
CS 5670: Introduction to Computer Vision

Lecture 19: Two-view geometry

Most slides from Noah Snavely



Today

• Epipolar geometry  
• Stereo matching 
• Image alignment
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PS5: making panoramas

Source: N. Snavely



Camera parameters

• How can we model the geometry of a camera?

“The World”

Camera
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Three important coordinate systems: 
1. World coordinates 
2. Camera coordinates 
3. Image coordinates 

(x, y, z)

How do we project a given world point (x, y, z) to an image point? 4Source: N. Snavely



Coordinate frames

World coordinates Camera coordinates Image coordinates

Figure credit: Peter Hedman
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Source: N. Snavely



Camera parameters

To project a point (x, y, z) in world coordinates into a camera 
• First transform (x, y, z) into camera coordinates 
• Need to know 

– Camera position (in world coordinates) 
– Camera orientation (in world coordinates) 

• Then project into the image plane to get image (pixel) 
coordinates 

– Need to know camera intrinsics
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Source: N. Snavely



Projection matrix
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Pq
(in homogeneous image coordinates)
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Source: N. Snavely



Extrinsics
• How do we get the camera to “canonical form”? 

– (Center of projection at the origin, x-axis points right, y-axis points 
up, z-axis points backwards)

Step 1: Translate by -c

0

8
Source: N. Snavely



Extrinsics

0

Step 1: Translate by -c 

How do we 
represent translation 
as a matrix 
multiplication?

• How do we get the camera to “canonical form”? 
– (Center of projection at the origin, x-axis points right, y-axis 

points up, z-axis points backwards)
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Source: N. Snavely



Extrinsics

Step 1: Translate by -c 
Step 2: Rotate by R

3x3 rotation matrix

0
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Source: N. Snavely

• How do we get the camera to “canonical form”? 
– (Center of projection at the origin, x-axis points right, y-axis 

points up, z-axis points backwards)



Extrinsics

0

Step 1: Translate by -c 
Step 2: Rotate by R

(with extra row/column of [0 0 0 1])
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Source: N. Snavely

• How do we get the camera to “canonical form”? 
– (Center of projection at the origin, x-axis points right, y-axis 

points up, z-axis points backwards)



Perspective projection

(intrinsics)

in general, 

: aspect ratio (1 unless pixels are not square)

: skew (0 unless pixels are shaped like rhombi/parallelograms)

: principal point ((w/2,h/2) unless optical axis doesn’t intersect projection plane at image center)

(upper triangular matrix)

(converts from 3D rays in camera 
coordinate system to pixel coordinates)
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Source: N. Snavely



Typical intrinsics matrix

• 2D affine transform corresponding to a scale by f (focal length) 
and a translation by (cx, cy) (principal point) 

• Maps 3D rays to 2D pixels
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Source: N. Snavely



Projection matrix

translationrotationprojection
intrinsics

This part converts 3D points in 
world coordinates to 3D rays in the 
camera’s coordinate system. There 
are 6 parameters represented (3 
for position/translation, 3 for 
rotation).

The K matrix converts 3D rays 
in the camera’s coordinate 
system to 2D image points in 
image (pixel) coordinates.
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Source: N. Snavely

<latexit sha1_base64="cIDpyDGeczYNW5VmwcxcchjOaDI=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuCqJFHVZdOOygn1AW8pkOmmHTiZxZiKUmIW/4saFIm79DXf+jZM2iLYeGDiccy/3zPEizpR2nC+rsLS8srpWXC9tbG5t79i7e00VxpLQBgl5KNseVpQzQRuaaU7bkaQ48DhteeOrzG/dU6lYKG71JKK9AA8F8xnB2kh9+yDpBliPPB/V0x96l/btslNxpkCLxM1JGXLU+/ZndxCSOKBCE46V6rhOpHsJlpoRTtNSN1Y0wmSMh7RjqMABVb1kmj9Fx0YZID+U5gmNpurvjQQHSk0Cz0xmCdW8l4n/eZ1Y+xe9hIko1lSQ2SE/5kiHKCsDDZikRPOJIZhIZrIiMsISE20qK5kS3PkvL5LmacU9q1RvquXaZV5HEQ7hCE7AhXOowTXUoQEEHuAJXuDVerSerTfrfTZasPKdffgD6+MbBZmWHQ==</latexit>

Pq



(sometimes called t)

translationrotationprojection
intrinsics
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Source: N. Snavely
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Pq

Projection matrix



Focal length
• Can think of as “zoom” 

• Also related to field of view

24mm 50mm

200mm 800mm
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Source: N. Snavely
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Source: N. Snavely

Changing focal length
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http://petapixel.com/2013/01/11/how-focal-length-affects-your-subjects-apparent-weight-as-seen-with-a-cat/

Source: N. Snavely



Distortion

• Radial distortion of the image 
– Caused by imperfect lenses 
– Deviations are most noticeable for rays that pass through the 

edge of the lens

No distortion Pin cushion Barrel
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Source: N. Snavely
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Source: N. Snavely



Modeling distortion

• To model lens distortion 
– Use above projection operation instead of standard projection matrix multiplication

Apply radial distortion

Apply focal length  
translate image center

Project                 
to “normalized”  

image coordinates

21
Source: N. Snavely



Correcting radial distortion

from Helmut Dersch 22

http://www.path.unimelb.edu.au/~dersch/architect/arch.html
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Estimating depth from multiple views



Stereo vision

~6cm ~50cm
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Source: Torralba, Isola, Freeman



1 vs. 2 eyes
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Source: Torralba, Isola, Freeman



26

1 vs. 2 eyes

Source: Torralba, Isola, Freeman



27
Source: Torralba, Isola, FreemanImage source: wikipedia

Brewster stereoscopeStereoscopic card

https://en.wikipedia.org/wiki/Stereoscope


Depth without objects

28 Source: Torralba, Isola, FreemanJulesz, 1971 



Geometry for a simple stereo system
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Source: Torralba, Isola, Freeman



Geometry for a simple stereo system
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Source: Torralba, Isola, Freeman



Geometry for a simple stereo system
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Geometry for a simple stereo system
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Source: Torralba, Isola, Freeman

Can we estimate Z?



Geometry for a simple stereo system
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Geometry for a simple stereo system
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Source: Torralba, Isola, FreemanSimilar triangles!



Geometry for a simple stereo system
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Geometry for a simple stereo system
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Geometry for a simple stereo system
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Source: Torralba, Isola, Freeman
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Geometry for a simple stereo system
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T+XR-XL

Z-f
=

Similar triangles:

T
Z

Solving for Z:

Z = f 
T

XL - XR

Disparity

Source: Torralba, Isola, Freeman



In 3D
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camera 1 camera 2

T

Source: Torralba, Isola, Freeman



Disparity map
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Left image Right image

Second picture is ~1m to the right

Source: Torralba, Isola, Freeman



Disparity map
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Left image Right image

Source: Torralba, Isola, Freeman



Disparity map
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Left image Right image

Source: Torralba, Isola, Freeman



Disparity map
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D(x,y) Z(x,y) =
f

D(x,y)

I(x,y) I’(x,y) = I(x+D(x,y), y)I’(x,y)

Source: Torralba, Isola, Freeman



Finding correspondences
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We only need to search for matches along horizontal lines.

Source: Torralba, Isola, Freeman
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Basic stereo algorithm

For each “epipolar line”
	 For each pixel in the left image

• compare with every pixel on same epipolar line in right image
• pick pixel with minimum match cost

Source: R. Szeliski



Computing disparity
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Source: Torralba, Isola, Freeman



Computing disparity
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Semi-global matching [Hirschmüller 2008]

Source: Torralba, Isola, Freeman



Can also learn depth from a single image

48
Source: Torralba, Isola, Freeman
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Active stereo with structured light

camera 2

camera 1

projector

camera 1

projector

Source: R. Szeliski[Zhang, Curless, Seitz, 2002]

Easy-to-match pattern Do we really need the second camera?
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CSE 576, Spring 2008 Stereo matching

RGB-D sensors

RGB cameraInfrared 
projector

Infrared camera



General case
• The two cameras need not have parallel optical axes.
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Source: Torralba, Isola, Freeman
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Source: Torralba, Isola, Freeman
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Do we need to search for matches only along horizontal lines?

Source: Torralba, Isola, Freeman
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Do we need to search for matches only along horizontal lines?

Source: Torralba, Isola, Freeman
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It looks like we might need to search everywhere... are there any constraints 
that can guide the search?

Do we need to search for matches only along horizontal lines?

Source: Torralba, Isola, Freeman



Stereo correspondence constraints

O O’

p p’ ?

If we see a point in camera 1, are there any constraints on where we 
will find it on camera 2?

Camera 1 Camera 2
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Source: Torralba, Isola, Freeman



O O’

p
p’ ?
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Stereo correspondence constraints

Source: Torralba, Isola, Freeman



Some terminology
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O O’

p
p’ ?

Source: Torralba, Isola, Freeman



Some terminology
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O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

Baseline

Source: Torralba, Isola, Freeman



Some terminology
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O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipole: point of intersection of baseline with the image plane

epipole epipoleBaseline

Source: Torralba, Isola, Freeman



Some terminology
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O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world 

Epipole: point of intersection of baseline with the image plane

epipolar plane

Source: Torralba, Isola, Freeman



Some terminology
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O O’

p
p’ ?

Baseline: the line connecting the two camera centers

Epipolar plane: the plane that contains the two camera centers and a 3D point in the world 

Epipolar line: intersection of the epipolar plane with each image plane

Epipole: point of intersection of baseline with the image plane

epipolar line epipolar line

Source: Torralba, Isola, Freeman



Epipolar constraint

O O’

p
p’ ?
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epipolar line

We can search for matches across epipolar lines 

All epipolar lines intersect at the epipoles

Source: Torralba, Isola, Freeman



Epipolar constraint
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O O’

p
p’

• If we observe a point in one image, its position in the other 
image is constrained to lie on the epipolar line.

f(p) = [a, b, c]
• How do we get this line? We want a function that, given a point  tells us the line:p

such that ax′￼+ by′￼+ c = 0
where . In other words: p′￼ = [x′￼, y′￼] f(p)⊤p′￼ = 0



The fundamental matrix
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O O’

p
p’

f(p) = p⊤F = [a, b, c]

It can be shown that our function, , can be written as a matrix multiplication in 
homogeneous coordinates!

f

F: the fundamental matrix 
p: image point in homogeneous coordinates



The fundamental matrix
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O O’

p
p’

Source: Torralba, Isola, Freeman

p⊤F p′￼ = 0
More concisely:

It can be shown that our function, , can be written as a matrix multiplication in 
homogeneous coordinates!

f

F: the fundamental matrix 
p, p’: corresponding image points



The fundamental matrix
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O O’

p
p’

Closely related to projection matrix:

p⊤F p′￼ = 0How this works:



The fundamental matrix
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O O’

p
p’

Closely related to projection matrix:

(p⊤F) p′￼ = 0

u: a line induced by p 
p, p’: image points in homogeneous coordinates

u⊤p′￼ = 0
How this works:



Example: converging cameras

Figure from Hartley & Zisserman Source: Kristen Grauman



Image rectification
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Source: A. Efros



Example

Source: N. Snavely



Making panoramas

Source: N. Snavely



Making panoramas



What is the geometric relationship between 
these two images?

?



Why don’t these image line up exactly?

Image alignment

Source: N. Snavely



Recall: affine transformations

affine transformation

what happens when we 
change this row?

Source: N. Snavely



Projective Transformations aka Homographies 
aka Planar Perspective Maps

Called a homography  
(or planar perspective map)

Source: N. Snavely



Homographies

Note that this can be 
0! 

A “point at infinity”

Source: N. Snavely



Homography
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Example: two pictures taken by rotating the camera:

If we try to build a panorama by overlapping them:

Source: Torralba, Isola, Freeman



Homography

80

Example: two pictures taken by rotating the camera:

With a homography you can map both images into a single camera:

Source: Torralba, Isola, Freeman

We’ll see why in PS5!



Plane-to-plane homography

image plane in front image plane below
black area 
where no pixel 
maps to

Source: N. Snavely



Homographies

• Homographies … 
– Affine transformations, and 
– Projective warps 

• Properties of projective transformations: 
– Origin does not necessarily map to origin 
– Lines map to lines 
– Parallel lines do not necessarily remain parallel 
– Closed under composition

Source: N. Snavely



2D image transformations

Source: N. Snavely



How do we perform this warp?



Image warping

Given a coordinate transformation (x’,y’) = T(x,y) 
and a source image f(x,y), how do we compute a 
transformed image g(x’,y’) = f(T(x,y))?

f(x,y) g(x’,y’)x x’

T(x,y)y y’

Source: N. Snavely



Forward warping

• Send each pixel f(x) to its corresponding 
location (x’,y’) = T(x,y) in g(x’,y’)

f(x,y) g(x’,y’)x x’

T(x,y)

• What if a pixel lands “between” two pixels?

y y’

Source: N. Snavely



Forward warping

• Send each pixel f(x) to its corresponding 
location (x’,y’) = T(x,y) in g(x’,y’)

• What if a pixel lands “between” two pixels?

f(x,y) g(x’,y’)x x’

T(x,y)

• Answer: add “contribution” to several pixels, 
normalize later (splatting) 

• Can still result in holes

y y’

Source: N. Snavely



Backward (inverse) warping

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x,y) in f(x,y)

f(x,y) g(x’,y’)x x’

T-1(x,y)

• Requires taking the inverse of the transform 
• What if pixel comes from “between” two pixels?

y y’

Source: N. Snavely



• Get each pixel g(x’) from its 
corresponding location x’ = h(x) in f(x)

• What if pixel comes from “between” two pixels?
• Answer: resample color value from 

interpolated source image

f(x,y) g(x’,y’)x x’

y y’
T-1(x,y)

Source: N. Snavely

Backward (inverse) warping



Next class: estimating geometry from images


