Lecture 20: Fitting geometric models

CS 5670: Introduction to Computer Vision

Most slides from Noah Snavely



Today

 Finish discussion of two-view geometry

* Finding correspondences

Fitting a homography
e RANSAC



Recall: What is the geometric relationship

between these two images”?




Recall: Image alignment

Why don't these image line up exactly?

Source: N. Snavely



Recall: affine transformations
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affine transformation
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Recall: Projective Transformations aka
Homographies aka Planar Perspective Maps
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(or planar perspective map)

Source: N. Snavely



Homographies
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Homography

Example: two pictures taken by rotating the camera:
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It we try to build a panorama by overlaping them:
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Source: Torralba, Isola, Freeman



Homography

Example: two pictures taken by rotating the camera:
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Plane-to-plane homography

image plane in front
black area

where no pixel

maps to
Source: N. Snavely



Homographies

e Homographies ... x’ a b c x
/
= | d
- Affine transtormations, and y/ ¢ f s
Cw g h 1 | w

- Projective warps

* Properties of projective transformations:

- Origin does not necessarily map to origin

- Lines map to lines

- Parallel lines do not necessarily remain parallel

- Closed under composition

Source: N. Snavely



2D image transtformations
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How do we perform this warp?



Panorama stitching (PS5
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Panorama stitching
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Panorama stitching

We'll estimate the homography
from correspondences!

16



Finding correspondences with local features

Detection: Identify the interest points (a.k.a.
keypoints), the candidate points to match.

Description: Extract vector feature
descriptor surrounding each interest point.
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Matching: Determine correspondence
between descriptors in two views

Source: K. Grauman



What are good regions to match?

Adapted from N. Snavely



What are good regions to match?

e How does the window change when you shift it?

e Shifting the window in any direction causes a big change

“flat” region: "edge”: ‘corner”:
no change in all no change along significant change
directions the edge direction in all directions

Source: S. Seitz, D. Frolova, D. Simakov, N. Snavely



Finding good key points to match
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Compute difference-of-Gaussians  Find local optima in space and
filter (approx. to Laplacian). scale using Laplacian pyramid.
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Feature descriptors

We know how to detect good points
Next question: How do we match them?

| B
J . ."‘.:0
Y A STEAL A

By
el

WAV '-YQA [ R =
Loy e 7o RO L
OACE AN AP RIA g
‘ K .., ".\.9‘;“ L0 ’4:

< : P, -
| 4 e B
o . e

~

Come up with a descriptor (feature vector) for each
point, find similar descriptors between the two images
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Scale Invariant Feature Transtorm (SIFT)

e Compute histograms of oriented gradients

e Take 16x16 square window around detected feature

e Compute edge orientation for each pixel
e [ooks like a small, hand-cratted CNN

0 27

angle histogram

-

Image gradients
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Scale Invariant Feature Transform

Create the descriptor:
e Rotation invariance: rotate by “dominant” orientation
e Spatial invariance: spatial pool to 2x2
e Compute an orientation histogram for each cell

® (4x4)cellsx 8 orientations = 128 dimensional descriptor

Image gradients Keypoint descriptor
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SIFT invariances
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Today

* Finding correspondences
e Computing local teatures
e Matching

e Fitting a homography

e RANSAC
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How can we tell whether two features match?
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Feature matching

Given a feature in |, how do we find the best match in |,?

1. Deftine distance function that compares two descriptors

2. Test all the features in |, find the closest one.

Source: N. Snavely



Finding matches

How do we know if two features match?
fy - 15|

- Simple approach: are they the nearest neighbor in L, distance,

Source: N. Snavely



Finding matches

How do we know if two features match?
fy - 1,7

- Simple approach: are they the nearest neighbor in L, distance,

- Can give good scores to ambiguous (incorrect) matches.

Source: N. Snavely



Finding matches

Throw away matches that tail tests:

e Ratio test: this by far the best match? Compare best and 2nd-best matches.

e Ratio distance = ||f; - 1,

e f,isbestSSD match to f
e f,) is 2nd best SSD match to f; in |
e Forward-backward consistency: f;, should also be nearest neighbor of 1,
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Feature matching example
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31
Source: N. Snavely



Feature matching example
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58 feature matches after ratio test
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Today

* Finding correspondences
e Computing local teatures
e Matching

e Fitting a homography

e RANSAC

33



From matches to a homography

—O
(X1,Y1)
(\7—' / I
e - (X 1,Y'1)
O ), -0
—(
X" a b c X
y1' =|d e f V1
W g h i 1

34

Source: Torralba, Isola, Freeman



From matches to a homography

Point In 1st image
\ Matched pointin 2nd

/
minimize.J (H) = ¥ || fu(pi) — pi ||

()

where fr(p;) = Hp;/(H3 p;) applies homography

Remember: homogenous coordinates.
H; is the third row of H
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Option #1: Direct linear transtorm

X4
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Leaving homogeneous coordinates:
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X1 =

/

gx; + hy,+i

dx; + ey, +f

Y1 =

Re-arranging the terms:

9X1XI1 + hy1xl1+ix1’ = aX1 + by1+C

gX1

hy,

36
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Option #1: Direct linear transtform

gx;x'y + hy,;x'1+ix," = ax; + by,+c

gx,y'1 + hy,y'1+ixy" = dx, + ey, +f
More rearranging:

gx;x'1 + hyx';+ix’; - ax; - by;-¢c =0

gx1y's + hyqy'y+iy's - dxq - eyq-1 =0
In matrix form:

—

X1 -y1 -1 0 0 0 xyx'y yx'y X4

e’

0 0 0 -xq-y; -T x99 yiy'1 Y5

|
T owQ M™Mo o 0o U w

Can solve using Singular Value Decomposition (SVD). Avoids triv—ial—solution (all 0).

Fast to solve (but not using “right” loss function). Uses an algebraic trick.

Often used in practice for initial solutions!
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Option #2: Optimization

J(H)

minimize J(H) =) ||fu(p:) — pjl[’
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Optimization
minimize J(H) = » || fu(pi) — pill*

® Can use gradient descent, just like when learning neural nets

® But while these problems are smaller scale than deep learning problems,
they have more local optima:
® Use 2nd derivatives to improve optimization

® Can use finite differences or autodiff
® Can use special-purpose nonlinear least squares methods.

® Exploits structure in the problem for a sum-of-squares loss.
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Problem: outliers

outliers
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One idea: robust loss functions

N 2
minimize  J(H) = )" Y p(fu(py) — P))

i=1 j=1
where p(x) is a robust |oss.

Special case: p(x) = x? is L2 loss (same as before)
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Robust loss functions

-3 —2 —1 0 1 2 3

Truncated quad ratic: p(x) = min(xz, 7)
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Robust loss functions
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Robust loss functions

—_— X2

Huber losst=1.5

p(x)

Huber loss:
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Robust loss functions

X

Source: [Barron 2019, "A General and Adaptive Robust Loss Function”]
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Handling outliers

e Can be hard to fit a robust loss, e.g., due to local minima
e Anotheridea: trial and error!

e |et's consider the problem of linear regression

T T

Problem: Fit a line to these data points Least squares fit i

Source: N. Snavely



Counting inliers

Source: N. Snavely



Counting inliers

Inliers: 3

48 Source: N. Snavely



Counting inliers

Inliers: 20

49 Source: N. Snavely



RANSAC

® |dea:

- All the inliers will agree with each other on the
solution; the (hopetully small) number of outliers
will (hopetully) disagree with each other

e RANSAC only has guarantees if there are < 50% outliers

- "All good matches are alike; every bad match is
bad in its own way.”

- Tolstoy via Alyosha Efros

Source: N. Snavely



RANSAC: random sample consensus

RANSAC loop (for N iterations):

e Select four teature pairs (at random)

e Compute homography H

e Countinliers where ||p/ - f(p))l| < e
Afterwards:

e Choose H with largest set of inliers

e Recompute H using only those inliers (often
using high-quality nonlinear least squares) s

Source: Torralba, Freeman, Isola



Simple example: fit a line

e Rather than homography H (8 numbers)
fit y=ax+b (2 numbers a, b) to 2D pairs
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Source: Torralba, Freeman, Isola



Simple example: fit a line

* Pick 2 points
e Fit line
® Countinliers

3 mlier O

O O

~O O
O
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Source: Torralba, Freeman, Isola



Simple example: fit a line

* Pick 2 points
e [it line
® Countinliers
4 1lier O O
—

oL O O
O
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Source: Torralba, Freeman, Isola



Simple example: fit a line

* Pick 2 points
e [it line

® Countinliers

O mlier
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Source: Torralba, Freeman, Isola



Simple example: fit a line

* Pick 2 points
e [it line

® Countinliers

8 mnlier

56

Source: Torralba, Freeman, Isola



Simple example: fit a line

e Use biggest set of inliers

* Do |least-square fit
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Source: Torralba, Freeman, Isola



Warping with a homography (PS5

1. Compute features using SIFT

2. Match features

mpute homography using RANSAC

w“‘“\' 0y . ~ e 3 =0
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Source: N. Snavely




How do we perform this warp?



Image warping

Given a coordinate transformation (x’,y’) = T(x,y)
and a source image f(x,y), how do we compute a
transformed image g(x’,y’) = (T(x,y))?

Source: N. Snavely



Forward warping

e Send each pixel f(x) to its corresponding
location (x’,y’) = T(x,y) in g(x’,y’)

e \What if a pixel lands “between” two pixels?

Source: N. Snavely



Forward warping

e Send each pixel f(x) to its corresponding
location (x’,y’) = T(x,y) in g(x’,y’)

e \What if a pixel lands “between” two pixels?

e Answer: add “contribution” to several pixels,
normalize later (splatting)

e Can still resultin holes
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o
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fx,y) ’ gx,y’)

Source: N. Snavely



Backward (inverse) warping

e Get each pixel g(x%y’) from its corresponding
location (x,y) = T-'(x,y) in f(x,y)

 Requires taking the inverse of the transform

e \What it pixel comes from "between” two pixels?
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Source: N. Snavely



Backward (inverse) warping

* Get each pixel g(x’) from its

corresponding location x’ = h(x) in f(x)
e \What if pixel comes from “between” two pixels?

e Answer: resample color value from

interpolated source image
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Source: N. Snavely



Other geometric problems



A similar geometric problem: triangulation

Given projection p; of unknown 3D point X in two or

more images (with known cameras P)), find X

Source: D. Fouhey



Triangulation

Given projection p; of unknown 3D point X in two or more
images (with known camera projection matrices P), find X

Source: D. Fouhey



Triangulation

Rays in principle should intersect, but in practice
usually don't exactly due to noise, numerical errors.

Source: D. Fouhey



Triangulation - Geometry

Find shortest segment between viewing rays, set X
to be the midpoint of the segment.

BN

Source: D. Fouhey



Triangulation - Non-linear Optim.

Find X minimizing d(p,, P, X)" + d(p,, P, X)’

where d is distance in image space

Source: D. Fouhey



Triangulation - Linear Optimization

Source: D. Fouhey



First: A better way to handle homogeneous
coordinates in linear optimization

Projection in homogeneous coordinates.
p; = PX,

.e., PX, & p; are proportional/scaled copies of
each other

p,=APX., A#0

This implies their cross productis 0, since

aX b= |a||||D]| sin(0).
p;XPX. =0

Handles the “divide by 0” issue when solving.

Source: D. Fouhey



Triangulation - Linear Optimization

Py = P X py X P X =90 [P, ]P1 X =0
— - ->

0O —a, a b
Cross product - 03 2 bl ) .
as matrix axb= |4 4 21 — [ax]
_a2 al O b3
[p 1P X =0 ([p; JPNX =0 Two equations

[Py, P, X =0 > ([py P X =0 ¥ per camera for
3 unknown in X

Source: D. Fouhey



Next time: Estimating 3D structure

e Given many images, how can we...

1. Figure out where they were all taken trom?
2. Build a 3D model of the scene?

This is the structure from motion problem.

74
Source: N. Snavely



Structure from motion
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Reconstruction (side) (top)

e Input: images with pixels in correspondence  p;; = (u;;V; )

e Qutput
o Structure: 3D location x; for each point p;
e Motion: camera parameters R;, t; possibly K

e Objective function: minimize reprojection error
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Camera calibration & triangulation

* Suppose we know 3D points
- And have matches between these points and an image
- Computing camera parameters similar to homography estimation

* Suppose we have know camera parameters, each of which observes a
point

- We can solve for the 3D location

e Seems like a chicken-and-egg problem, but in StM we can solve both at
oncel

Source: N. Snavely



Next class: more 3D



