
CS 5670: Introduction to Computer Vision

Lecture 20: Fitting geometric models

Most slides from Noah Snavely



Today

• Finish discussion of two-view geometry 
• Finding correspondences 
• Fitting a homography 
• RANSAC
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Recall: What is the geometric relationship 
between these two images?

?



Why don’t these image line up exactly?

Recall: Image alignment

Source: N. Snavely



Recall: affine transformations

affine transformation

what happens when we 
change this row?

Source: N. Snavely



Recall: Projective Transformations aka 
Homographies aka Planar Perspective Maps

Called a homography  
(or planar perspective map)

Source: N. Snavely



Homographies

Note that this can be 0! 
A “point at infinity”

Source: N. Snavely



Homography
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Example: two pictures taken by rotating the camera:

If we try to build a panorama by overlapping them:

Source: Torralba, Isola, Freeman



Homography
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Example: two pictures taken by rotating the camera:

With a homography, you can map both images into a single camera:

Source: Torralba, Isola, Freeman

We’ll see why in PS5!



Plane-to-plane homography

image plane in front image plane below
black area 
where no pixel 
maps to

Source: N. Snavely



Homographies

• Homographies … 
– Affine transformations, and 
– Projective warps 

• Properties of projective transformations: 
– Origin does not necessarily map to origin 
– Lines map to lines 
– Parallel lines do not necessarily remain parallel 
– Closed under composition

Source: N. Snavely



2D image transformations

Source: N. Snavely



How do we perform this warp?



Panorama stitching (PS5)
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Panorama stitching
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Warp using 
homography



Panorama stitching
We’ll estimate the homography 

from correspondences!
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Finding correspondences with local features

1) Detection: Identify the interest points (a.k.a. 
keypoints), the candidate points to match. 

2) Description: Extract vector feature 
descriptor surrounding each interest point. 

3) Matching: Determine correspondence 
between descriptors in two views

],,[ )2()2(
12 dxx …=x

Source: K. Grauman
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What are good regions to match?

Adapted from N. Snavely



What are good regions to match?

“flat” region: 
no change in all 
directions

“edge”:   
no change along 
the edge direction

“corner”: 
significant change 
in all directions

• How does the window change when you shift it? 
• Shifting the window in any direction causes a big change

Source: S. Seitz, D. Frolova, D. Simakov, N. Snavely19



Finding good key points to match

Find local optima in space and 
scale using Laplacian pyramid.

Compute difference-of-Gaussians 
filter (approx. to Laplacian).
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Feature descriptors
We know how to detect good points 
Next question: How do we match them? 

Come up with a descriptor (feature vector) for each 
point, find similar descriptors between the two images

?

Source: N. Snavely
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• Compute histograms of oriented gradients 
• Take 16x16 square window around detected feature 
• Compute edge orientation for each pixel 
• Looks like a small, hand-crafted CNN

Scale Invariant Feature Transform (SIFT)

Source: N. Snavely, D. Lowe

0 2π
angle histogram
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Create the descriptor: 
• Rotation invariance: rotate by “dominant” orientation 
• Spatial invariance: spatial pool to 2x2 
• Compute an orientation histogram for each cell 
• (4 x 4) cells x 8 orientations = 128 dimensional descriptor 

Scale Invariant Feature Transform

Source: N. Snavely, D. Lowe
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SIFT invariances

Source: N. Snavely
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Today

• Finding correspondences 
• Computing local features 
• Matching 

• Fitting a homography 
• RANSAC
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How can we tell whether two features match?

Source: N. Snavely
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Feature matching

Given a feature in I1, how do we find the best match in I2? 
1. Define distance function that compares two descriptors 
2. Test all the features in I2, find the closest one.

Source: N. Snavely
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Finding matches
How do we know if two features match? 

– Simple approach: are they the nearest neighbor in L2 distance, ||f1 - f2||?

I1 I2

f1 f2

Source: N. Snavely
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Finding matches
How do we know if two features match? 

– Simple approach: are they the nearest neighbor in L2 distance, ||f1 - f2||? 
– Can give good scores to ambiguous (incorrect) matches.

I1 I2

f1 f2

Source: N. Snavely
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f1 f2f2'

Finding matches
Throw away matches that fail tests: 

• Ratio test: this by far the best match? Compare best and 2nd-best matches. 
• Ratio distance = ||f1 - f2 || / || f1 - f2’ || 
• f2 is best SSD match to f1 in I2 
• f2’  is  2nd best SSD match to f1 in I2 

• Forward-backward consistency: f1  should also be nearest neighbor of f2

I1 I2 Source: N. Snavely30



Feature matching example

51 feature matches after ratio test

Source: N. Snavely
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Feature matching example

58 feature matches after ratio test

Source: N. Snavely
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Today

• Finding correspondences 
• Computing local features 
• Matching 

• Fitting a homography 
• RANSAC
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From matches to a homography

x1’

y1’
w1

=
x1

y1

1

a b c
d e f
g h i

.

(x1,y1)
(x’1,y’1)

Source: Torralba, Isola, Freeman
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From matches to a homography
Point in 1st image

J(H) =
X

i

||fH(pi)� p
0
i
||2

fH(pi) = Hpi/(H
T

3 pi)

Matched point in 2nd

where applies homography 
 

minimize

Remember: homogenous coordinates. 
 is the third row of H3 H



x1’

y1’
w1

=
x1

y1

1

a b c
d e f
g h i

.

x1’ =
ax1 + by1+c
gx1 + hy1+i

y1’ =
dx1 + ey1+f
gx1 + hy1+i

gx1x’1 + hy1x’1+ix1’ = ax1 + by1+c

gx1y’1 + hy1y’1+ix1’ = dx1 + ey1+f

Leaving homogeneous coordinates:

Re-arranging the terms:

Option #1: Direct linear transform

Source: Torralba, Freeman, Isola
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gx1x’1 + hy1x’1+ix1’ = ax1 + by1+c
gx1y’1 + hy1y’1+ix1’ = dx1 + ey1+f

More rearranging:

gx1x’1 + hy1x’1+ix’1 - ax1 - by1- c = 0
gx1y’1 + hy1y’1+iy’1 - dx1 - ey1- f = 0

-x1  -y1  -1  0    0    0    x1x’1   y1x’1    x’1
a 
b 
c 
d 
e 
f 
g 
h 
i

In matrix form:

 0    0    0  -x1  -y1  -1   x1y’1   y1y’1    y’1

0 
0=

Option #1: Direct linear transform

Fast to solve (but not using “right” loss function). Uses an algebraic trick. 
Often used in practice for initial solutions!

Source: Torralba, Freeman, Isola

Can solve using Singular Value Decomposition (SVD). Avoids trivial solution (all 0).
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Option #2: Optimization

H
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J(H)

J(H) =
X

i

||fH(pi)� p
0
i
||2

H11 H12

minimize



Optimization
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J(H) =
X

i

||fH(pi)� p
0
i
||2minimize

• Can use gradient descent, just like when learning neural nets 

• But while these problems are smaller scale than deep learning problems, 
they have more local optima: 
• Use 2nd derivatives to improve optimization 

• Can use finite differences or autodiff 

• Can use special-purpose nonlinear least squares methods. 

• Exploits structure in the problem for a sum-of-squares loss.



Problem: outliers
outliers

inliers

40
Source: N. Snavely



One idea: robust loss functions
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minimize J(H) =
N

∑
i=1

2

∑
j=1

ρ( fH(pij) − p′￼ij)

where  is a robust loss.ρ(x)

Special case:  is L2 loss (same as before)ρ(x) = x2



Robust loss functions
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ρ(x) = min(x2, τ)Truncated quadratic:



Robust loss functions

43

ρ(x) = |x |L1 loss:



Robust loss functions
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Huber loss:

ρ(x) =
1
2 x2 if  |x | ≤ τ,

τ( |x | − 1
2 τ), else



Robust loss functions

45Source: [Barron 2019, “A General and Adaptive Robust Loss Function”]

x



Handling outliers
• Can be hard to fit a robust loss, e.g., due to local minima 
• Another idea: trial and error! 
• Let’s consider the problem of linear regression

Problem: Fit a line to these data points Least squares fit
46

Source: N. Snavely



Counting inliers

47 Source: N. Snavely



Counting inliers
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Inliers: 3
Source: N. Snavely
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Inliers: 20
Source: N. Snavely

Counting inliers



RANSAC
• Idea: 

– All the inliers will agree with each other on the 
solution; the (hopefully small) number of outliers 
will (hopefully) disagree with each other 
• RANSAC only has guarantees if there are < 50% outliers 

– “All good matches are alike; every bad match is 
bad in its own way.” 

		 	 	 – Tolstoy via Alyosha Efros

Source: N. Snavely



RANSAC: random sample consensus

RANSAC loop (for N iterations): 
• Select four feature pairs (at random) 
• Compute homography  
• Count inliers where ||pi’ - (pi)|| < ε 

Afterwards: 
• Choose   with largest set of inliers 

• Recompute  using only those inliers (often 
using high-quality nonlinear least squares)

H
fH

H
H

51
Source: Torralba, Freeman, Isola



52

Simple example: fit a line

• Rather than homography H (8 numbers)  
fit y=ax+b (2 numbers a, b) to 2D pairs

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

3 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

4 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

9 inlier

Source: Torralba, Freeman, Isola



56

Simple example: fit a line

• Pick 2 points 
• Fit line 
• Count inliers

8 inlier

Source: Torralba, Freeman, Isola
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Simple example: fit a line

• Use biggest set of inliers 
• Do least-square fit

Source: Torralba, Freeman, Isola



Warping with a homography (PS5)
1. Compute features using SIFT

2. Match features

3. Compute homography using RANSAC

58
Source: N. Snavely

4. Warp



How do we perform this warp?



Image warping

Given a coordinate transformation (x’,y’) = T(x,y) 
and a source image f(x,y), how do we compute a 
transformed image g(x’,y’) = f(T(x,y))?

f(x,y) g(x’,y’)x x’

T(x,y)y y’

Source: N. Snavely



Forward warping

• Send each pixel f(x) to its corresponding 
location (x’,y’) = T(x,y) in g(x’,y’)

f(x,y) g(x’,y’)x x’

T(x,y)

• What if a pixel lands “between” two pixels?

y y’

Source: N. Snavely



Forward warping

• Send each pixel f(x) to its corresponding 
location (x’,y’) = T(x,y) in g(x’,y’)

• What if a pixel lands “between” two pixels?

f(x,y) g(x’,y’)x x’

T(x,y)

• Answer: add “contribution” to several pixels, 
normalize later (splatting) 

• Can still result in holes

y y’

Source: N. Snavely



Backward (inverse) warping

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x,y) in f(x,y)

f(x,y) g(x’,y’)x x’

T-1(x,y)

• Requires taking the inverse of the transform 
• What if pixel comes from “between” two pixels?

y y’

Source: N. Snavely



• Get each pixel g(x’) from its 
corresponding location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?
• Answer: resample color value from 

interpolated source image

f(x,y) g(x’,y’)x x’

y y’
T-1(x,y)

Source: N. Snavely

Backward (inverse) warping



Other geometric problems



A similar geometric problem: triangulation

Given projection pi of unknown 3D point X in two or 
more images (with known cameras Pi), find X

Source: D. Fouhey



Triangulation

p1 p2

X?

Given projection pi of unknown 3D point X in two or more 
images (with known camera projection matrices Pi), find X

Source: D. Fouhey



Triangulation

Rays in principle should intersect, but in practice 
usually don’t exactly due to noise, numerical errors.

p1 p2

X?

Source: D. Fouhey



Triangulation – Geometry

p1 p2

X

Find shortest segment between viewing rays, set X 
to be the midpoint of the segment.

Source: D. Fouhey



Triangulation – Non-linear Optim.

p1 p2

X

Find X minimizing 𝑑(𝒑1, P1𝑿)2 + 𝑑(𝒑2, P2𝑿)2

P1X P2X

Source: D. Fouhey

where  is distance in image space𝑑



Triangulation – Linear Optimization

p1 p2

X

P1X P2X

Source: D. Fouhey



First: A better way to handle homogeneous 
coordinates in linear optimization

𝒑𝒊 ≡ P𝑿𝒊

𝒑𝒊 = 𝜆P𝑿𝒊,  𝜆 ≠ 0

i.e., PXi & pi are proportional/scaled copies of 
each other

Source: D. Fouhey

Projection in homogeneous coordinates.

𝒑𝒊 × P𝑿𝒊 = 𝟎

This implies their cross product is 0, since 
.a × b = ∥a∥∥b∥ sin(θ)

Handles the “divide by 0” issue when solving.



Triangulation – Linear Optimization
𝒑𝟏 ≡ P𝟏𝑿
𝒑𝟐 ≡ P𝟐𝑿

[𝒑𝟏𝒙]P𝟏𝑿 = 𝟎
[𝒑𝟐𝒙]P𝟐𝑿 = 𝟎

𝒑𝟏 × P𝟏𝑿 = 𝟎
𝒑𝟐 × P𝟐𝑿 = 𝟎

[𝒑𝟏𝒙]P𝟏𝑿 = 𝟎
[𝒑𝟐𝒙]P𝟐𝑿 = 𝟎

([𝒑𝟏𝒙]P𝟏)𝑿 = 𝟎
([𝒑𝟐𝒙]P𝟐)𝑿 = 𝟎

Two equations 
per camera for 
3 unknown in X

𝒂 × 𝒃 =  
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

𝑏1
𝑏2
𝑏3

= [𝒂𝑥]𝒃
Cross product 
as matrix

Source: D. Fouhey



Next time: Estimating 3D structure

• Given many images, how can we… 
1. Figure out where they were all taken from? 
2. Build a 3D model of the scene? 

This is the structure from motion problem.
74

Source: N. Snavely



Structure from motion

• Input: images with pixels in correspondence       pi,j  = (ui,j,vi,j) 

• Output 
• Structure: 3D location xi for each point pi 
• Motion: camera parameters Rj , tj possibly Kj 

• Objective function: minimize reprojection error 

Reconstruction (side) (top)

75
Source: N. Snavely



Camera calibration & triangulation

• Suppose we know 3D points 
– And have matches between these points and an image 
– Computing camera parameters similar to homography estimation 

• Suppose we have know camera parameters, each of which observes a 
point 
– We can solve for the 3D location 

• Seems like a chicken-and-egg problem, but in SfM we can solve both at 
once!

76
Source: N. Snavely



Next class: more 3D


