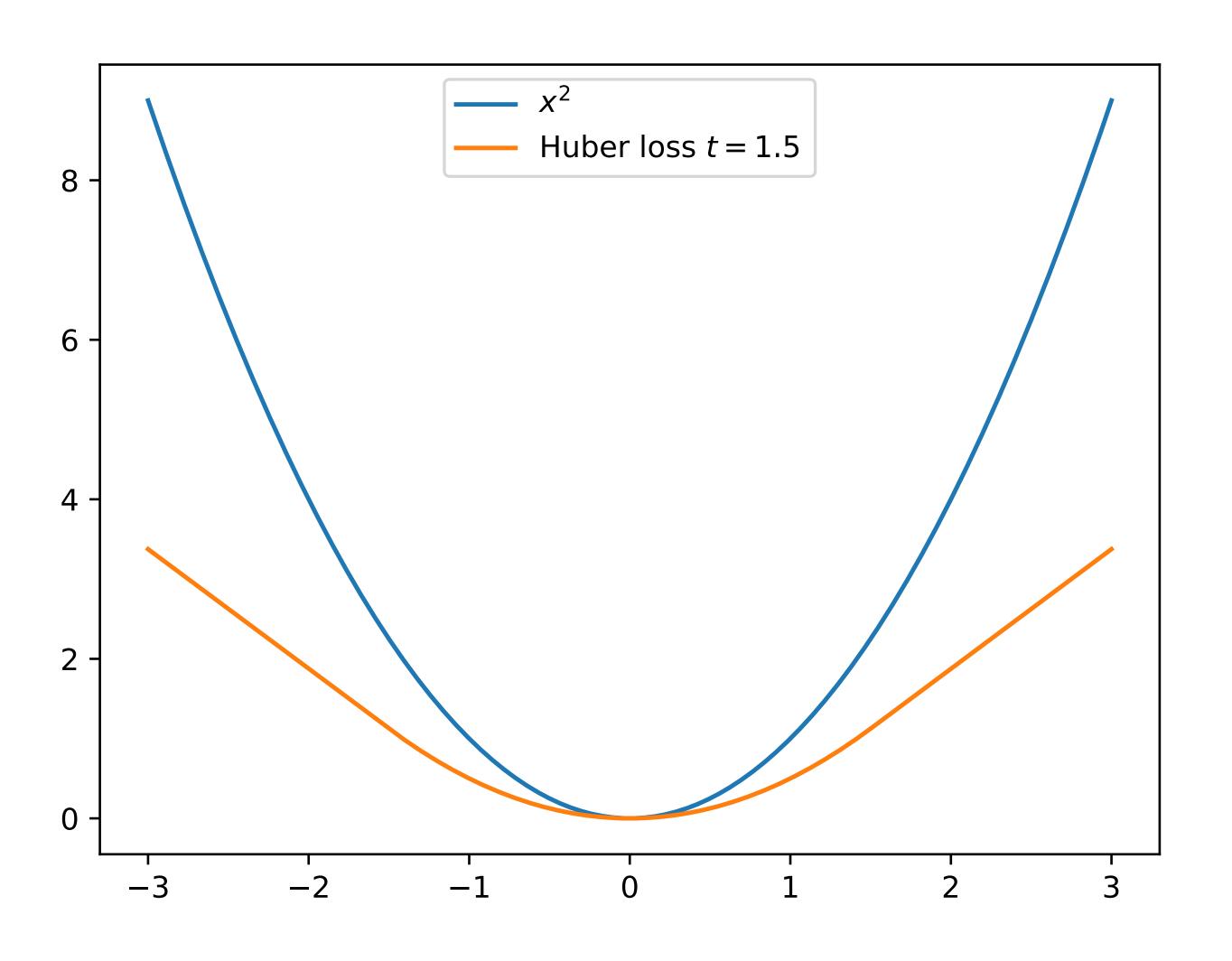
where $\rho(x)$ is a **robust** loss.

Special case: $\rho(x) = x^2$ is L2 loss (same as before)



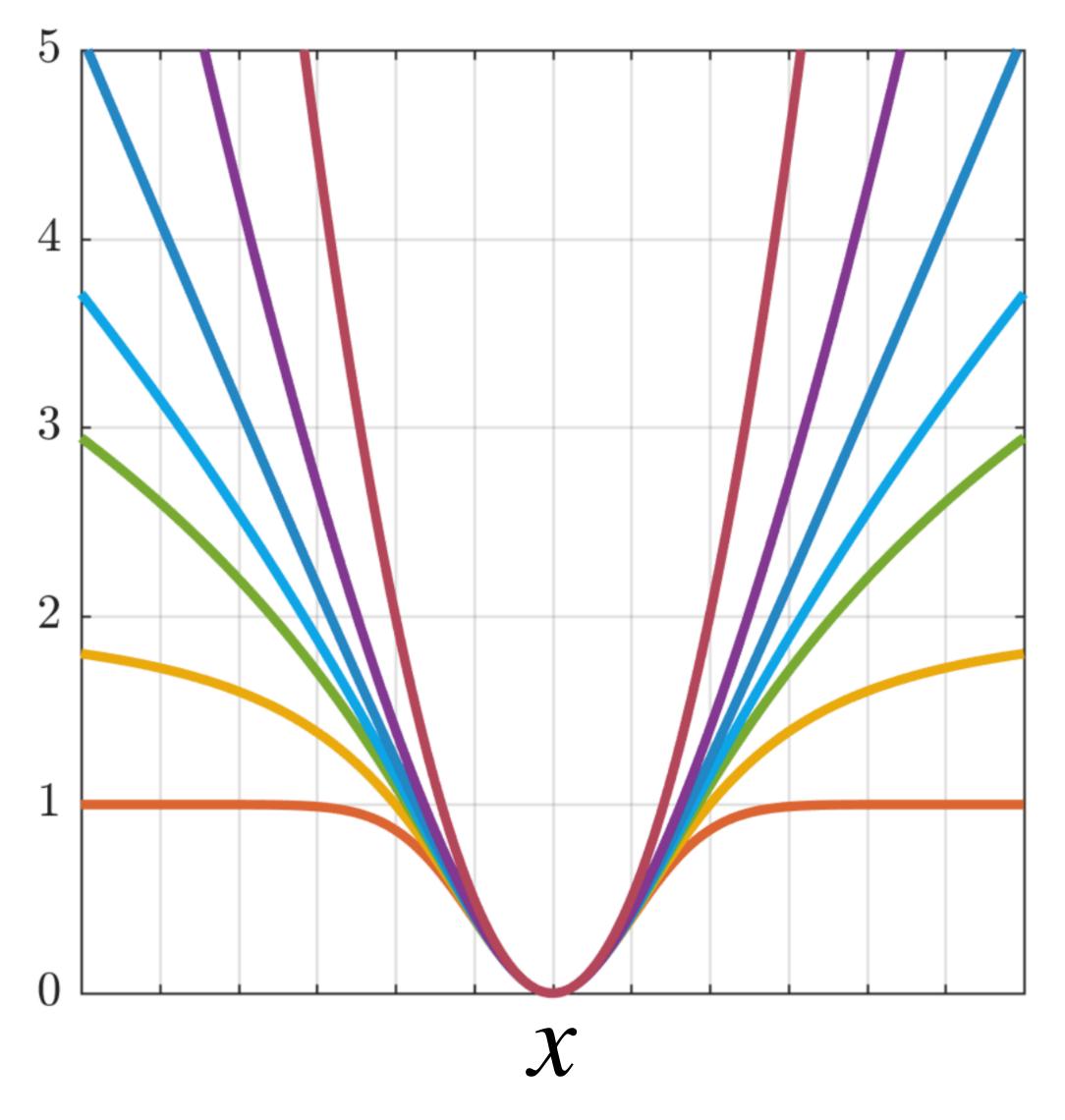
Truncated quadratic: $\rho(x) = \min(x^2, \tau)$





Huber loss:

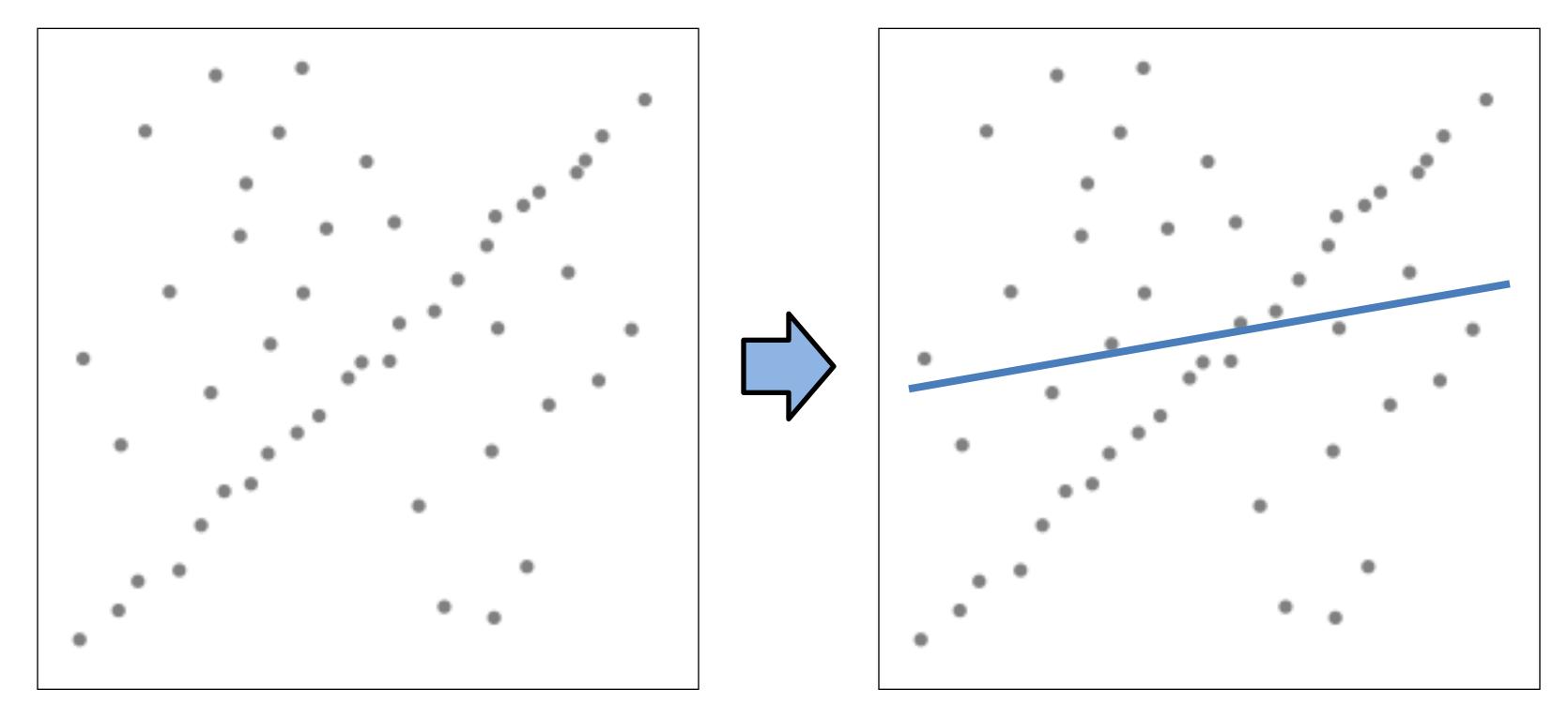
$$\rho(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } |x| \le \tau, \\ \tau(|x| - \frac{1}{2}\tau), & \text{else} \end{cases}$$



Source: [Barron 2019, "A General and Adaptive Robust Loss Function"]

Handling outliers

- Can be hard to fit a robust loss, e.g., due to local minima
- Another idea: trial and error!
- Let's consider the problem of linear regression

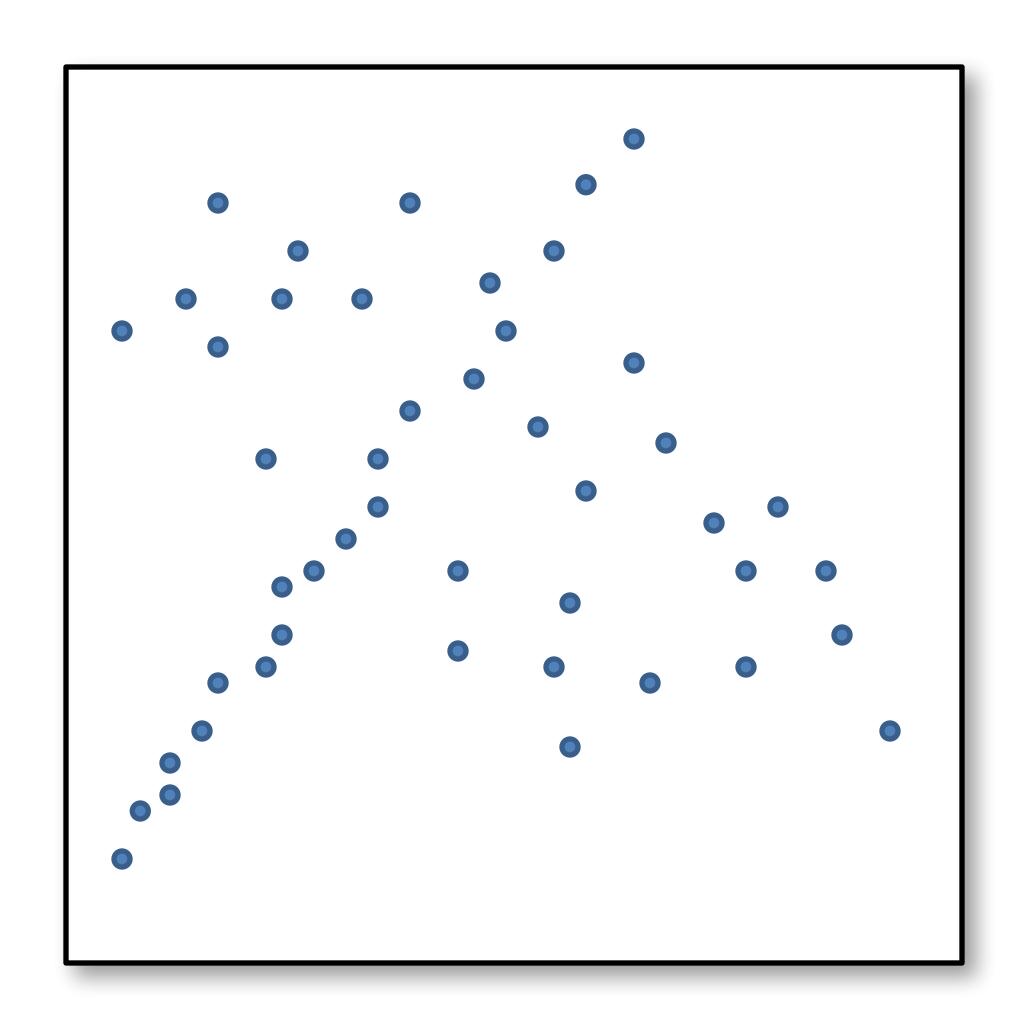


Problem: Fit a line to these data points

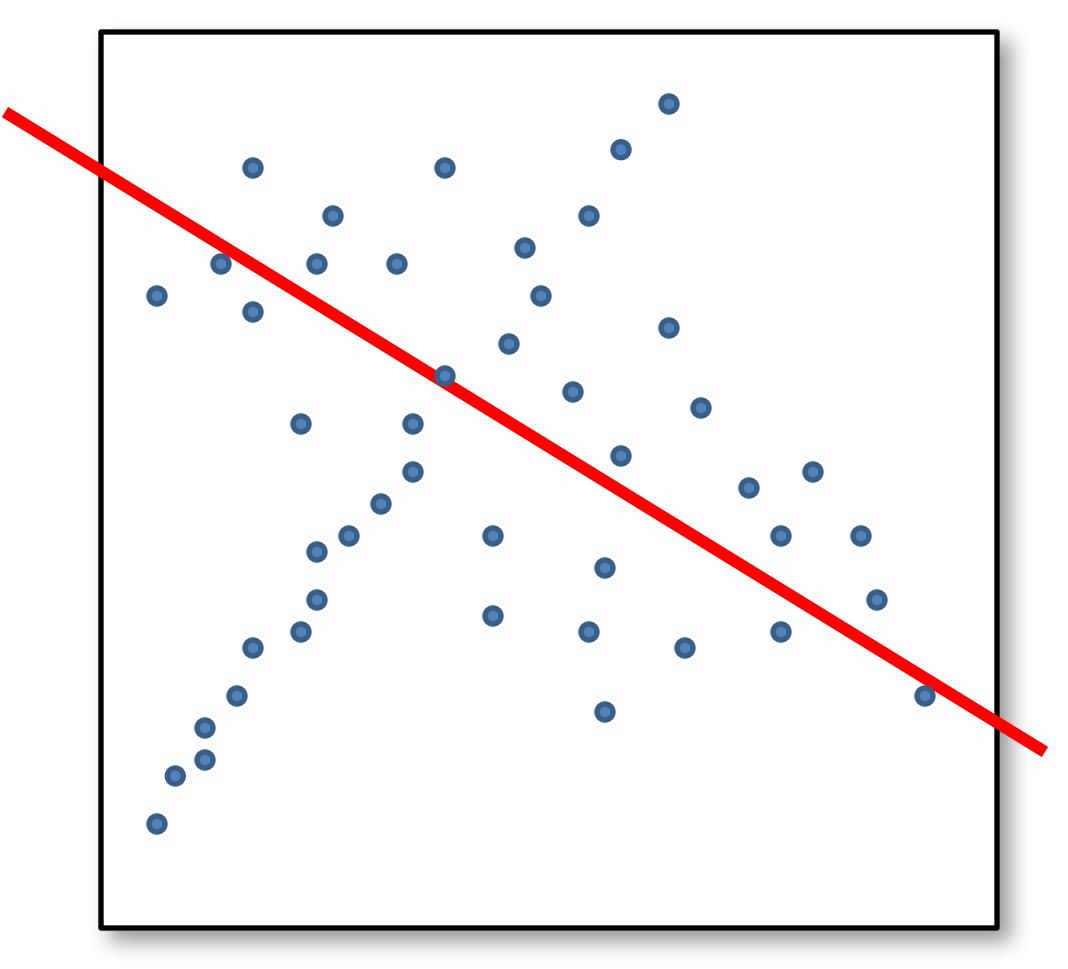
Least squares fit

Source: N. Snavely

Counting inliers

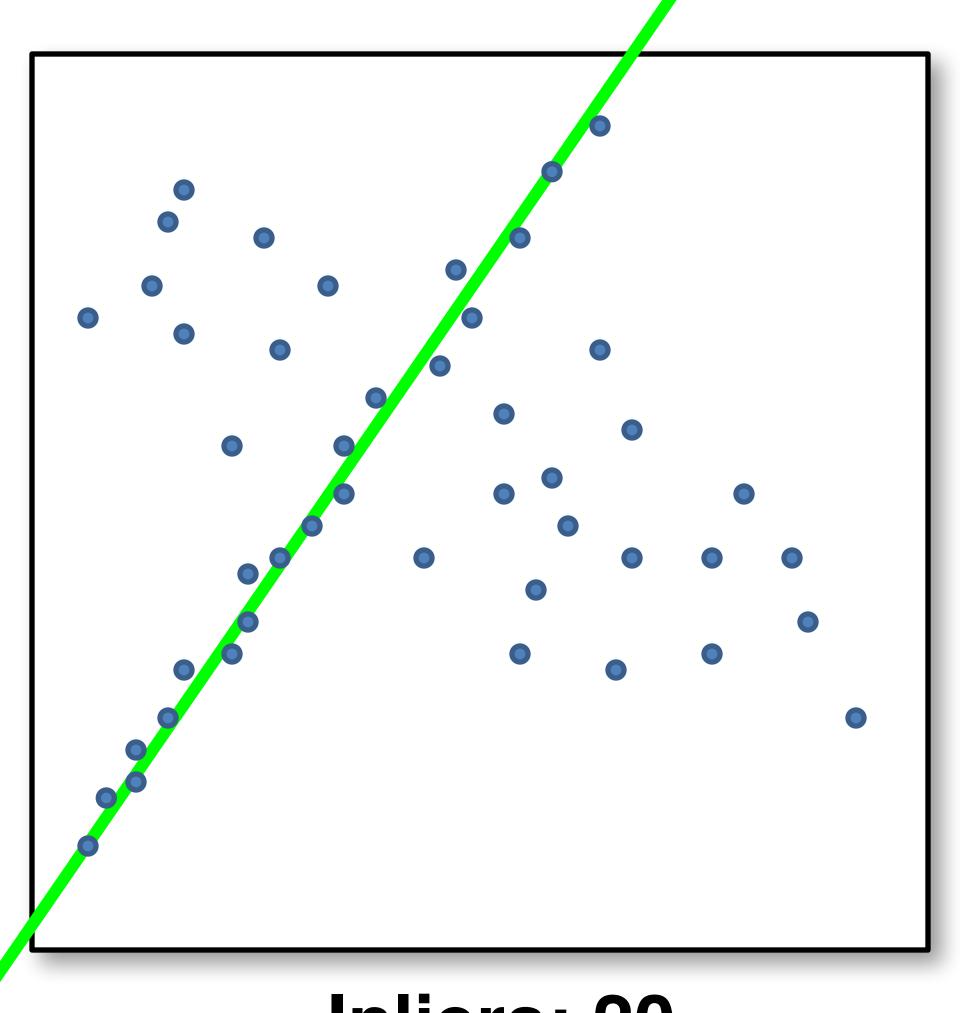


Counting inliers



Inliers: 3

Counting inliers



Inliers: 20

RANSAC

• Idea:

- All the inliers will agree with each other on the solution; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
- "All good matches are alike; every bad match is bad in its own way."
 - Tolstoy via Alyosha Efros

RANSAC: random sample consensus

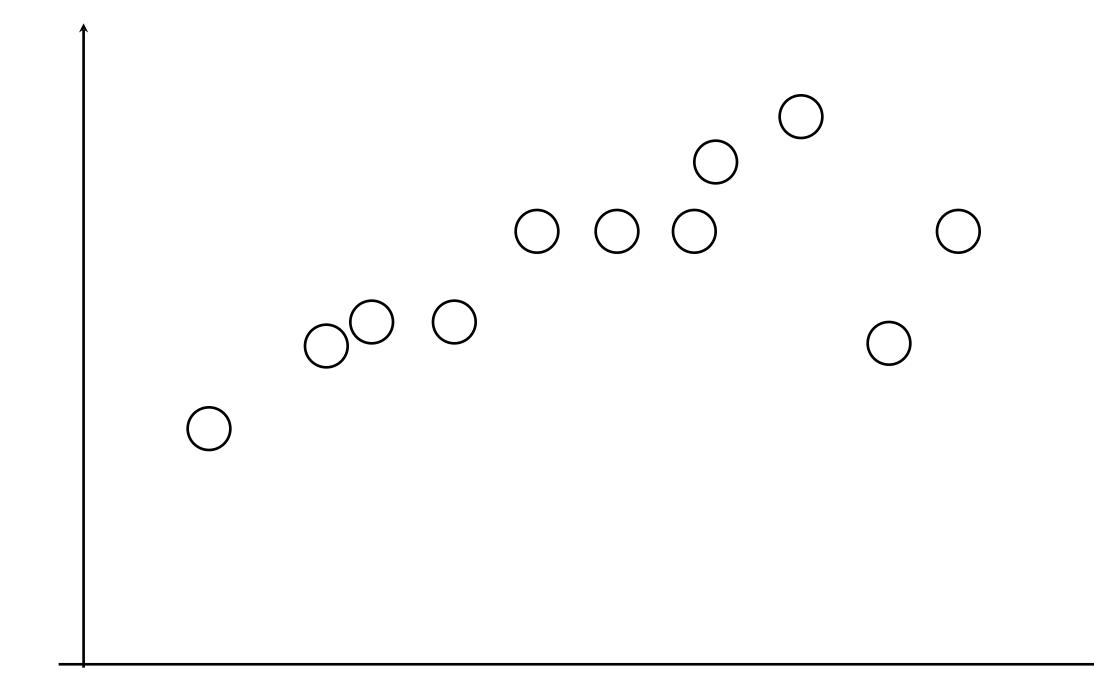
RANSAC loop (for N iterations):

- Select four feature pairs (at random)
- ullet Compute homography H
- Count inliers where $\|p_i' f_H(p_i)\| < \varepsilon$

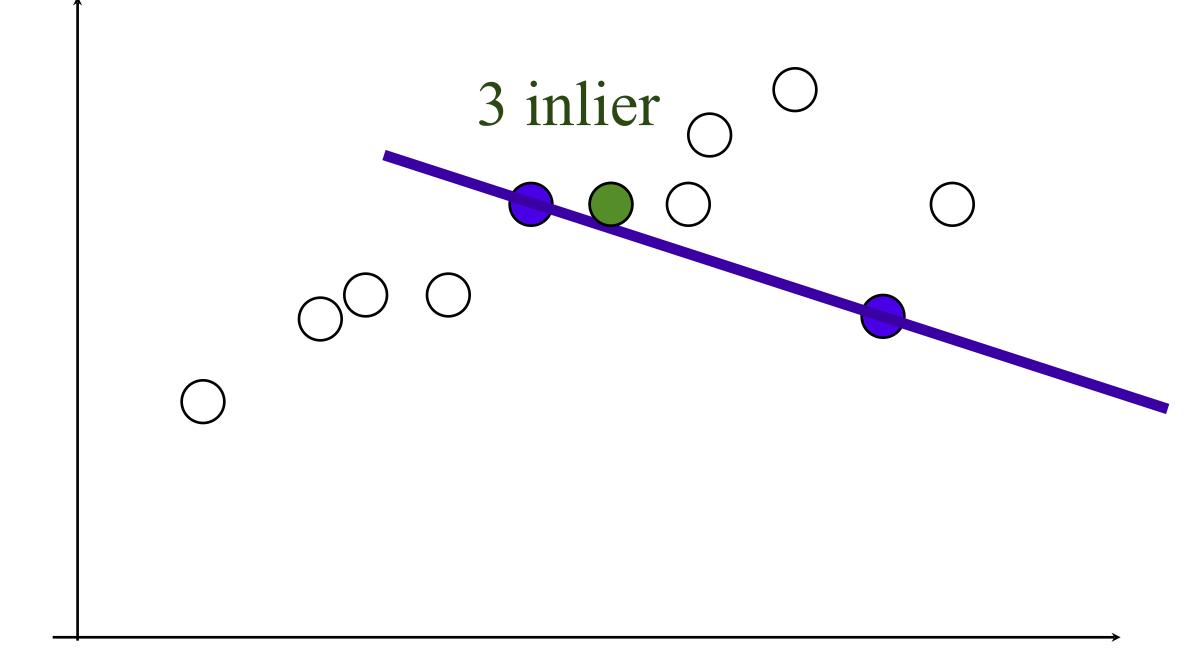
Afterwards:

- \bullet Choose H with largest set of inliers
- Recompute H using only those inliers (often using high-quality nonlinear least squares) 51

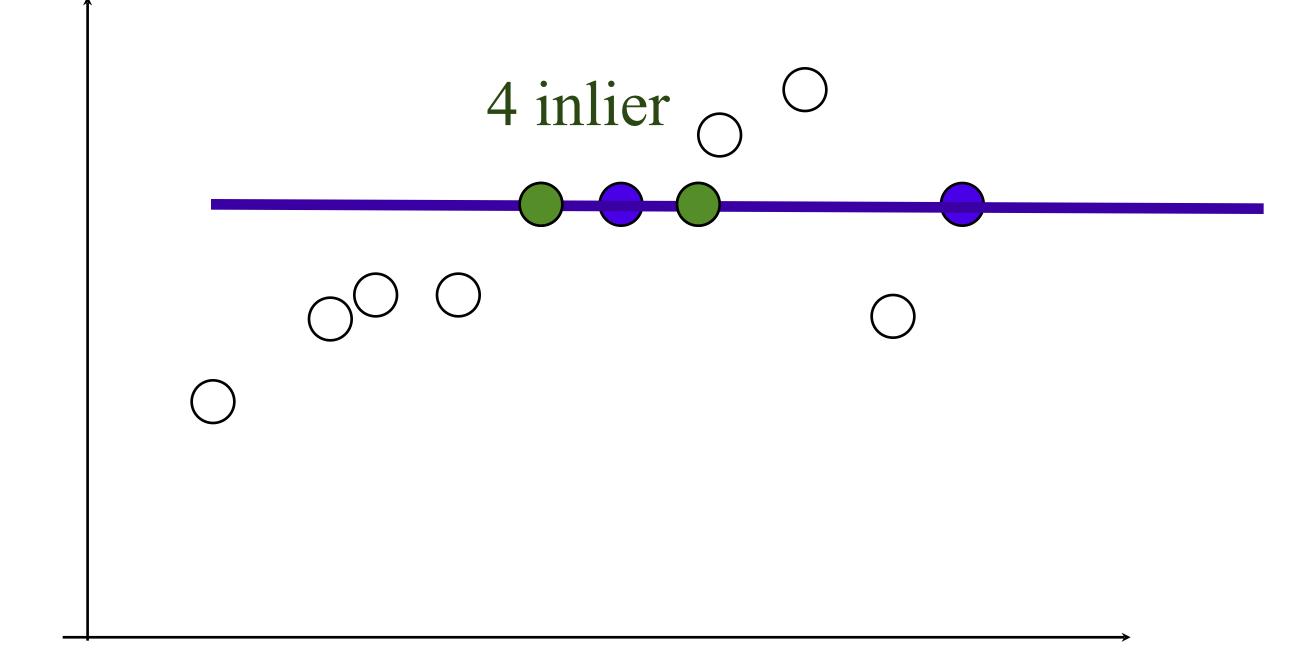
Rather than homography H (8 numbers)
 fit y=ax+b (2 numbers a, b) to 2D pairs



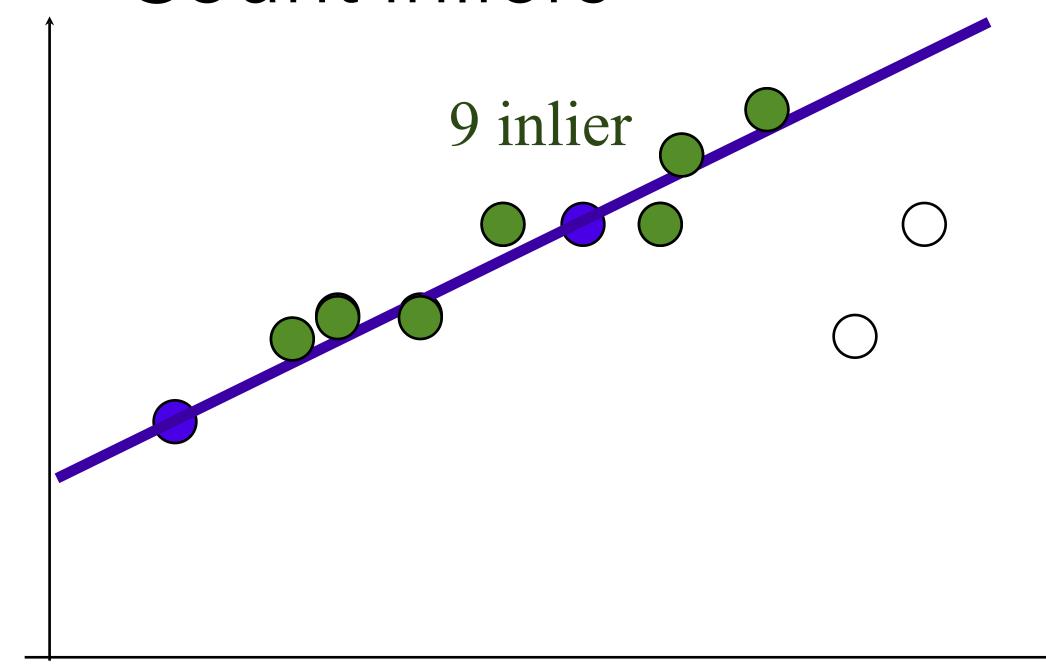
- Pick 2 points
- Fit line
- Count inliers



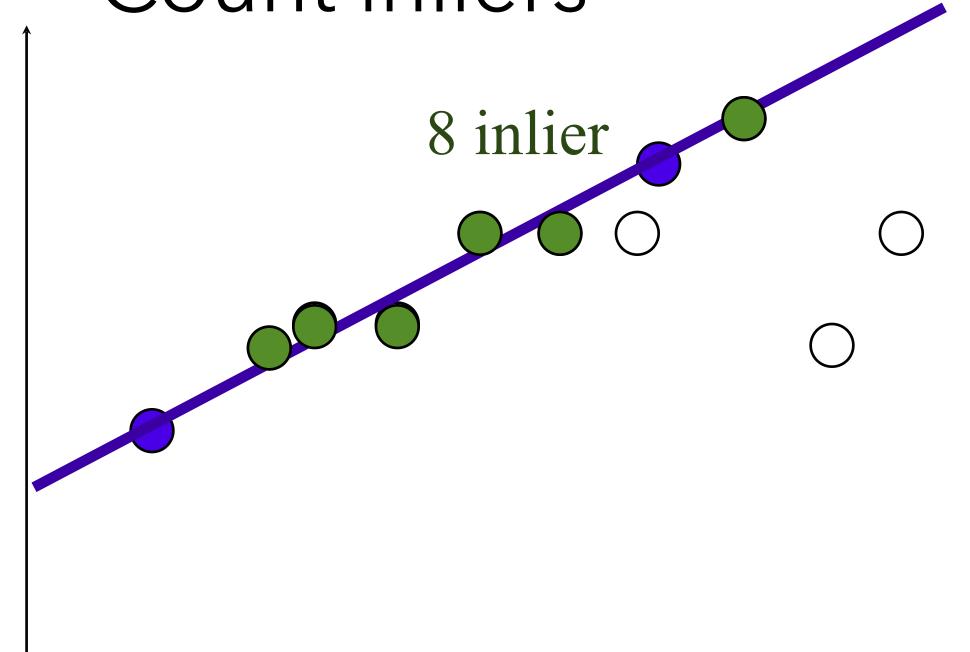
- Pick 2 points
- Fit line
- Count inliers



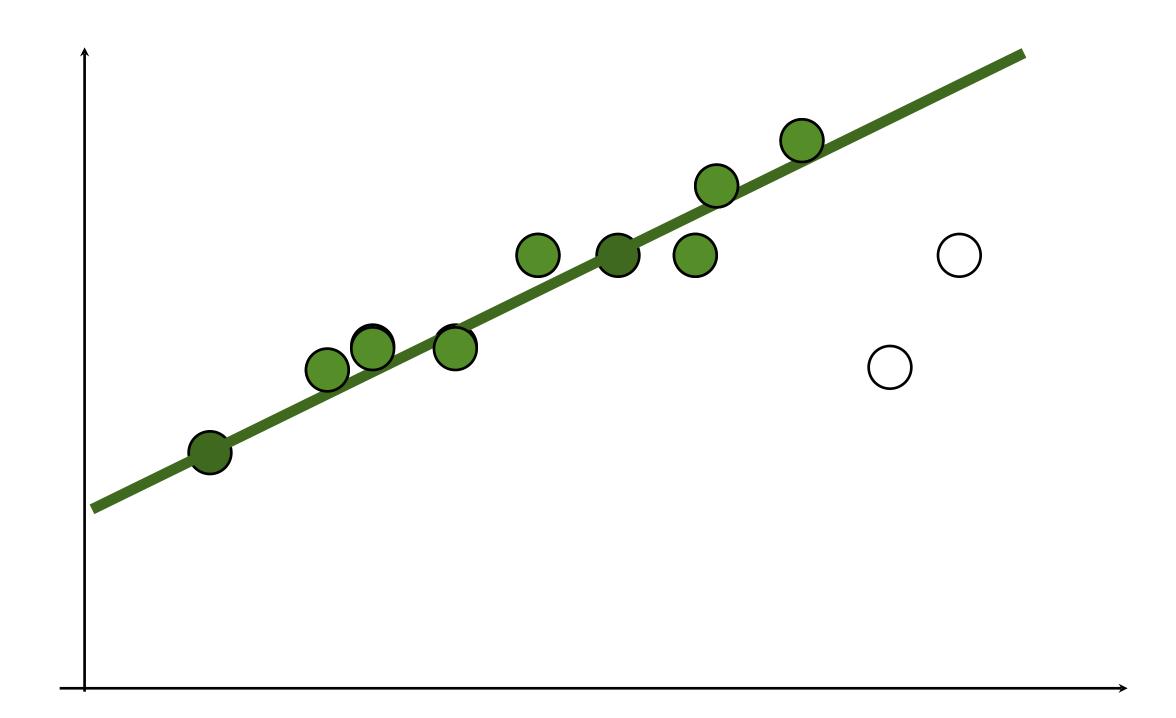
- Pick 2 points
- Fit line
- Count inliers



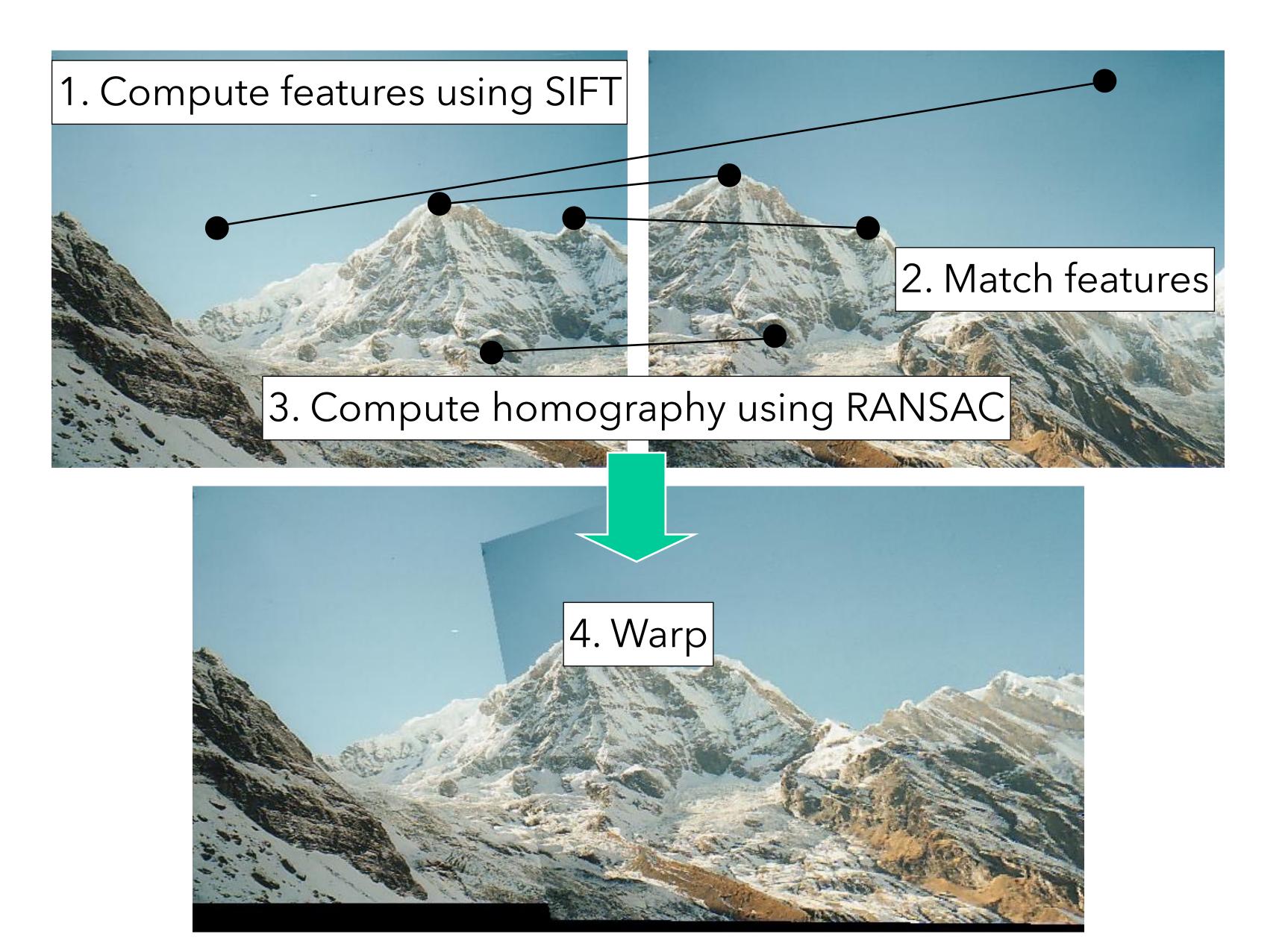
- Pick 2 points
- Fit line



- Use biggest set of inliers
- Do least-square fit



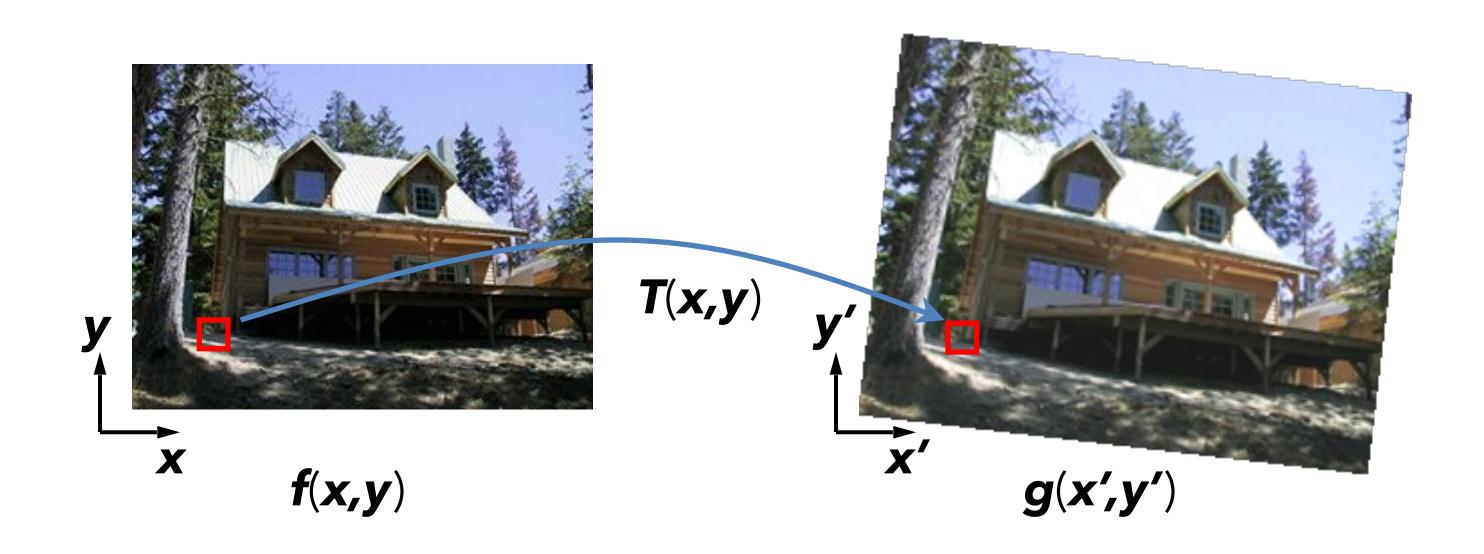
Warping with a homography (PS5)



How do we perform this warp?

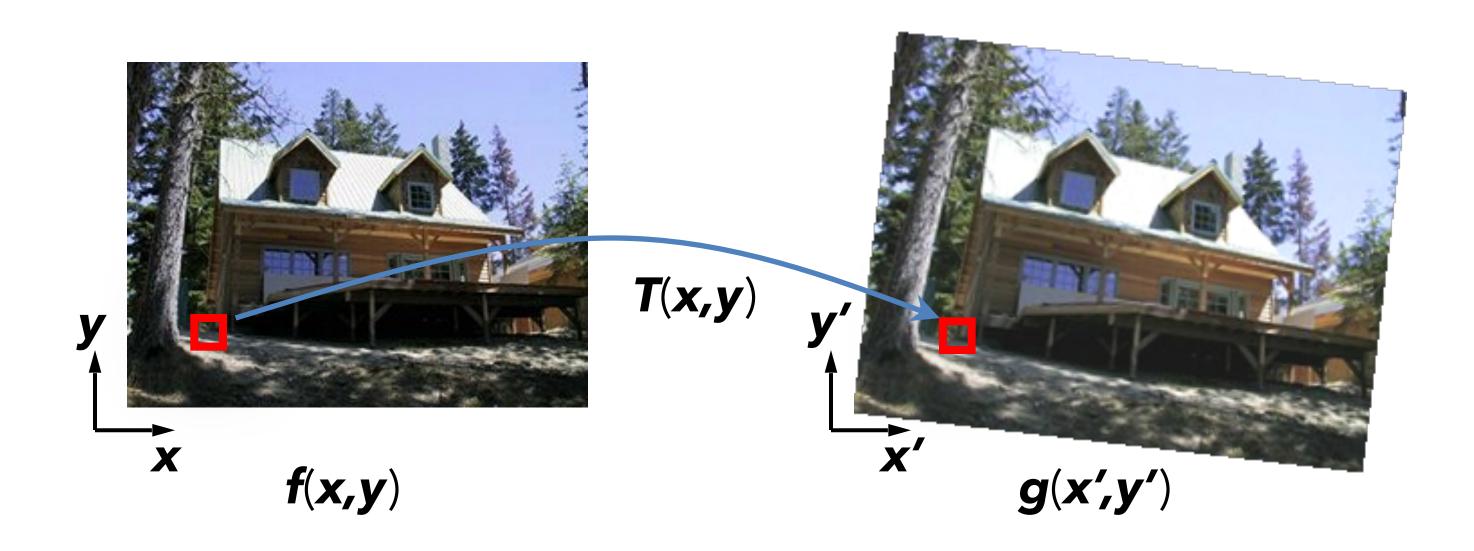
Image warping

Given a coordinate transformation (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?



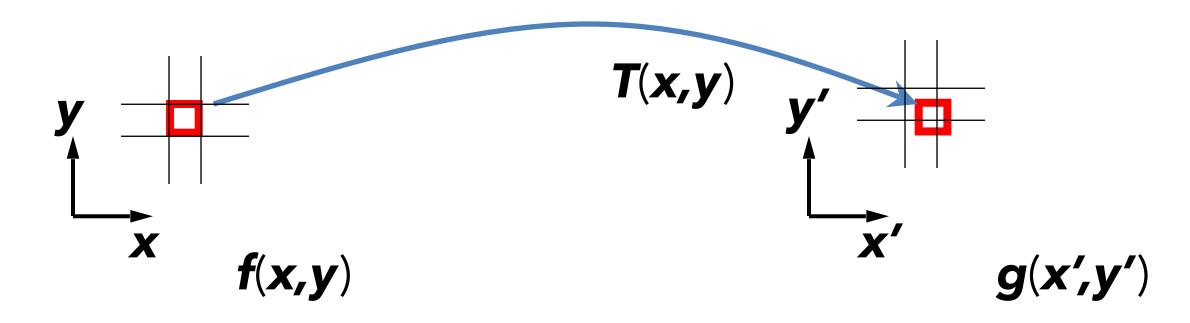
Forward warping

- Send each pixel f(x) to its corresponding location (x',y') = T(x,y) in g(x',y')
- What if a pixel lands "between" two pixels?



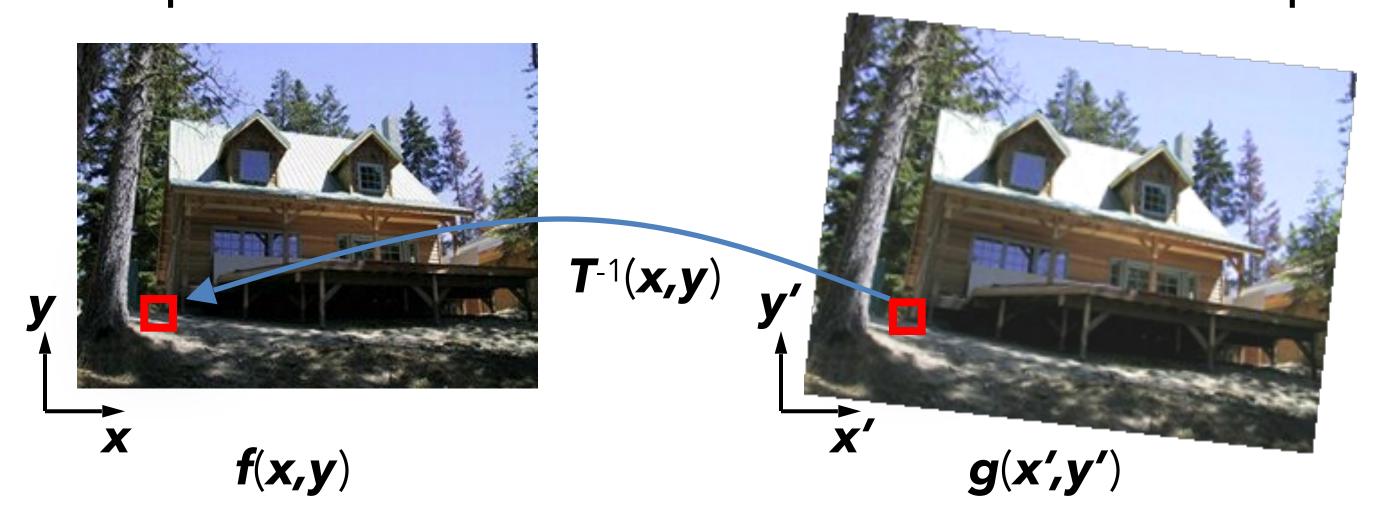
Forward warping

- Send each pixel f(x) to its corresponding location (x',y') = T(x,y) in g(x',y')
- What if a pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (splatting)
 - Can still result in holes



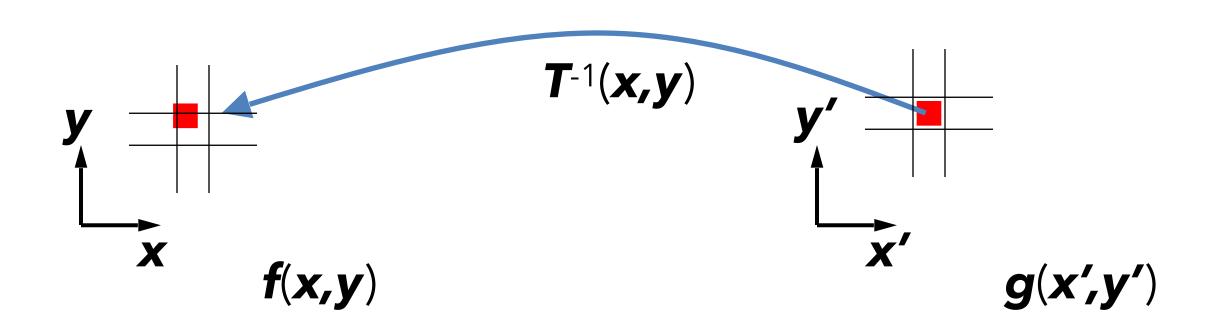
Backward (inverse) warping

- Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x,y)$ in f(x,y)
 - Requires taking the inverse of the transform
 - What if pixel comes from "between" two pixels?



Backward (inverse) warping

- Get each pixel g(x') from its corresponding location x' = h(x) in f(x)
 - What if pixel comes from "between" two pixels?
 - Answer: resample color value from interpolated source image



Other geometric problems

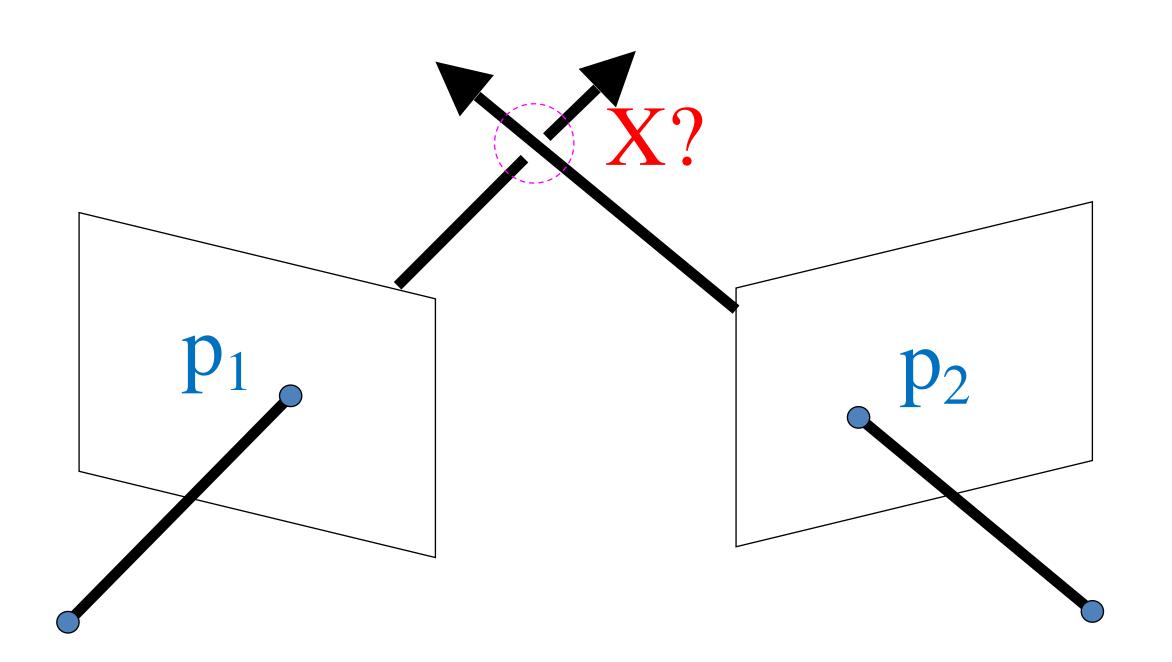
A similar geometric problem: triangulation

Given projection \mathbf{p}_i of unknown 3D point \mathbf{X} in two or more images (with known cameras \mathbf{P}_i), find \mathbf{X}

Source: D. Fouhey

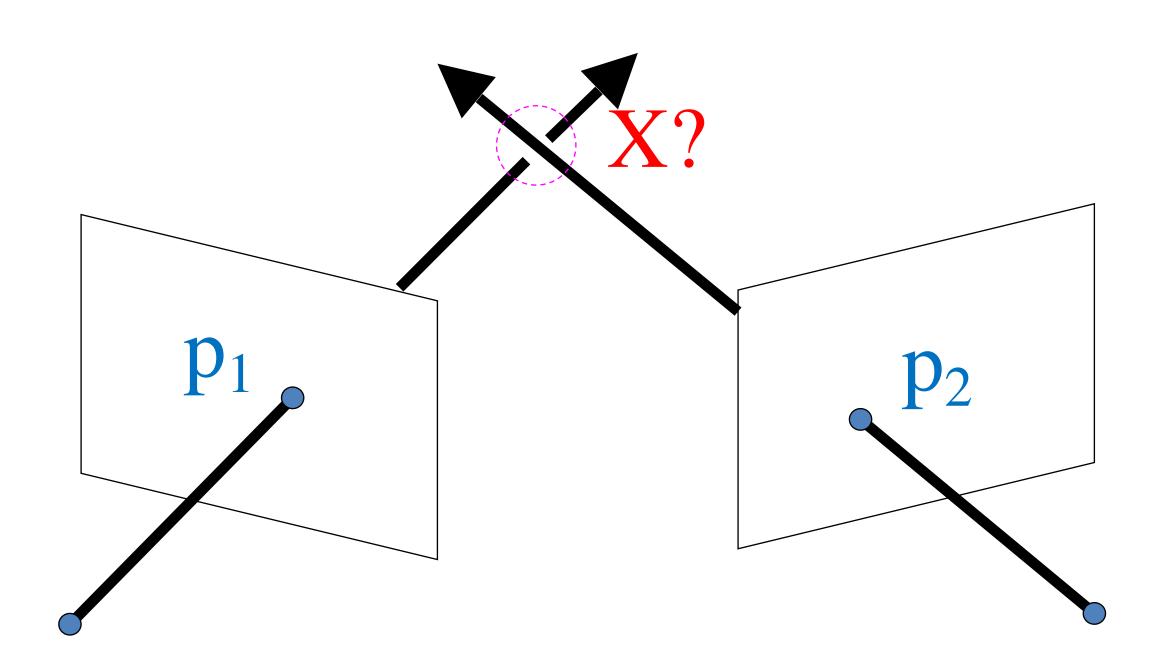
Triangulation

Given projection $\mathbf{p_i}$ of unknown 3D point \mathbf{X} in two or more images (with known camera projection matrices $\mathbf{P_i}$), find \mathbf{X}



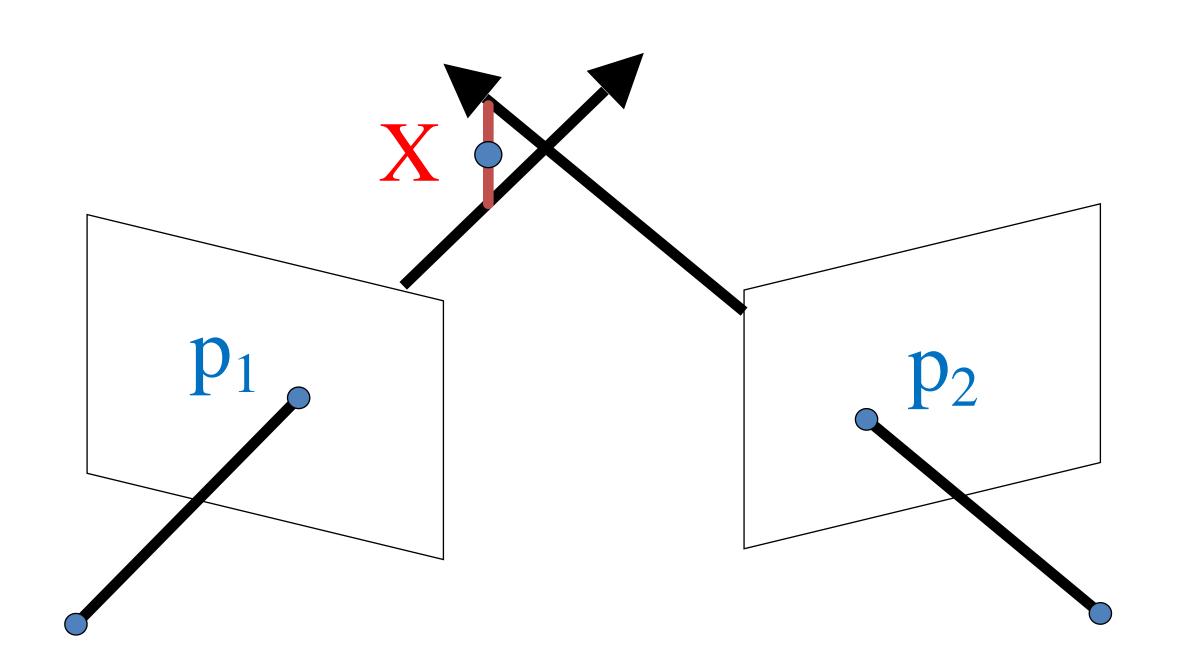
Triangulation

Rays in principle should intersect, but in practice usually don't exactly due to noise, numerical errors.



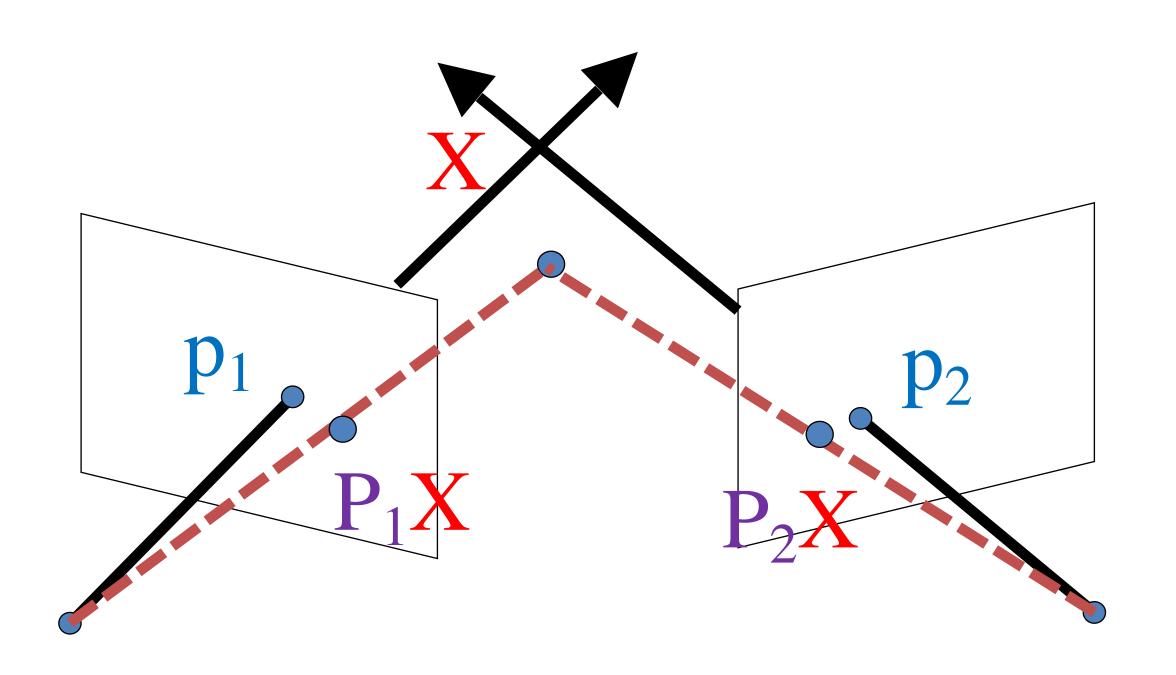
Triangulation - Geometry

Find shortest segment between viewing rays, set X to be the midpoint of the segment.

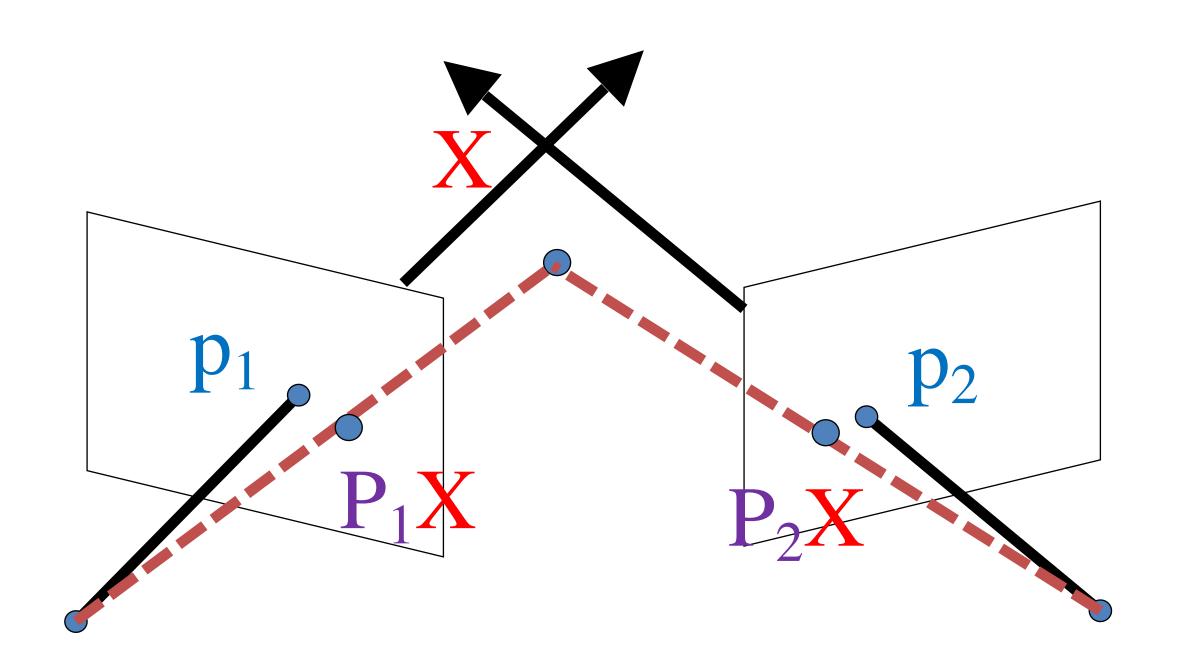


Triangulation - Non-linear Optim.

Find X minimizing $d(p_1, P_1X)^2 + d(p_2, P_2X)^2$ where d is distance in image space



Triangulation - Linear Optimization



First: A better way to handle homogeneous coordinates in linear optimization

Projection in homogeneous coordinates.

$$p_i \equiv PX_i$$

i.e., PX; & p; are proportional/scaled copies of each other

$$p_i = \lambda P X_i, \ \lambda \neq 0$$

This implies their cross product is **0**, since

$$a \times b = ||a|| ||b|| \sin(\theta).$$

$$p_i \times PX_i = 0$$

Handles the "divide by 0" issue when solving.

Triangulation - Linear Optimization

$$p_1 \equiv P_1 X$$

$$p_1 \times P_1 X = 0$$

$$p_2 \equiv P_2 X$$

$$p_2 \times P_2 X = 0$$

$$[p_{1x}]P_1 X = 0$$

$$[p_{2x}]P_2 X = 0$$

Cross product as matrix

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} \mathbf{a}_x \end{bmatrix} \mathbf{b}$$

$$[p_{1x}]P_1X = 0$$

$$[p_{2x}]P_2X = 0$$

$$([p_{1x}]P_1)X = 0$$

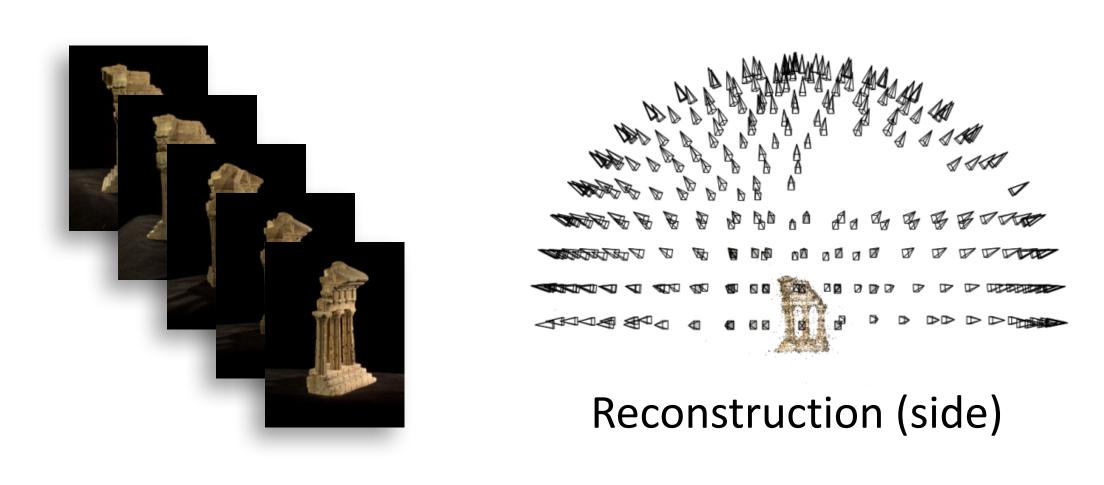
$$([p_{2x}]P_2)X = 0$$
Two equations per camera for 3 unknown in X

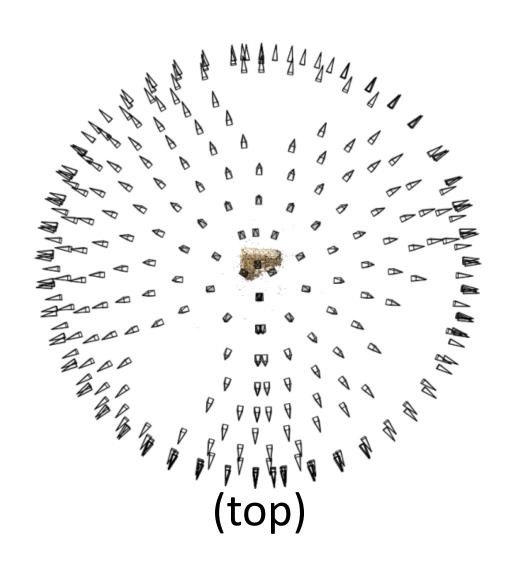
Next time: Estimating 3D structure

- Given many images, how can we...
 - 1. Figure out where they were all taken from?
 - 2. Build a 3D model of the scene?

This is the **structure from motion** problem.

Structure from motion





- Input: images with pixels in correspondence
- $p_{i,j} = (u_{i,j}, v_{i,j})$

- Output
 - Structure: 3D location \mathbf{x}_i for each point p_i
 - Motion: camera parameters \mathbf{R}_j , \mathbf{t}_j possibly \mathbf{K}_j
- Objective function: minimize reprojection error

Camera calibration & triangulation

- Suppose we know 3D points
 - And have matches between these points and an image
 - Computing camera parameters similar to homography estimation
- Suppose we have know camera parameters, each of which observes a point
 - We can solve for the 3D location
- Seems like a chicken-and-egg problem, but in SfM we can solve both at once!

Next class: more 3D