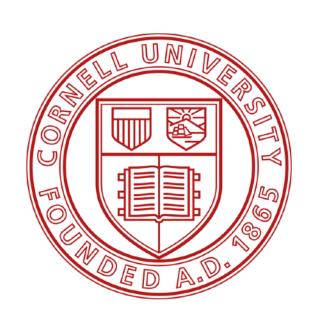
Lecture 15: Diffusion models - Part 2

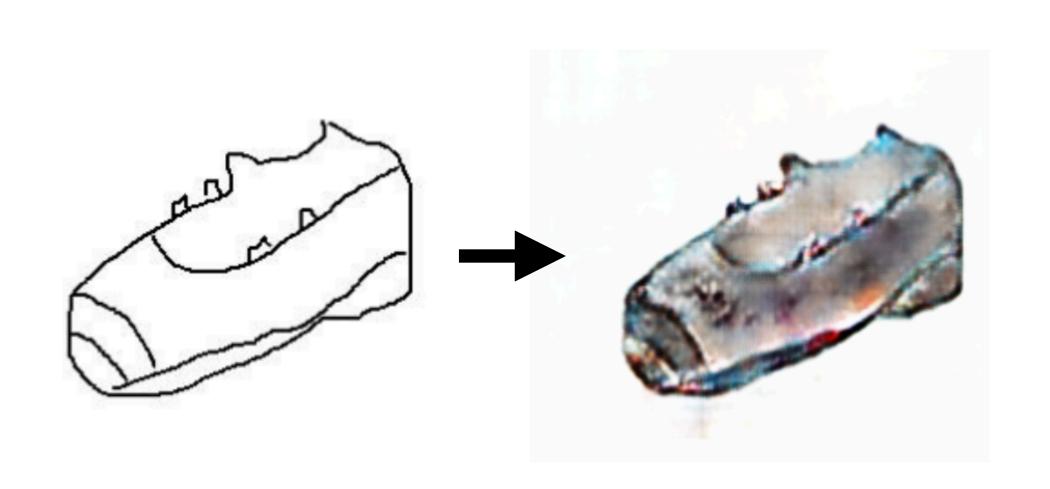
CS 5670: Introduction to Computer Vision

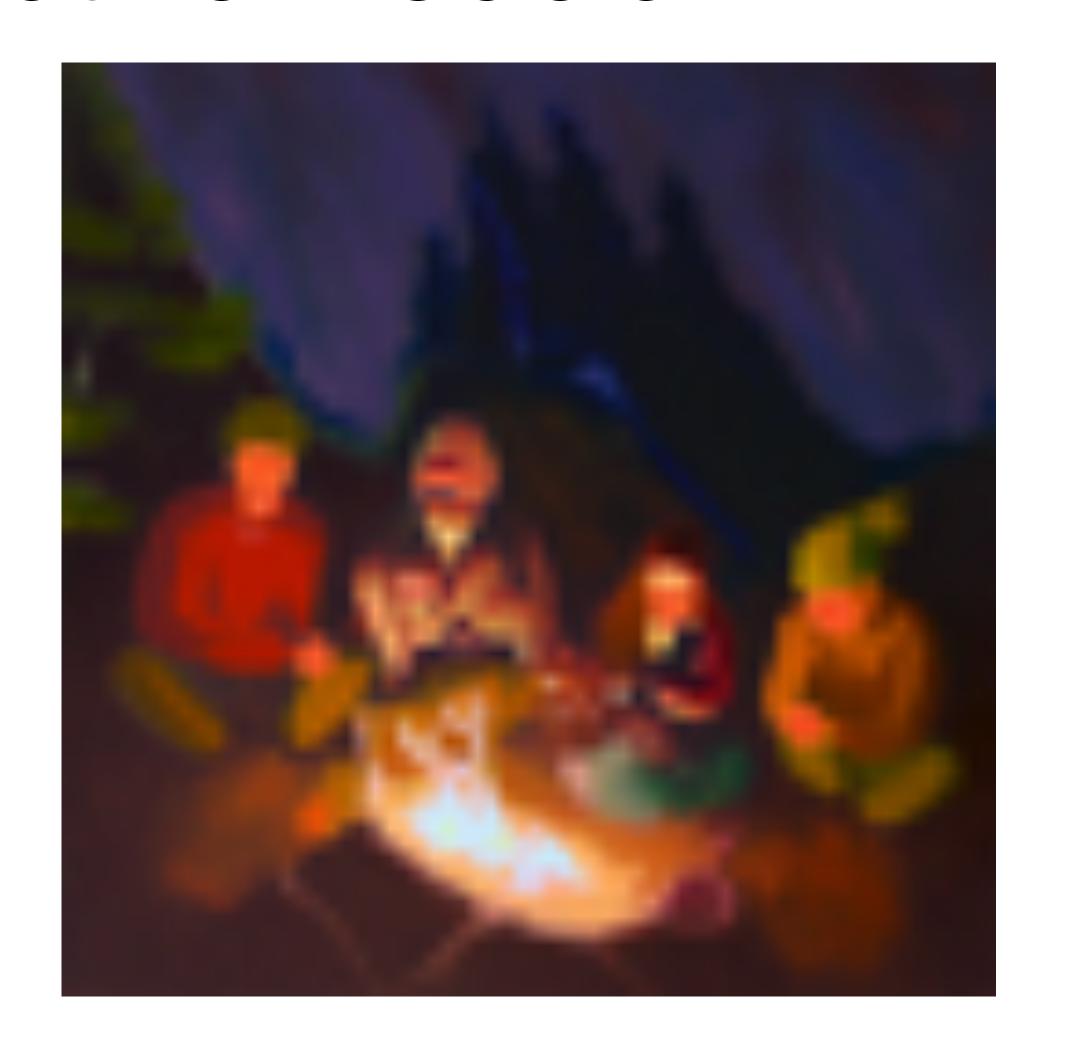


Announcements

- Take-home exam: Mon. 12pm Weds. 12pm
 - Only expected to take a few hours.
 - No lectures, discussion, or office hours during exam time (private Ed Discussion questions only).
 - Theoretical questions and a bit of coding
 - See practice problems that we posted online.
- Guest lecture next Weds.: Xuanchen Lu
- Highly encourage you to do the midterm evaluation!

PS4: Generative models





"an oil"an oil painting of an old man"mpfire"

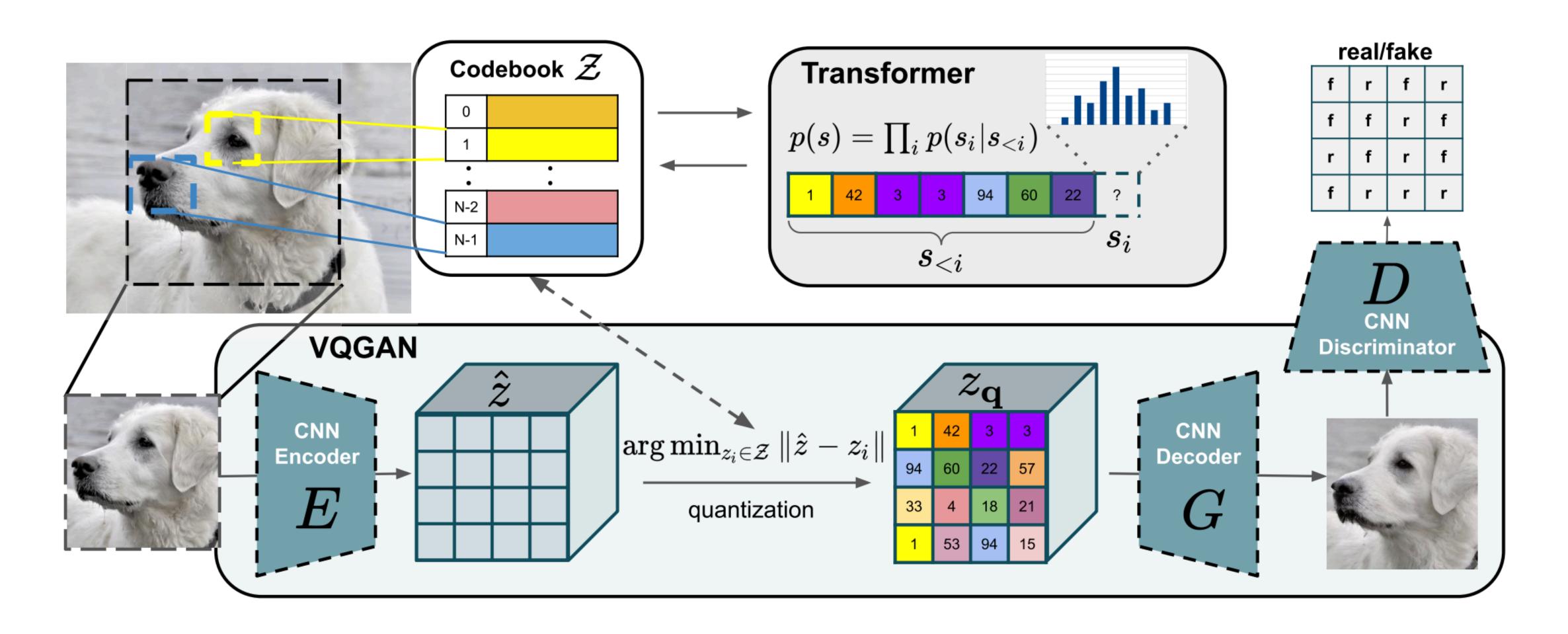
Image translation with GANs

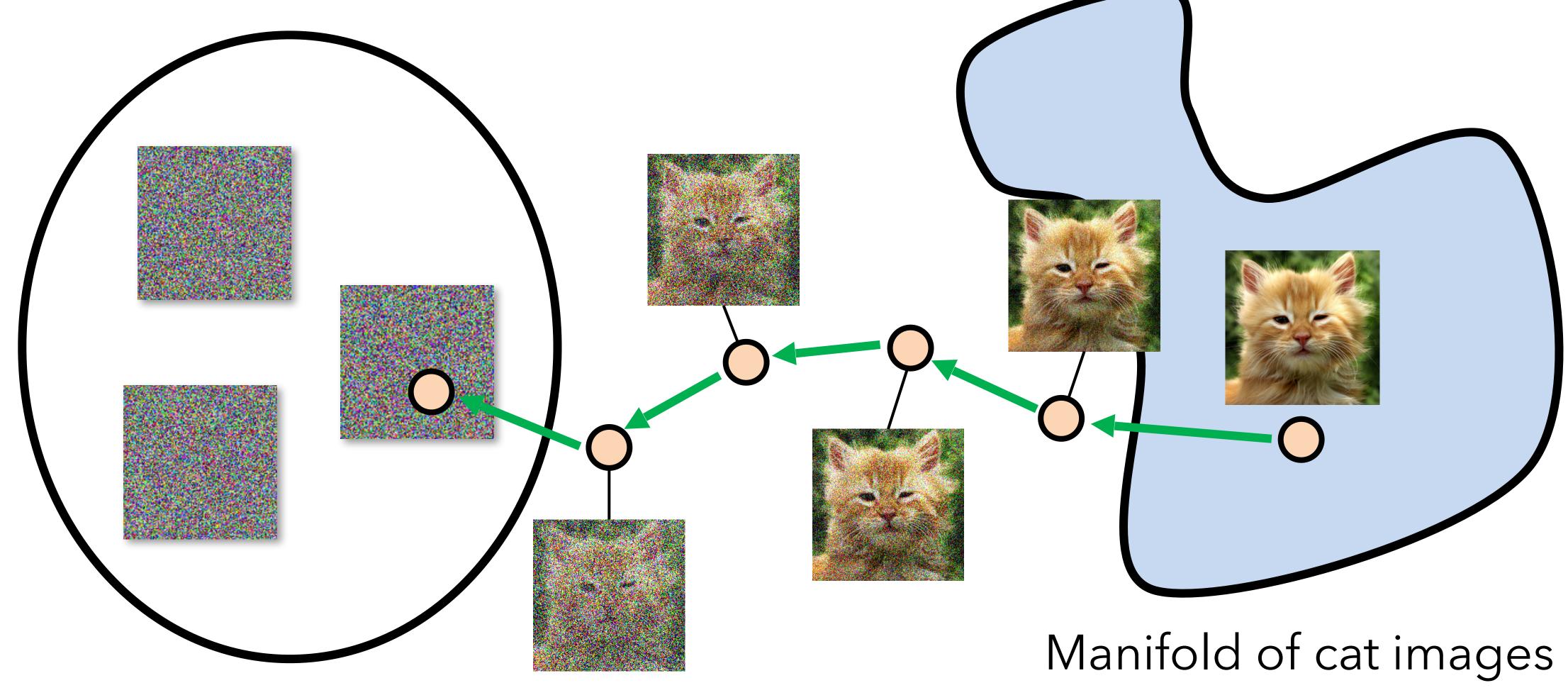
Image manipulation with diffusion

Which of the following is often a challenge of autoregressive image models?

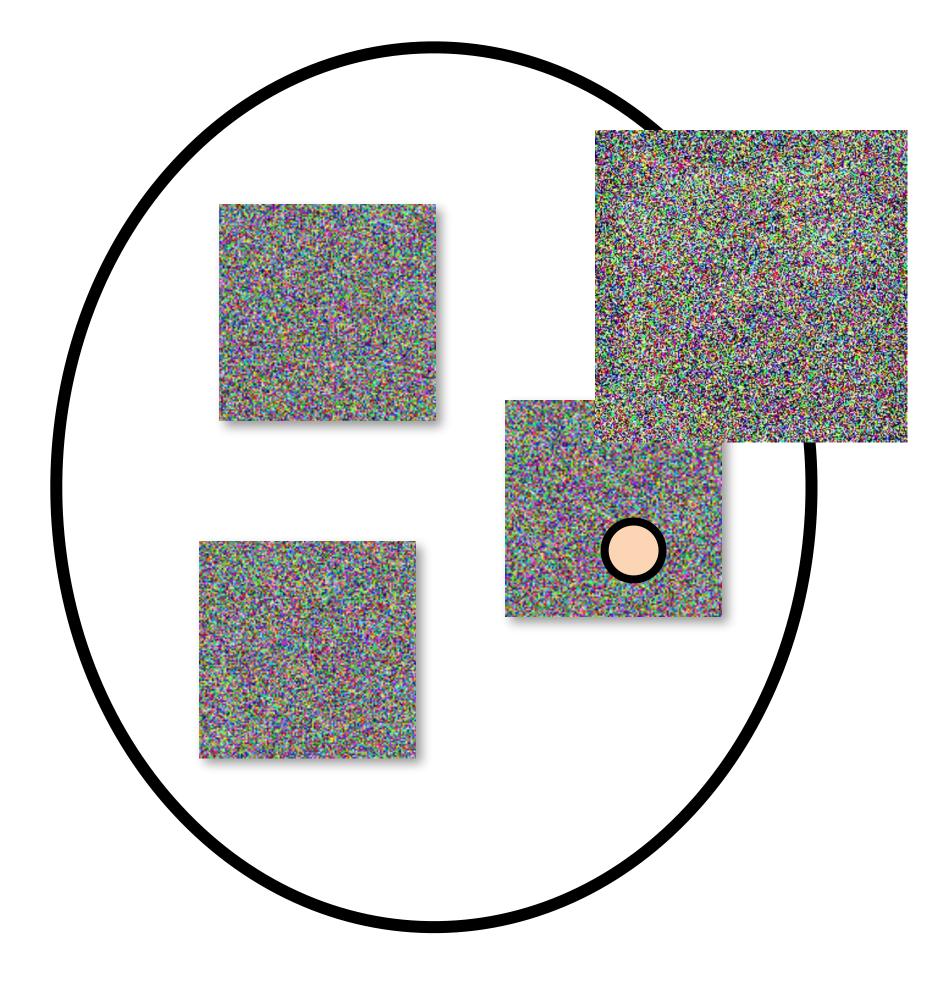
- A. Mode collapse
- B. Defining discrete tokens for image patches
- C. Unstable training due to minimax game

Last class: autoregressive model in latent space

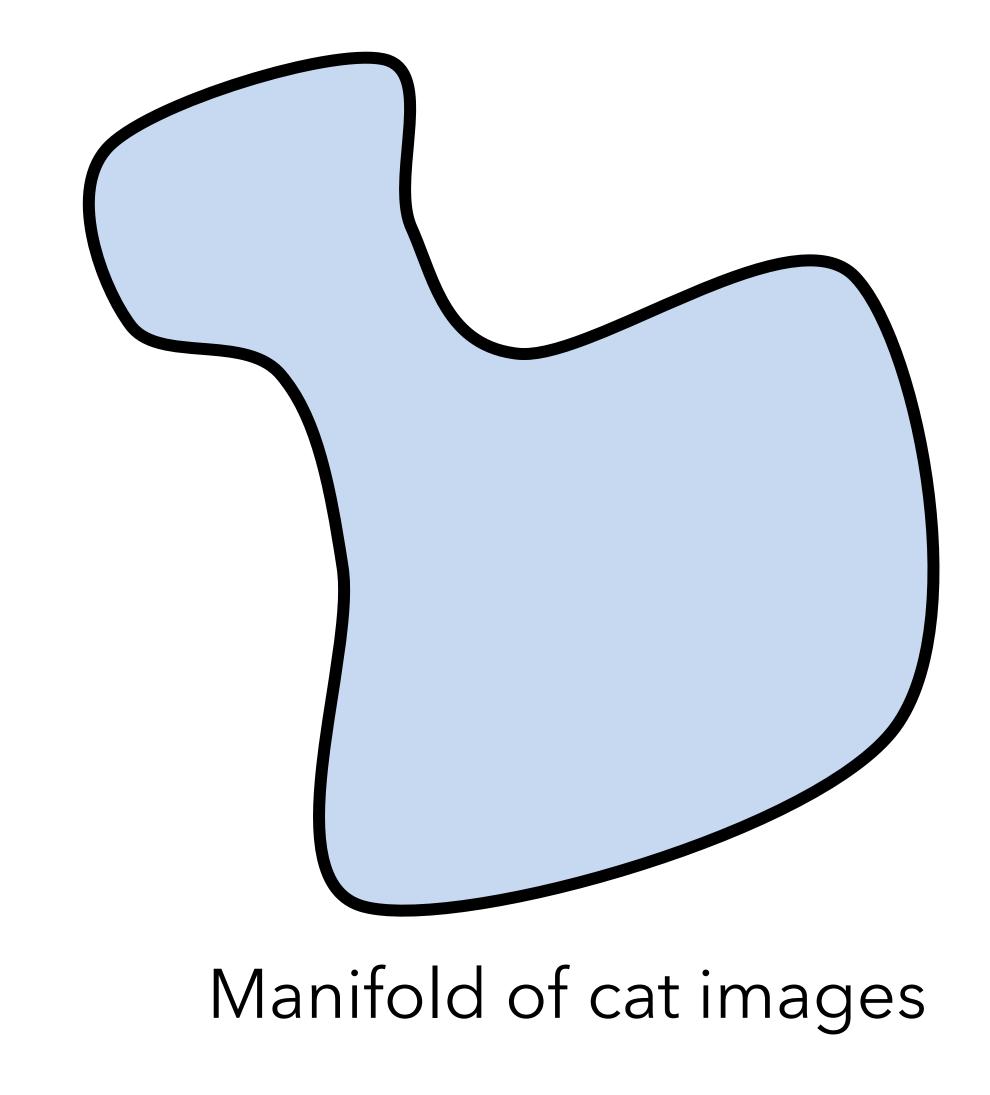


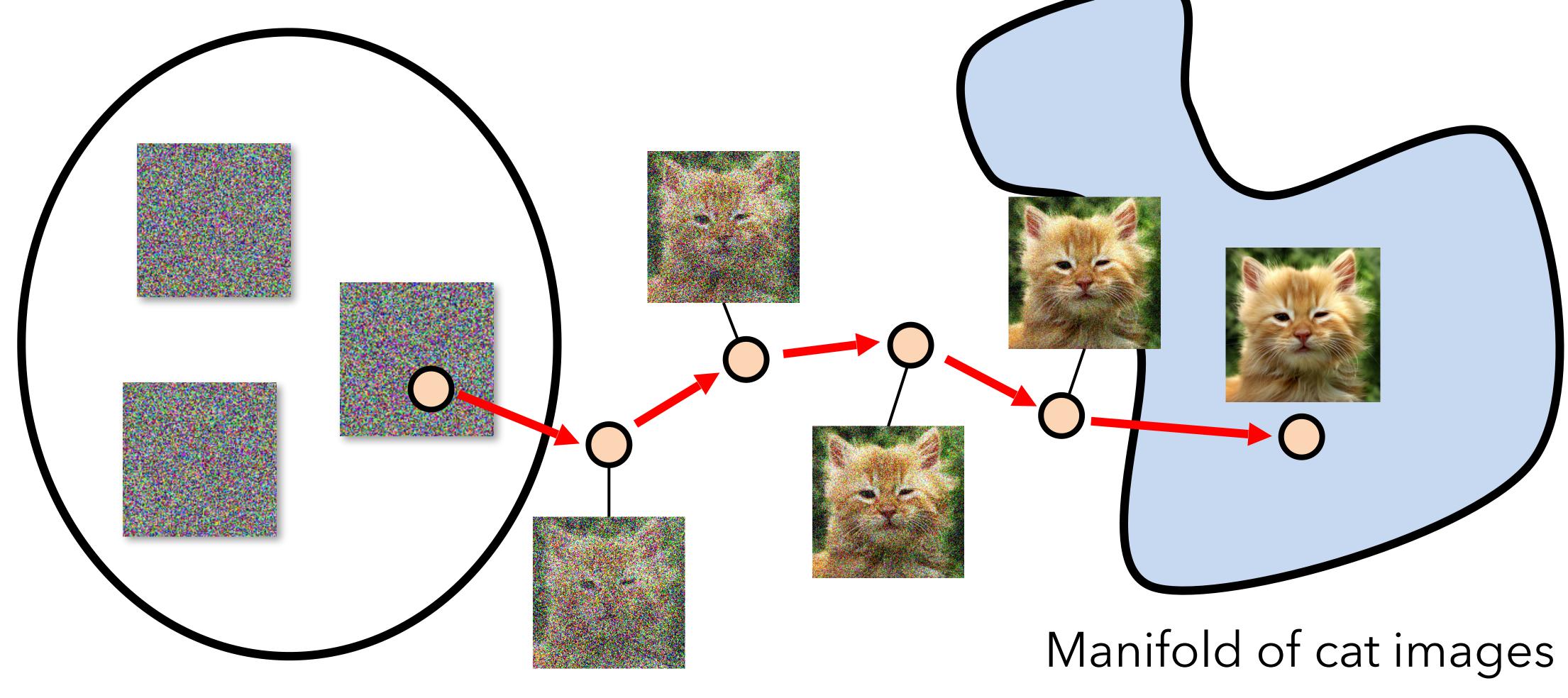


Random images

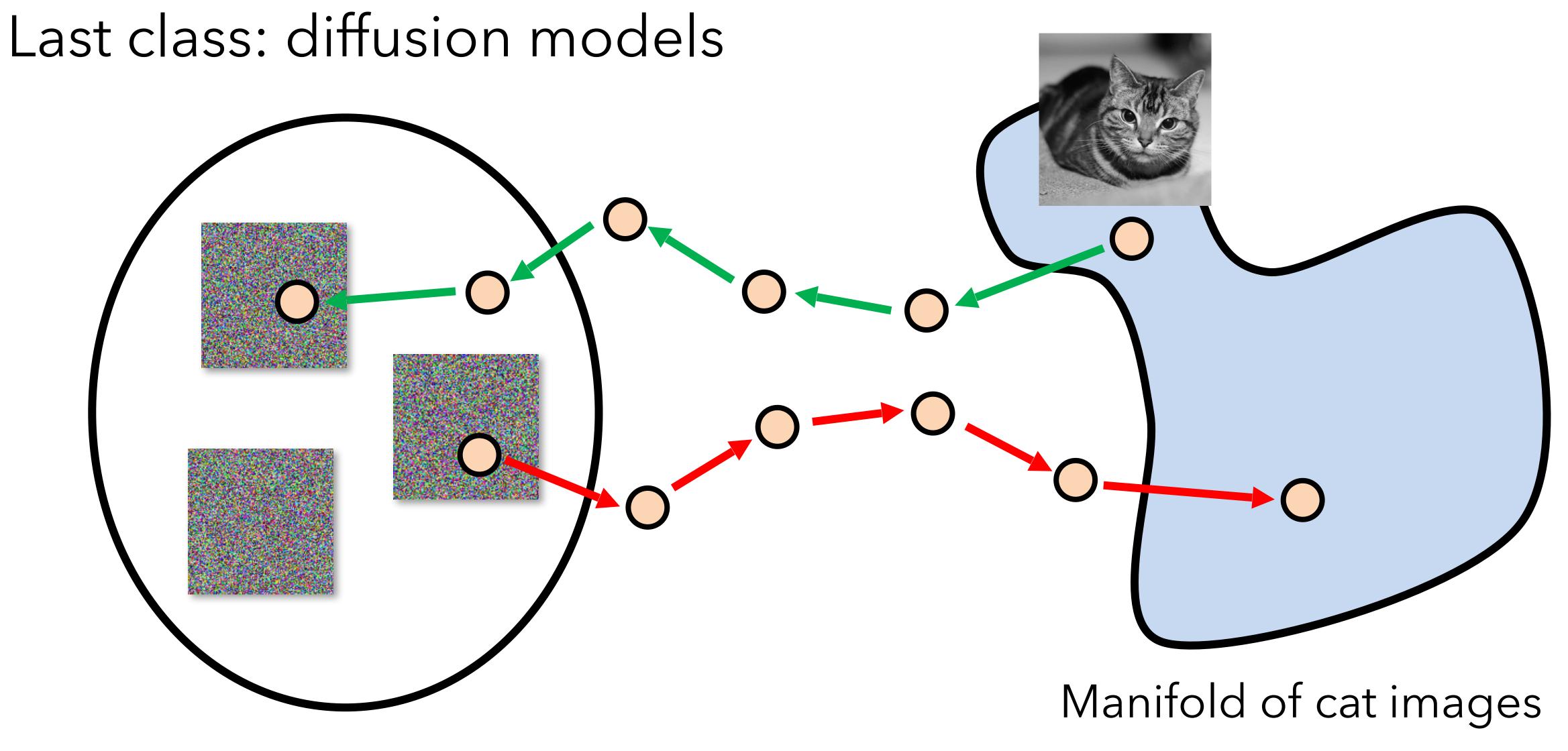


Random images

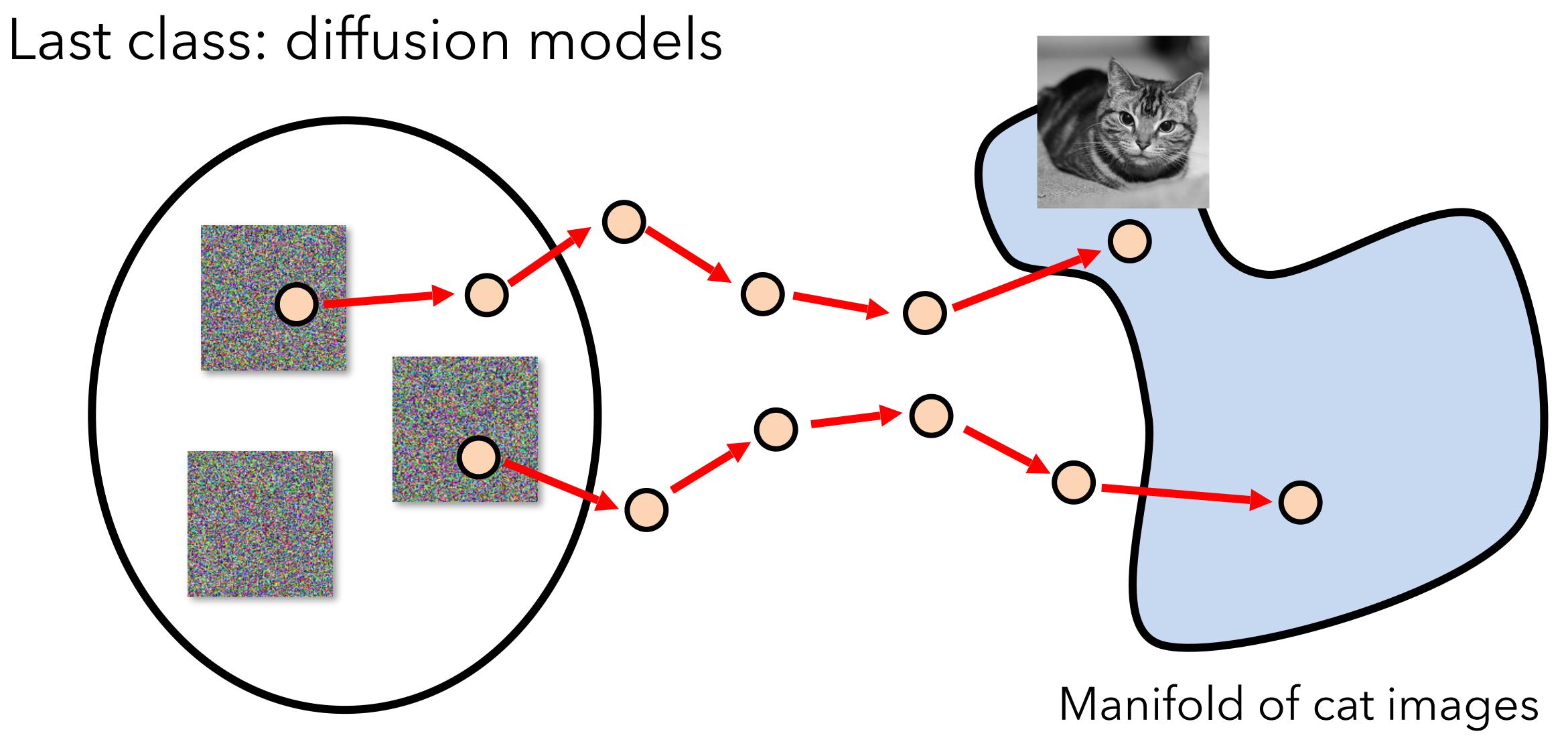




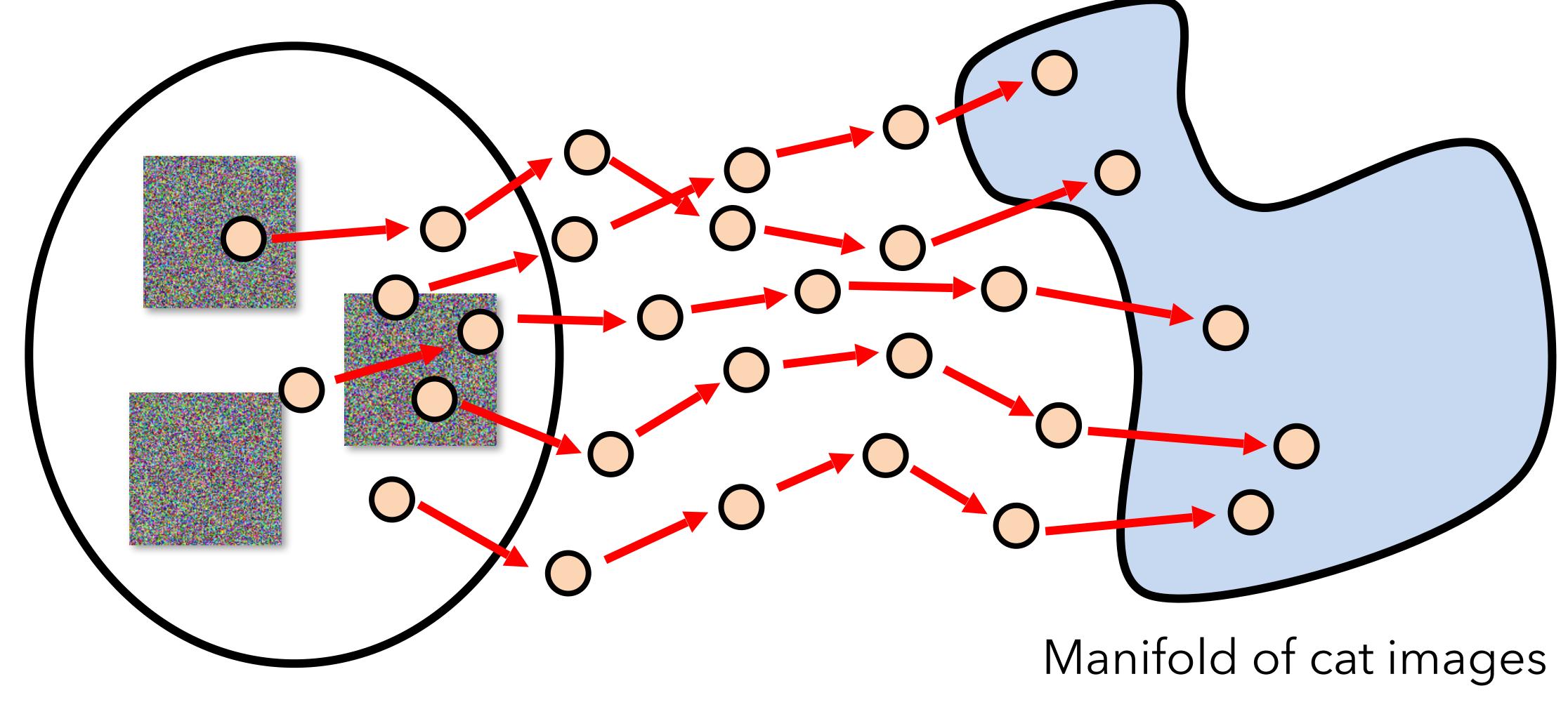
Random images



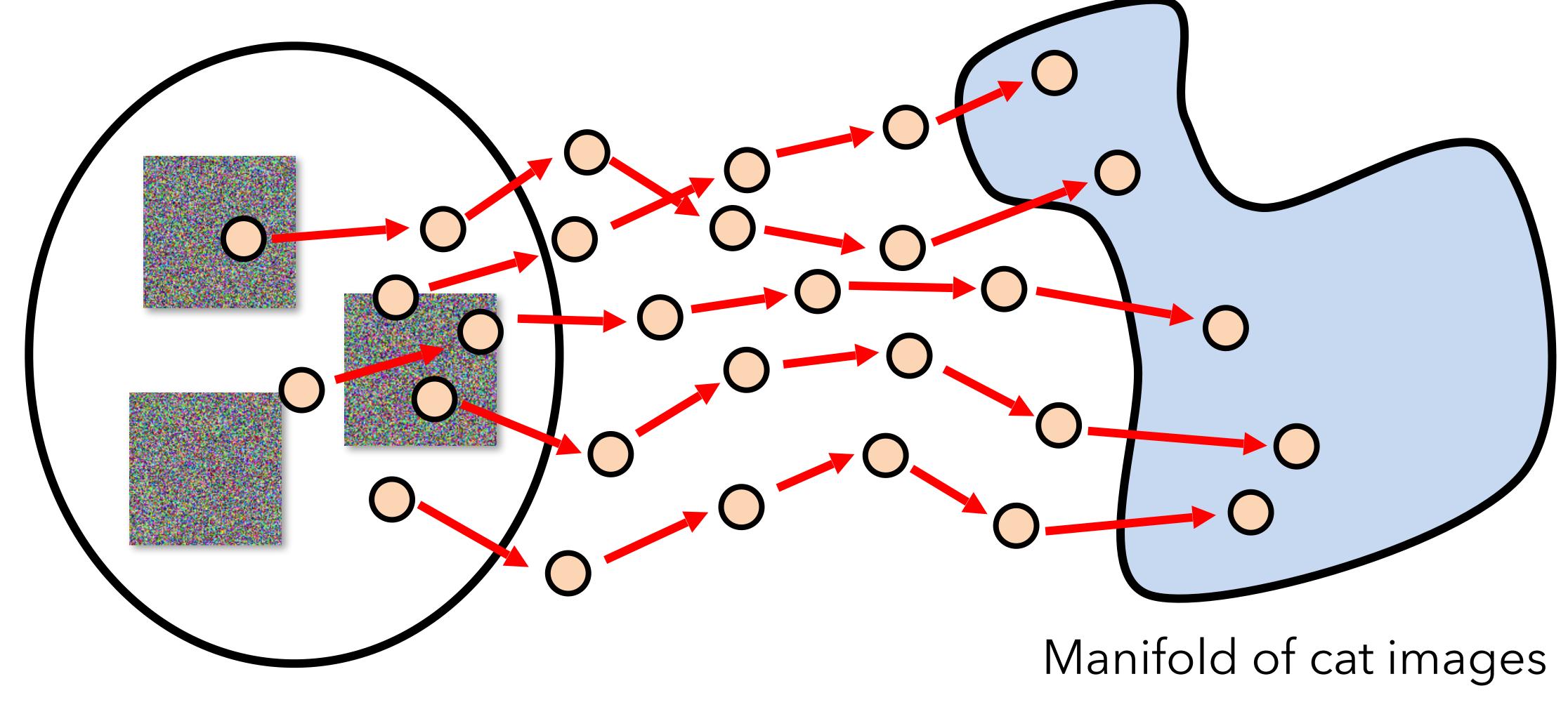
Random images



Random images



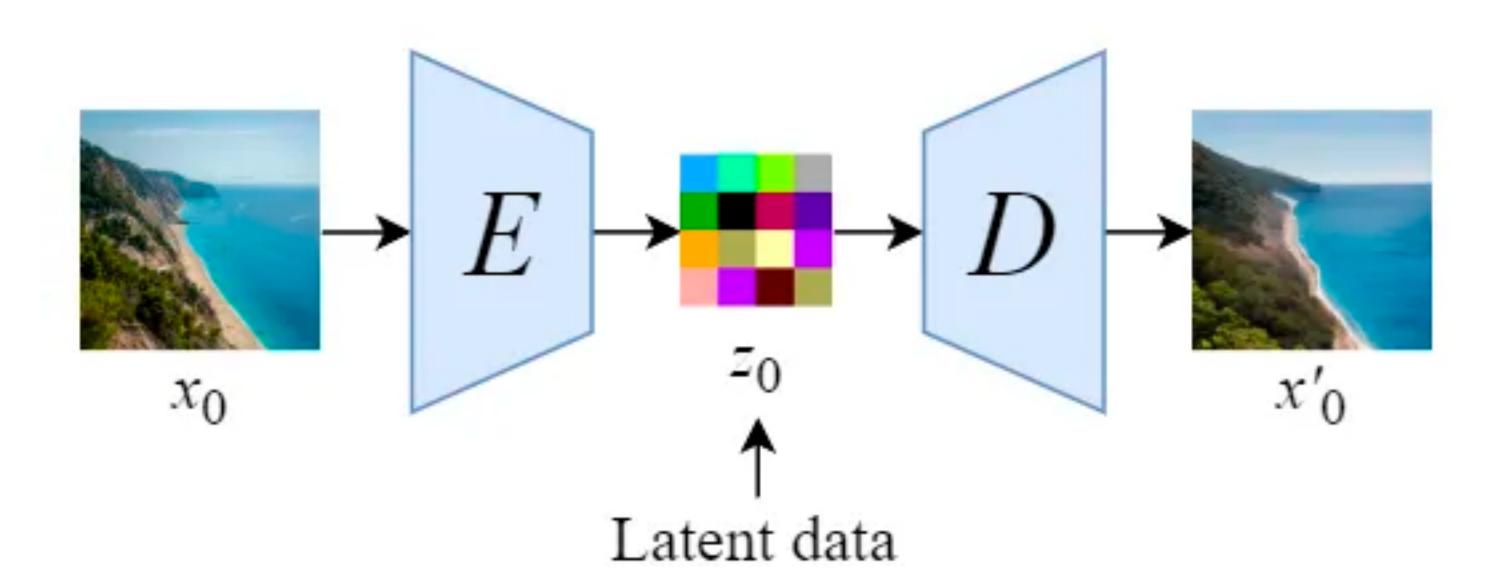
Random images



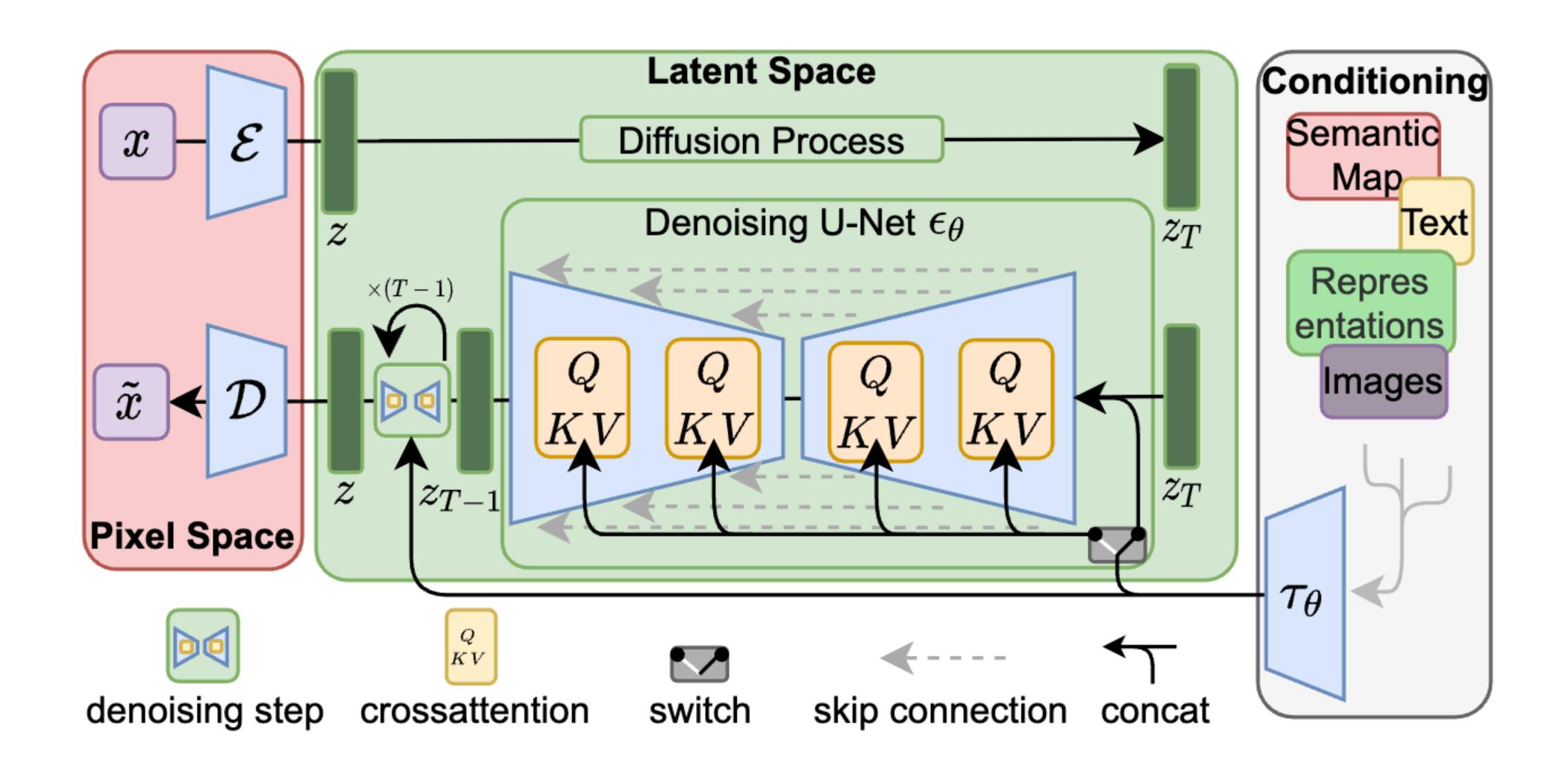
Random images

Latent diffusion models

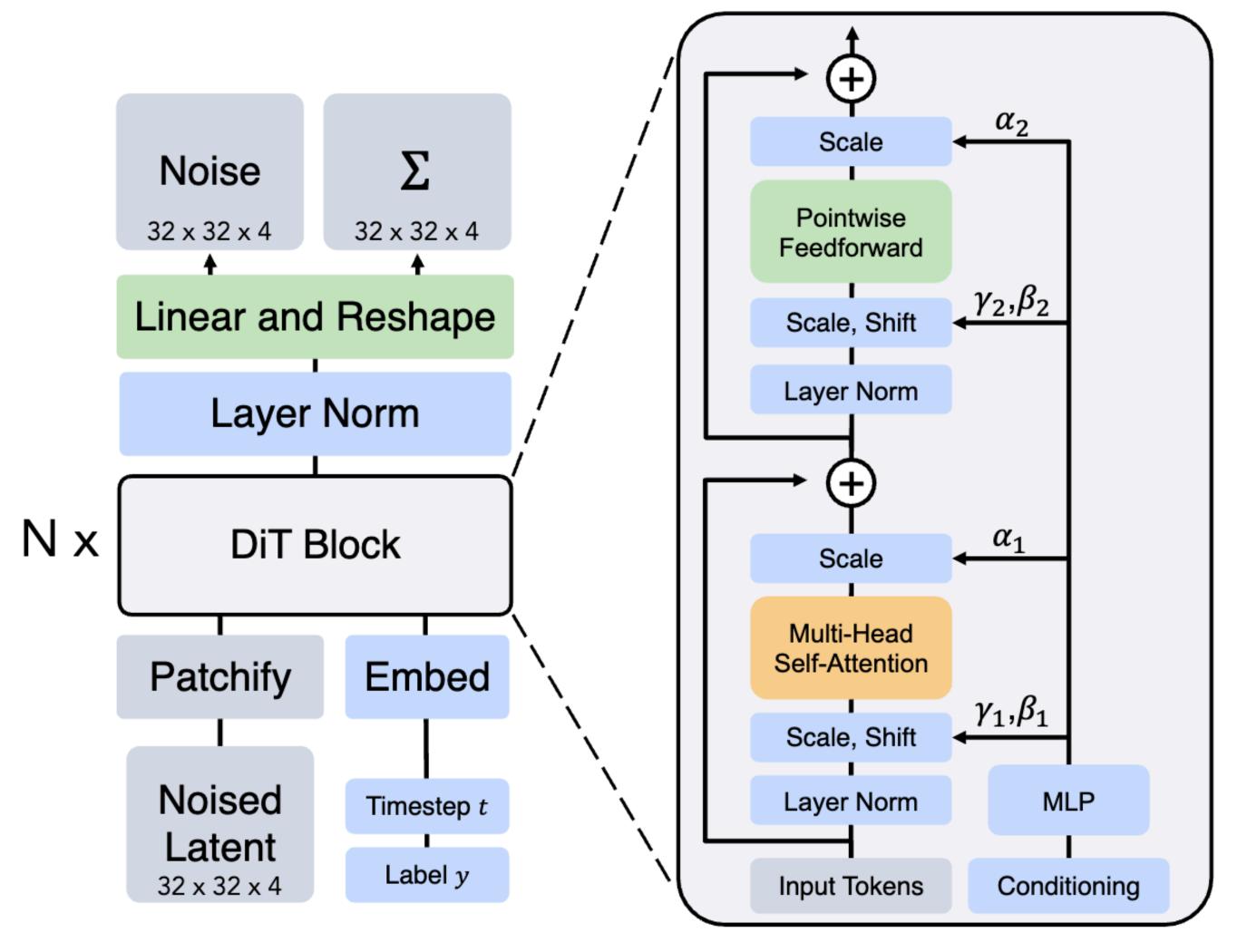
- Use a separate *encoder* and *decoder* to convert images to and from a lower-dimensional latent space, run diffusion in latent space.
- Faster and focuses more on "perceptually important" details.

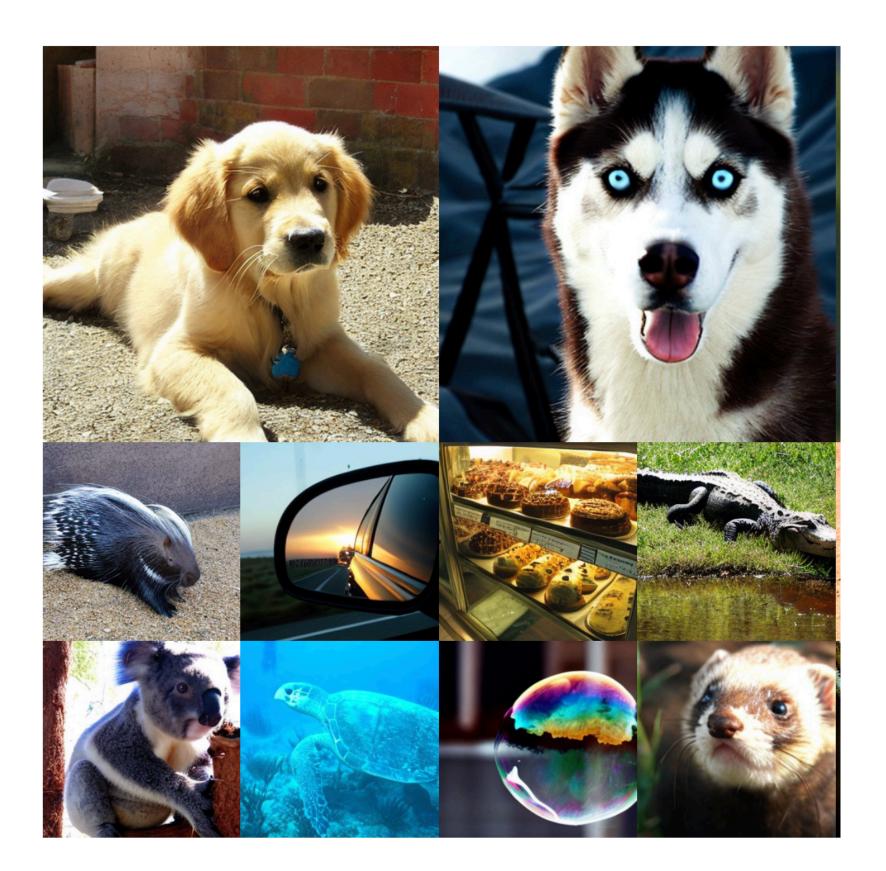


Architectures for latent diffusion: U-Net



Diffusion transformers (DiT)





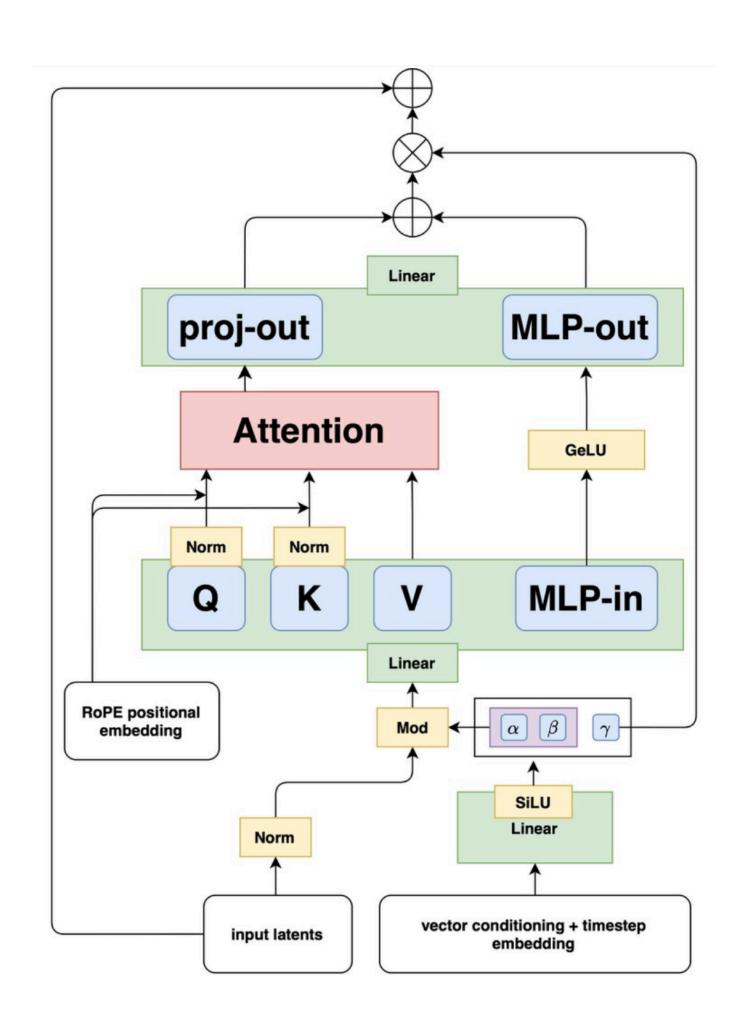
Samples on ImageNet in 2023

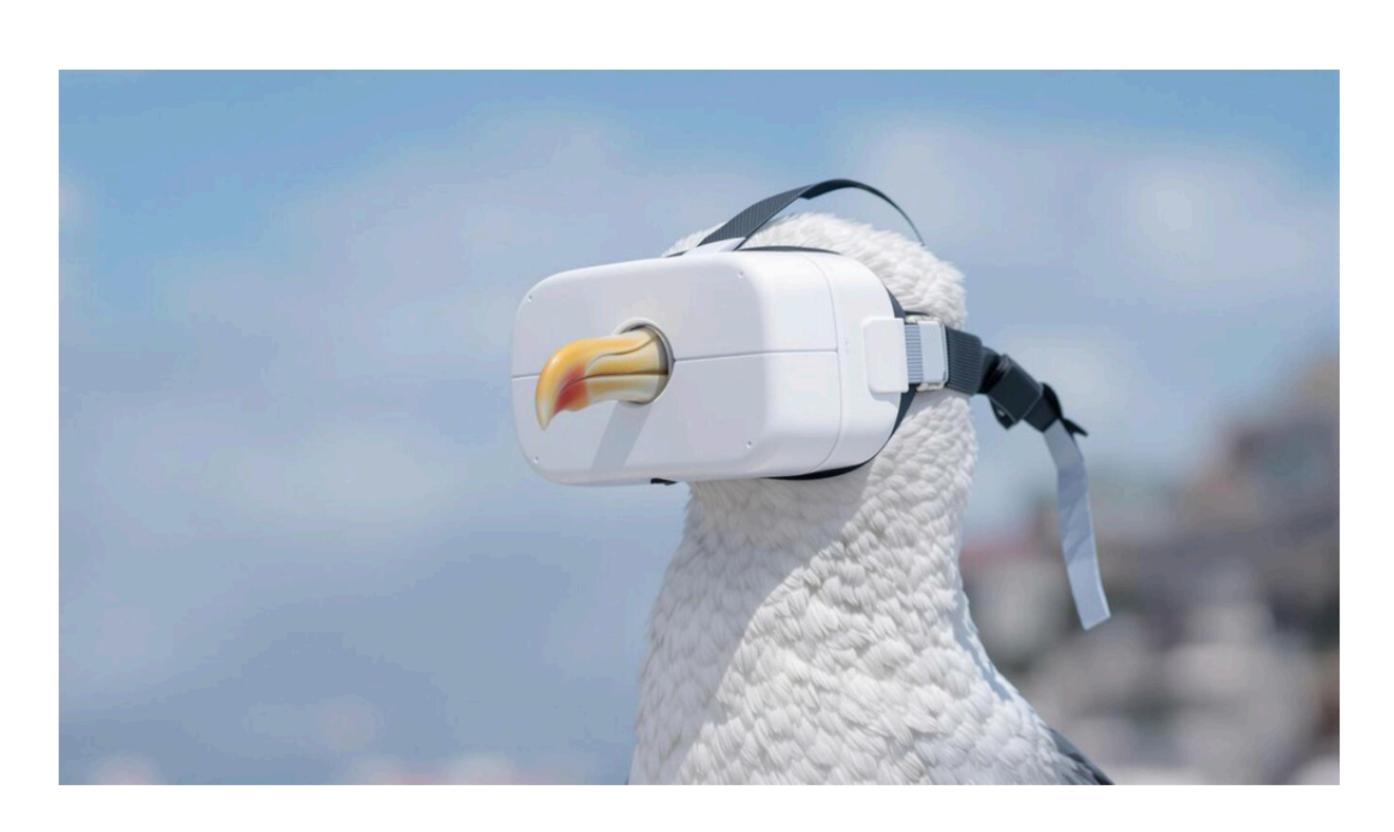
Latent Diffusion Transformer

DiT Block with adaLN-Zero

[Peebles and Xie, 2023]

Diffusion transformers today (DiT)





FLUX.1

Scaled up DiT (12B parameters)

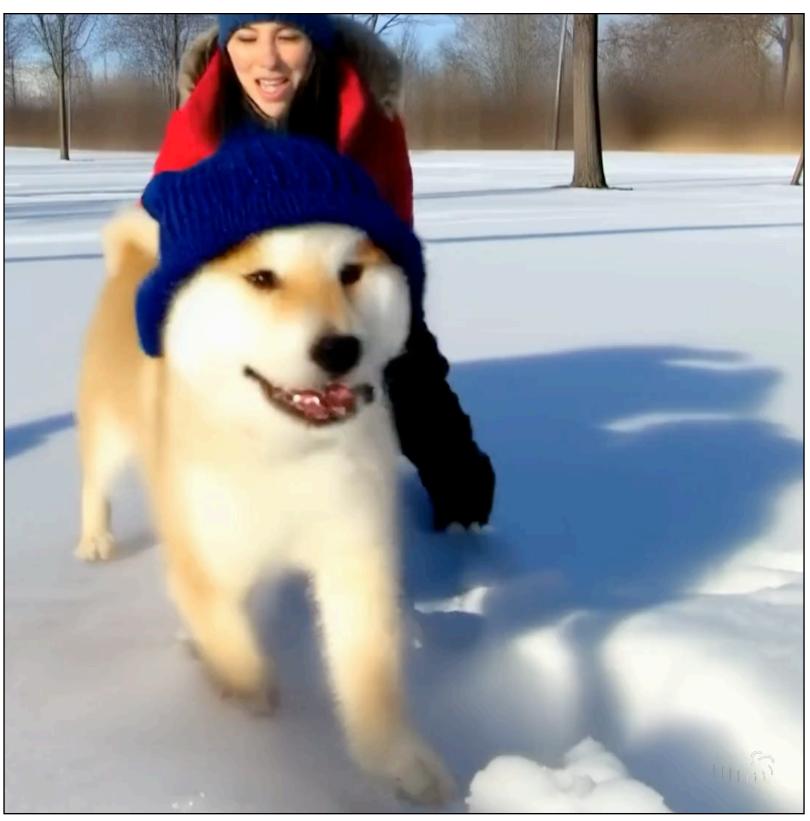
Source: [FLUX.1 Kontext, 2024]

Video models, too

Video models, too



Generations as training progresses



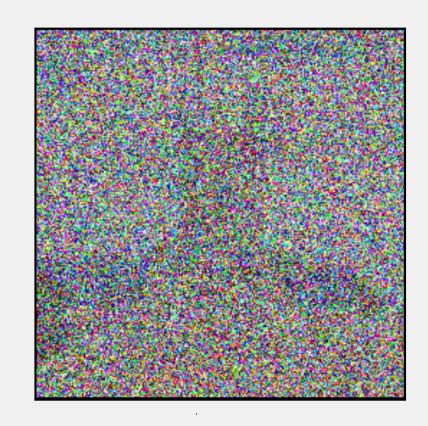
1x training

4x training

32× training

Sketch to photo

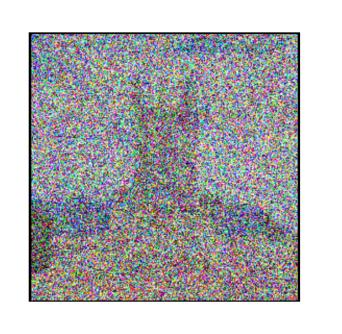
Add noise to a sketch

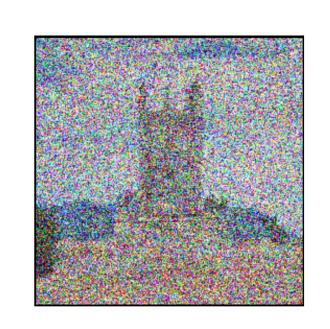


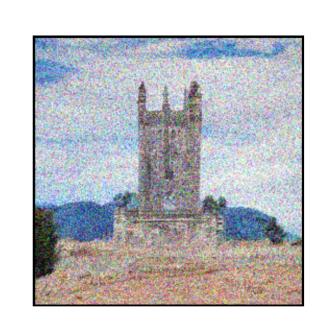
 \mathbf{x}_t

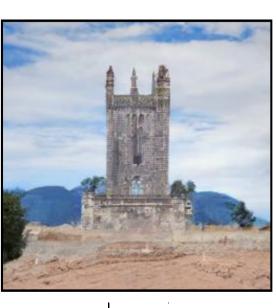
$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$
, for $\epsilon \sim N(0, 1)$

Denoise from t to 0







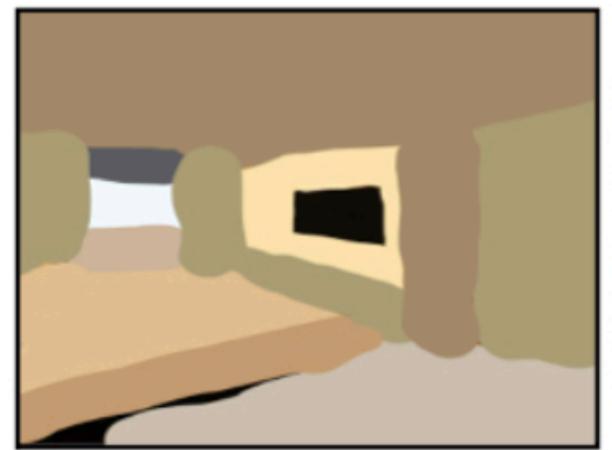


 \mathbf{x}_0

Denoise using diffusion model trained on real images.

Sketch to photo

Stroke Painting to Image

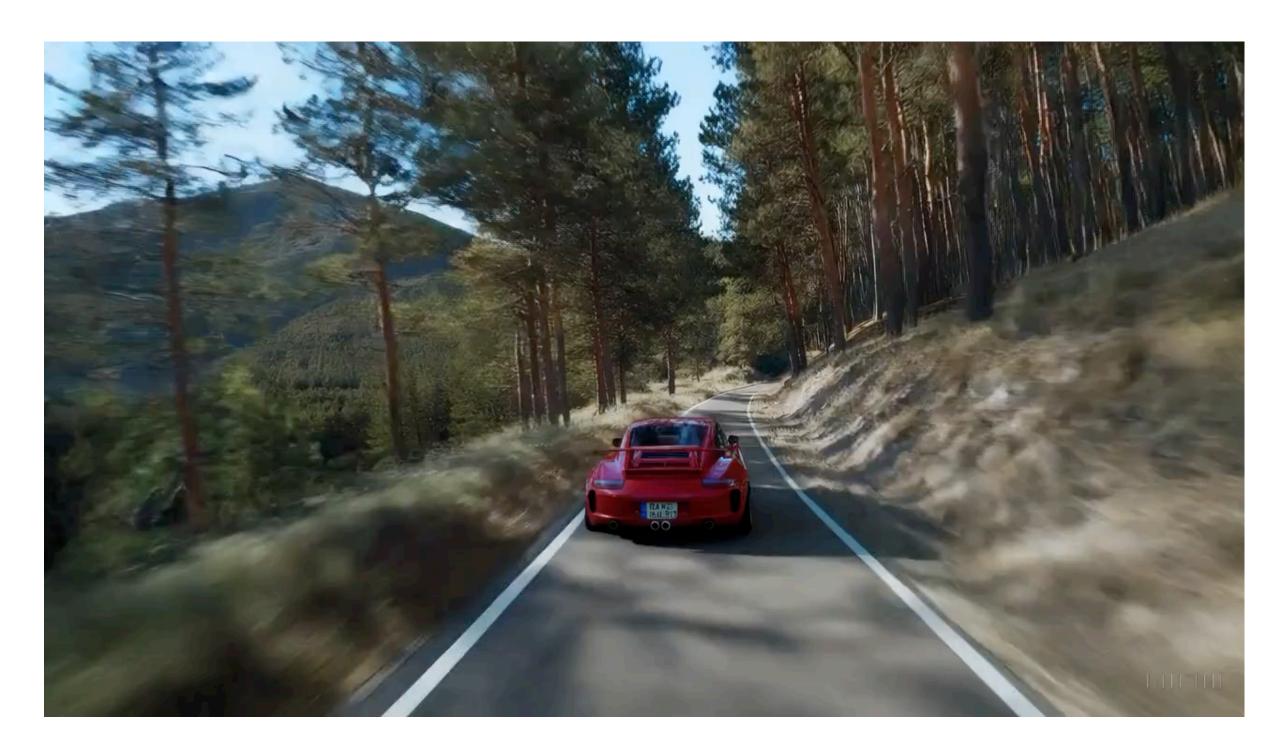


Input Output

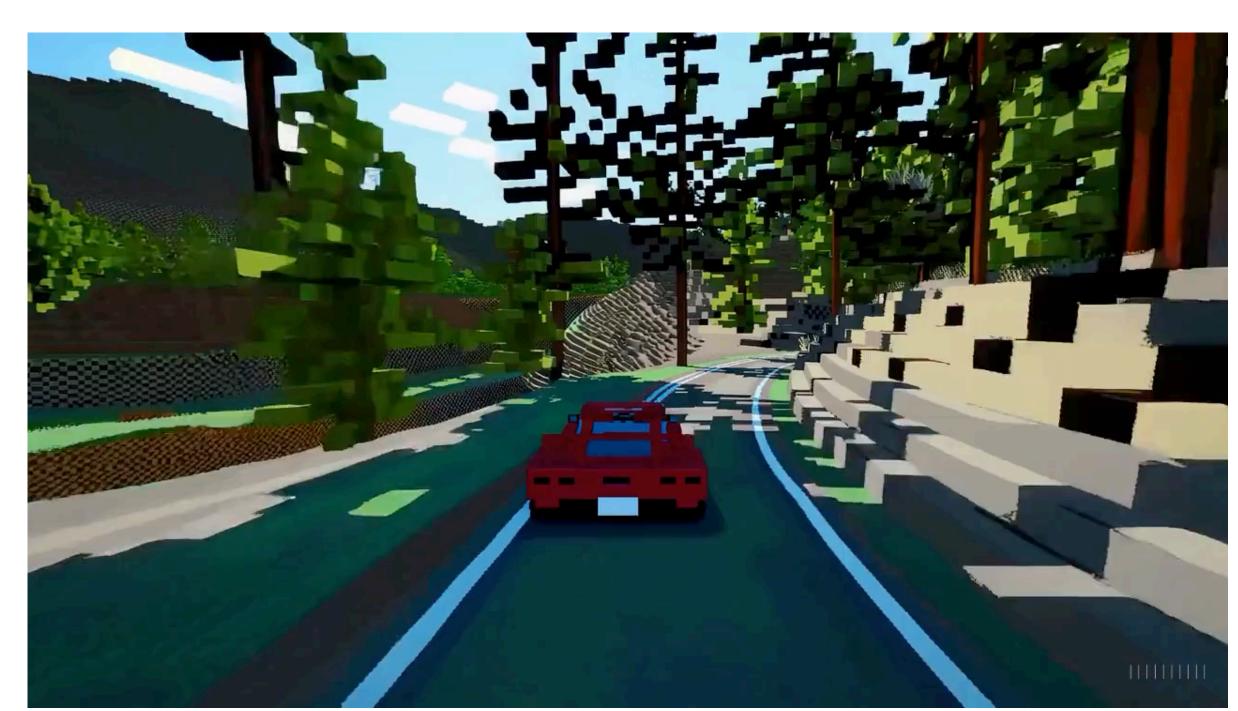
Image-to-image translation with SDEdit

Source

Video-to-video translation with SDEdit and Sora

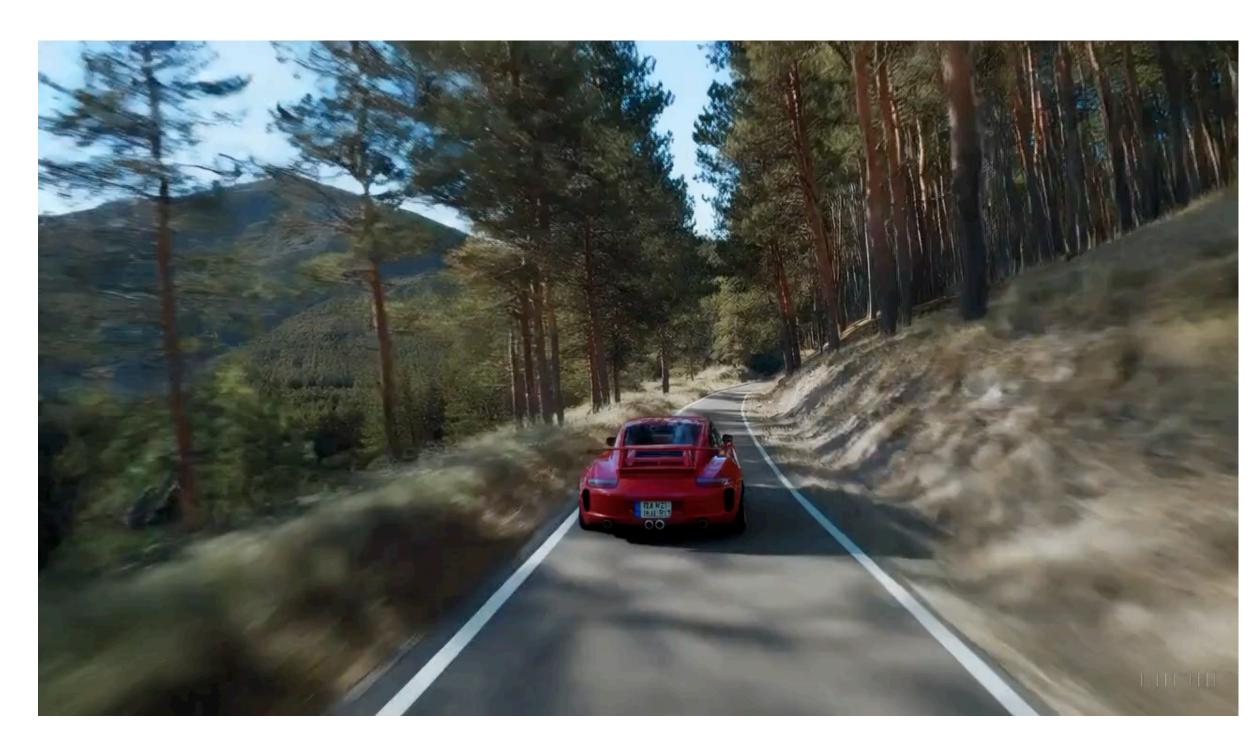


original generated video

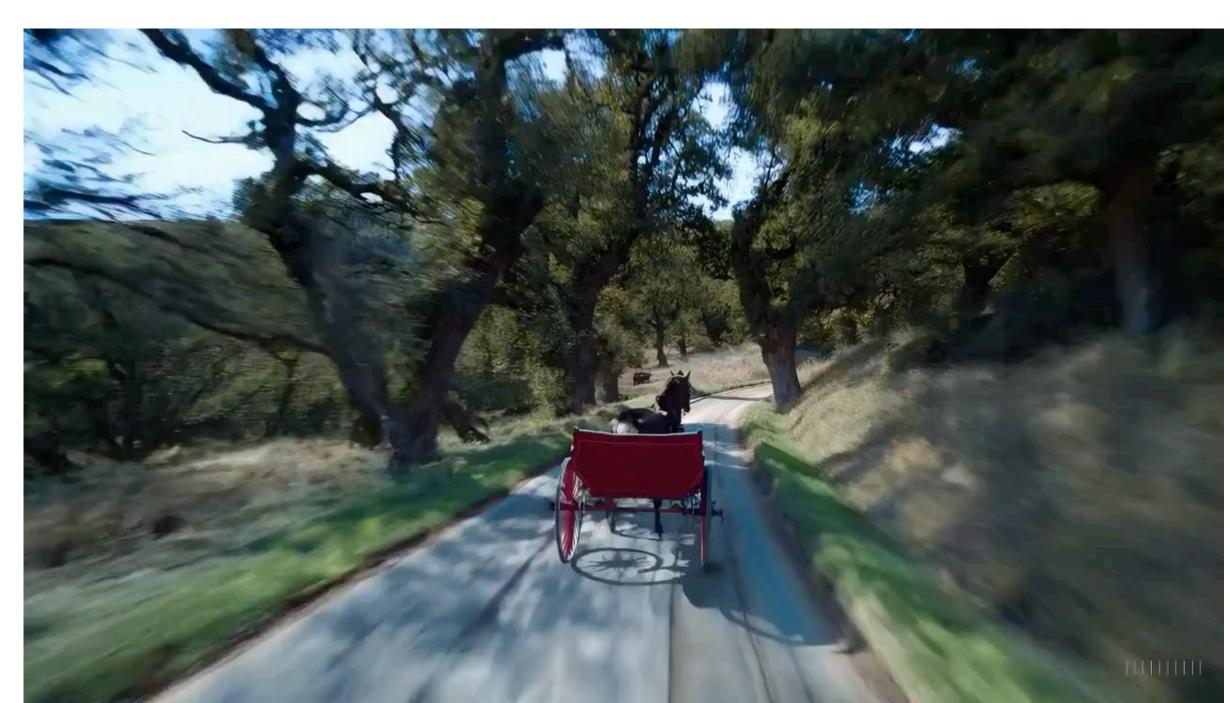


rewrite the video in a pixel art style

Video-to-video translation with SDEdit and Sora



original generated video



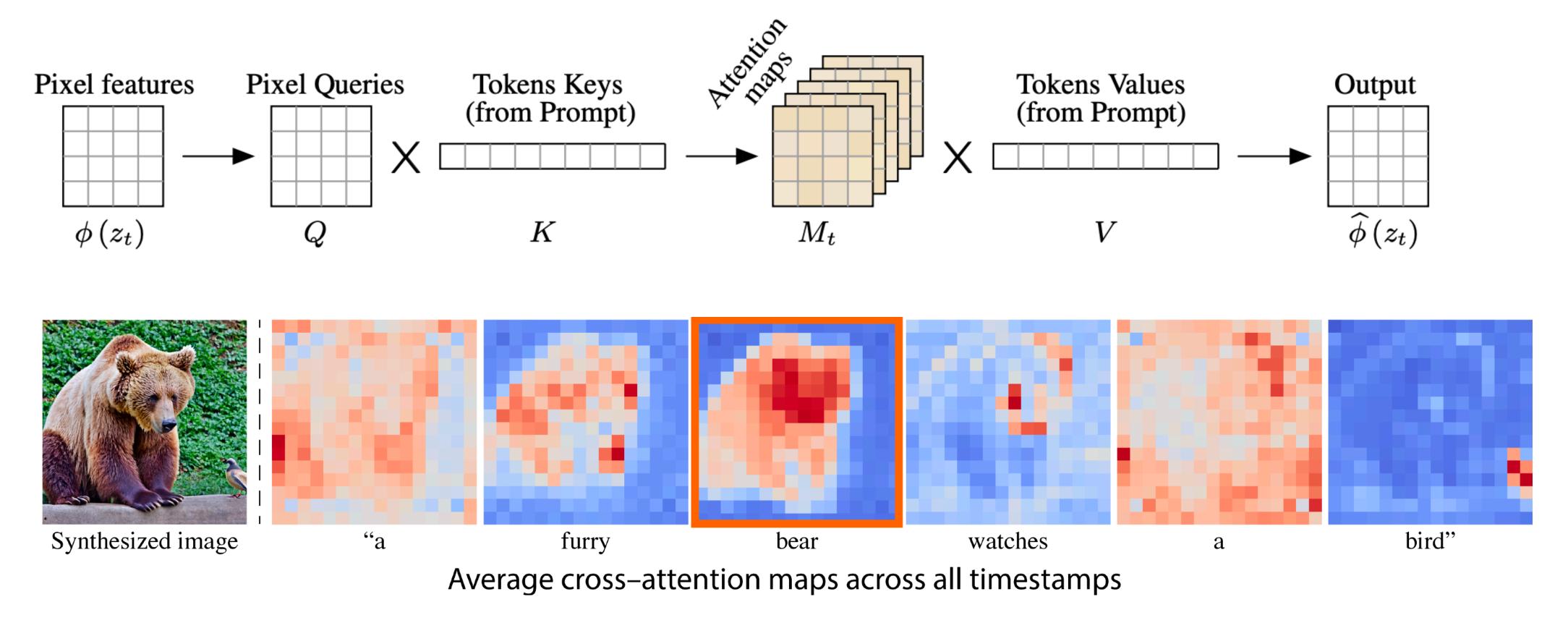
change the video to a medieval theme

Image interpolation

Interpolate between CLIP features, generating an image at each point.

Network visualization

Empirical observation: cross-attention between text and image often conveys style, content, and structure.

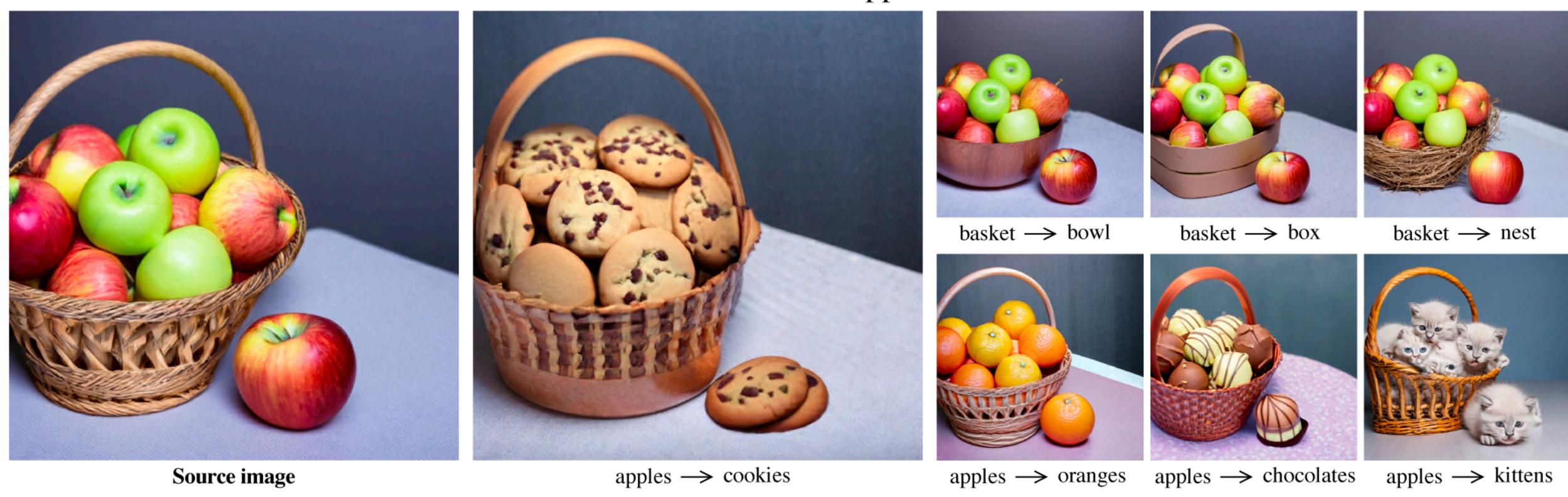


Change text prompt, use same random seed.

Change text prompt, freeze random seed, and freeze attention maps.

Prompt-to-Prompt

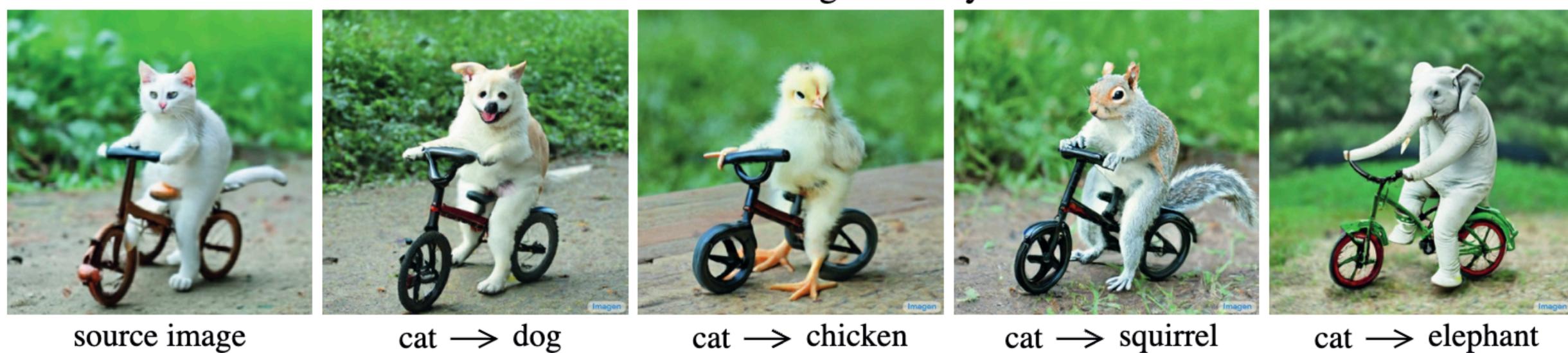
"A basket full of apples."



Freeze the attention map for "apple" or "basket" during generation.

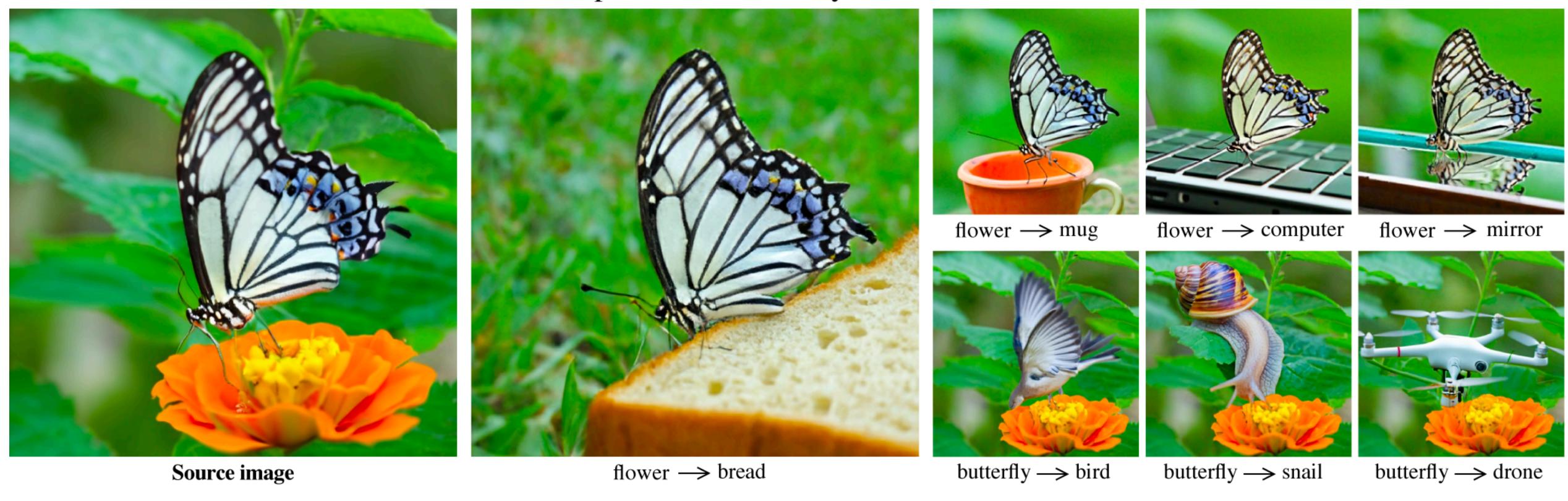
Prompt-to-Prompt

"Photo of a cat riding on a bicycle."



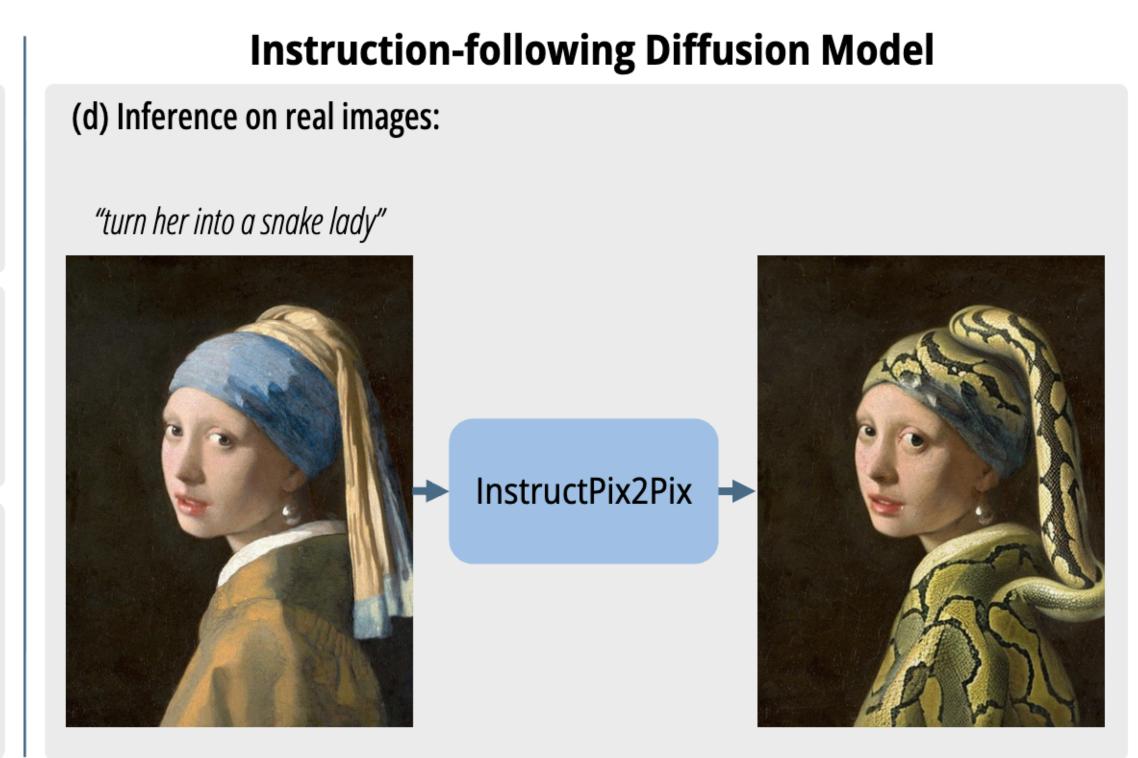
Prompt-to-Prompt

"A photo of a butterfly on a flower."



Learning to follow image editing instructions

(a) Generate text edits: Input Caption: "photograph of a girl riding a horse" + GPT-3 | Instruction: "have her ride a dragon" | Edited Caption: "photograph of a girl riding a dragon" | (b) Generate paired images: Input Caption: "photograph of a girl riding a horse" | Stable Diffusion | + Prompt2Prompt | Prompt2Prompt | C) Generated training examples: "convert to brick" "Color the cars pink" "Make it lit by fireworks" "have her ride a dragon" | ...



"Swap sunflowers with roses"



"What would it look like if it were snowing?"

"Turn it into a still from a western"

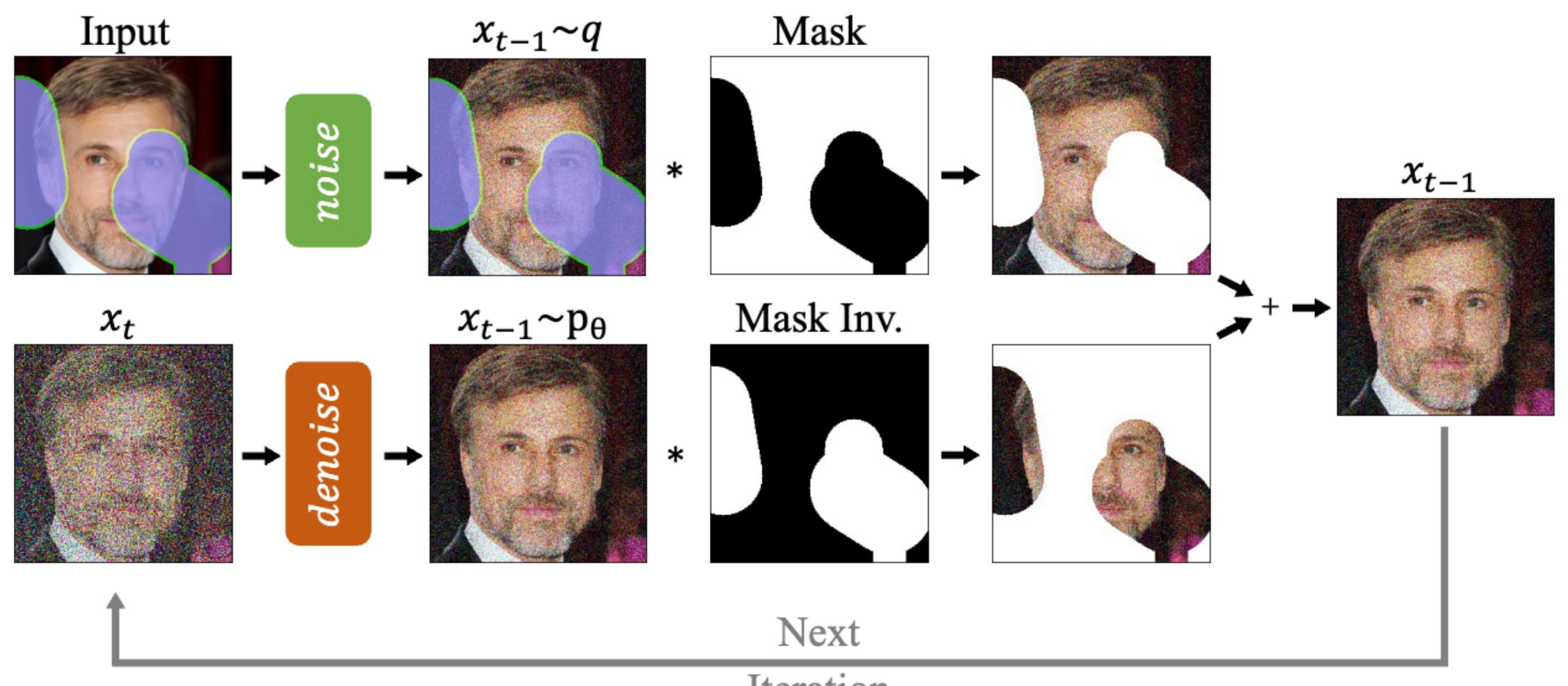
[Brooks et al., "InstructPix2Pix", 2023]

Inpainting

Source: [Lugmayr et al., RePaint]

Inpainting

Constrain the pixels each iteration.



Iteration

Getting inpainting for free!

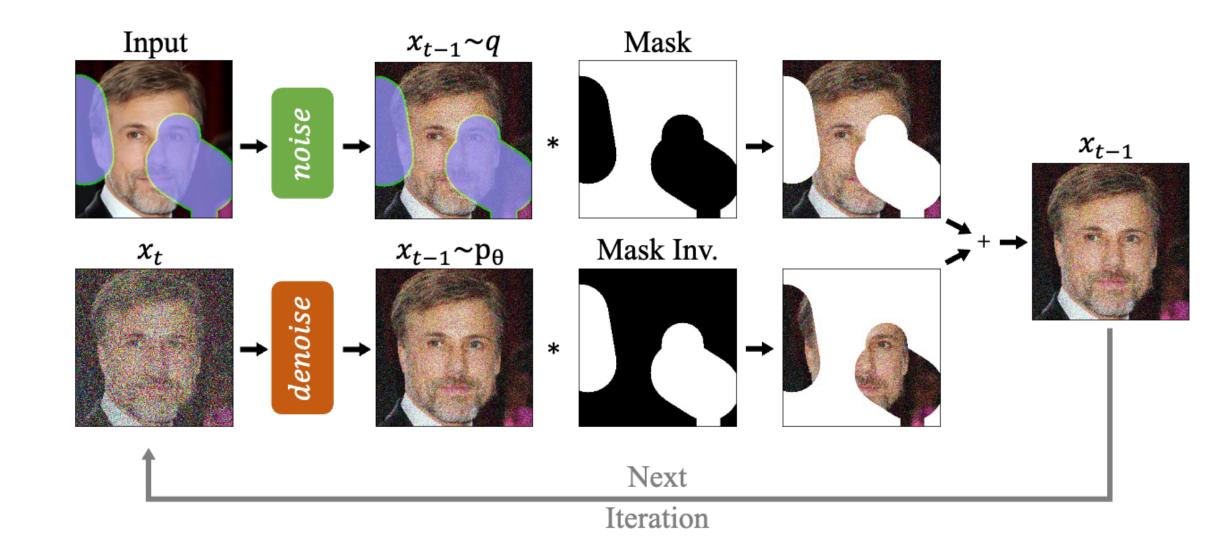
Pseudocode:

$$x_{t-1}^{\text{unknown}} \sim \mathcal{N}(\mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

$$x_{t-1}^{\text{known}} \sim \mathcal{N}(\sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t) \mathbf{I})$$

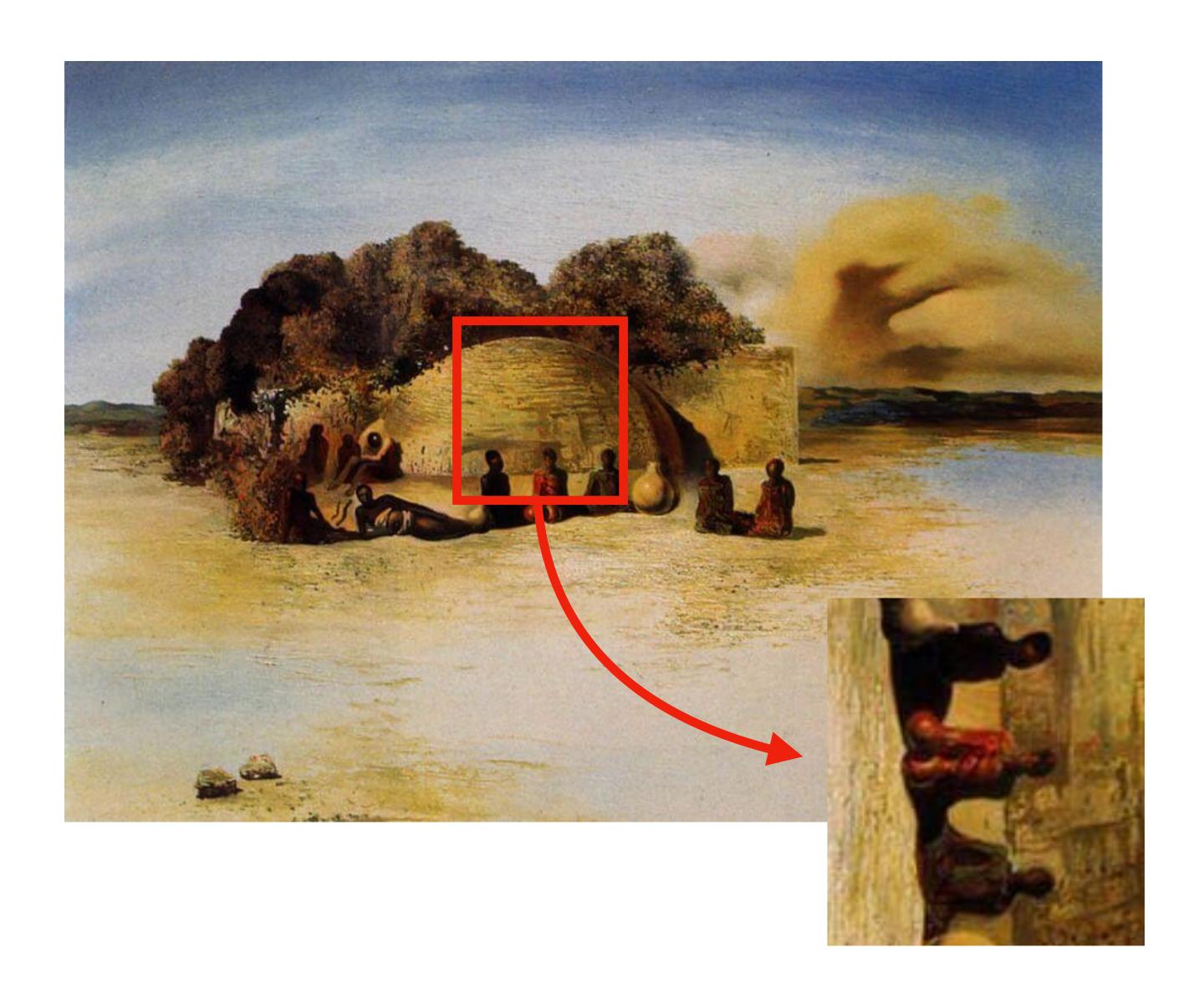
$$x_{t-1}^{\text{known}} = m \odot x_{t-1}^{\text{known}} + (1 - m) \odot x_{t-1}^{\text{unknown}}$$

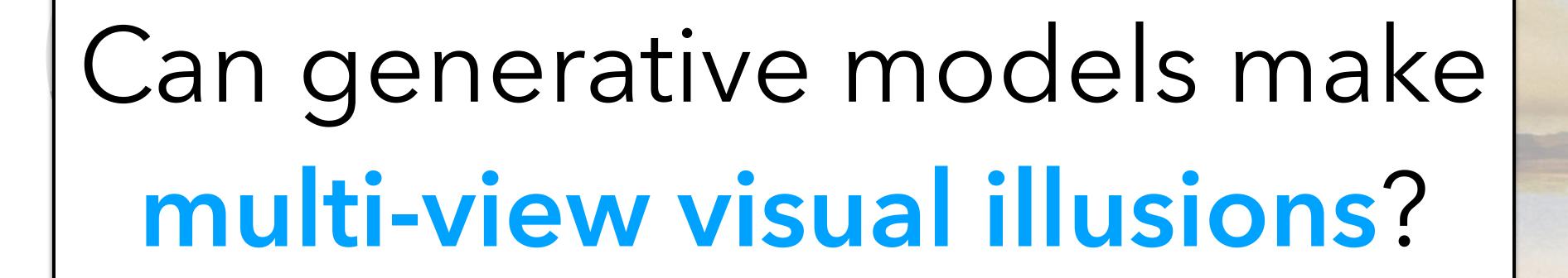
Constrain pixels each iteration.

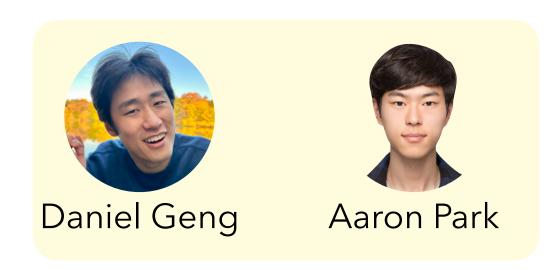


How far can we take this?

Salvador Dalí, Paranoiac Face. 1937.



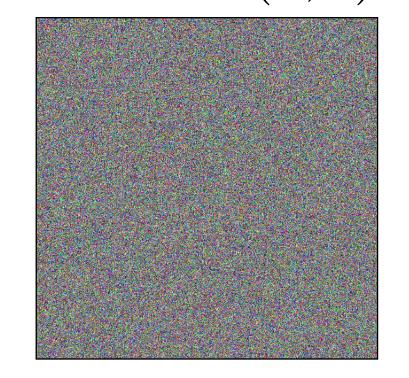




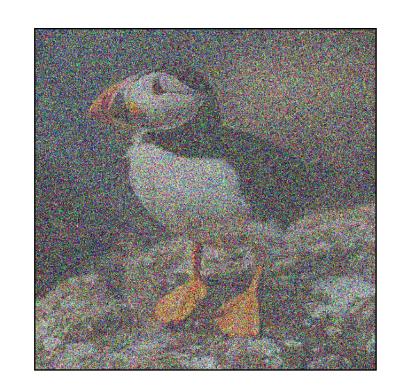
[Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models, CVPR 2024]

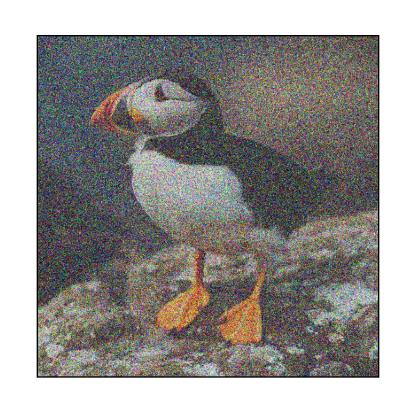
Diffusion Models

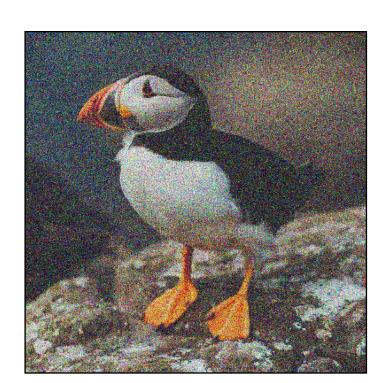
 $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$

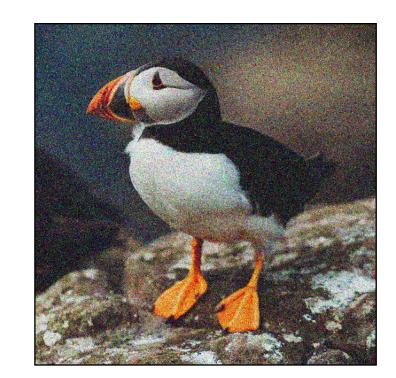


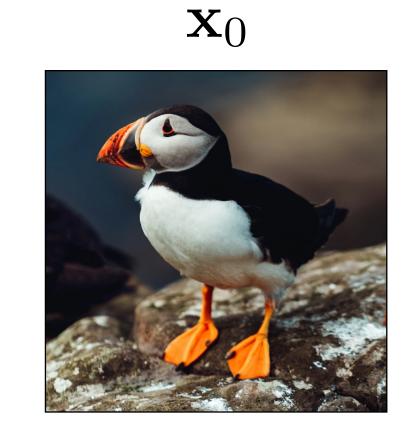
"a photo of a puffin"



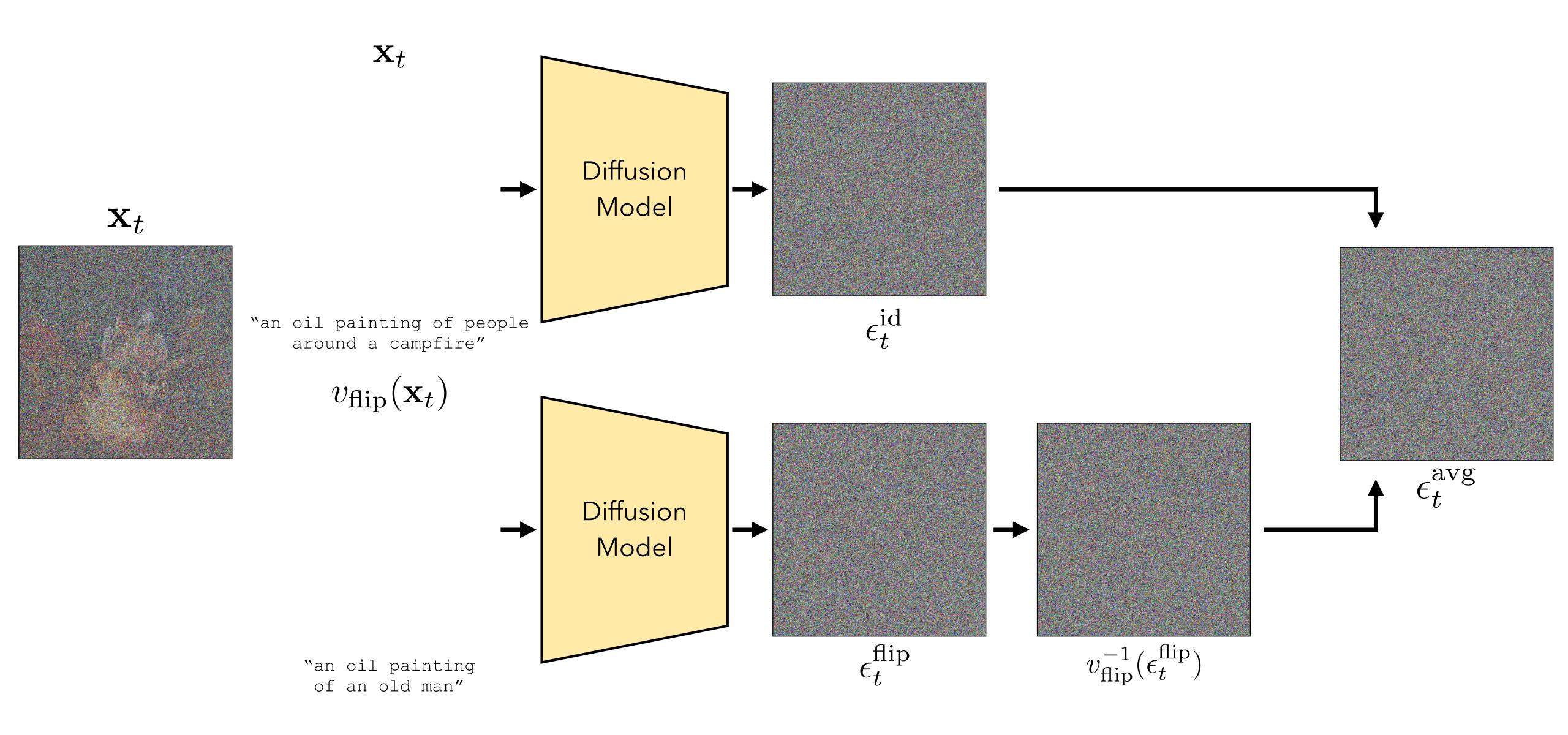






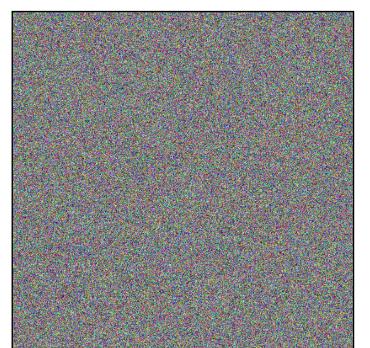


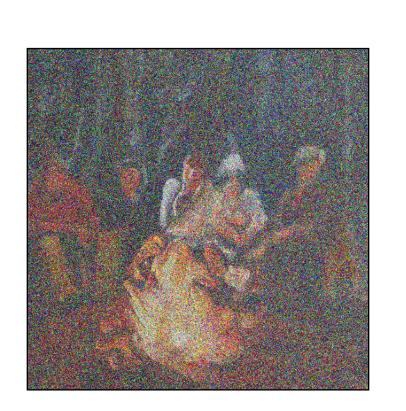
Generating an illusion

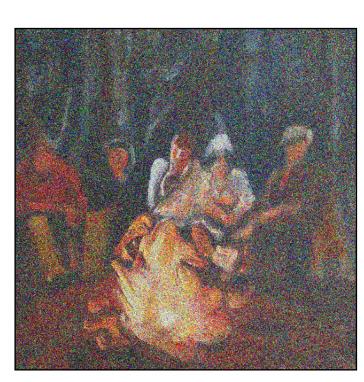


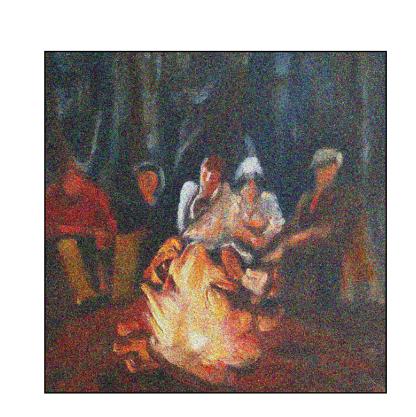
Generating an illusion

 $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$







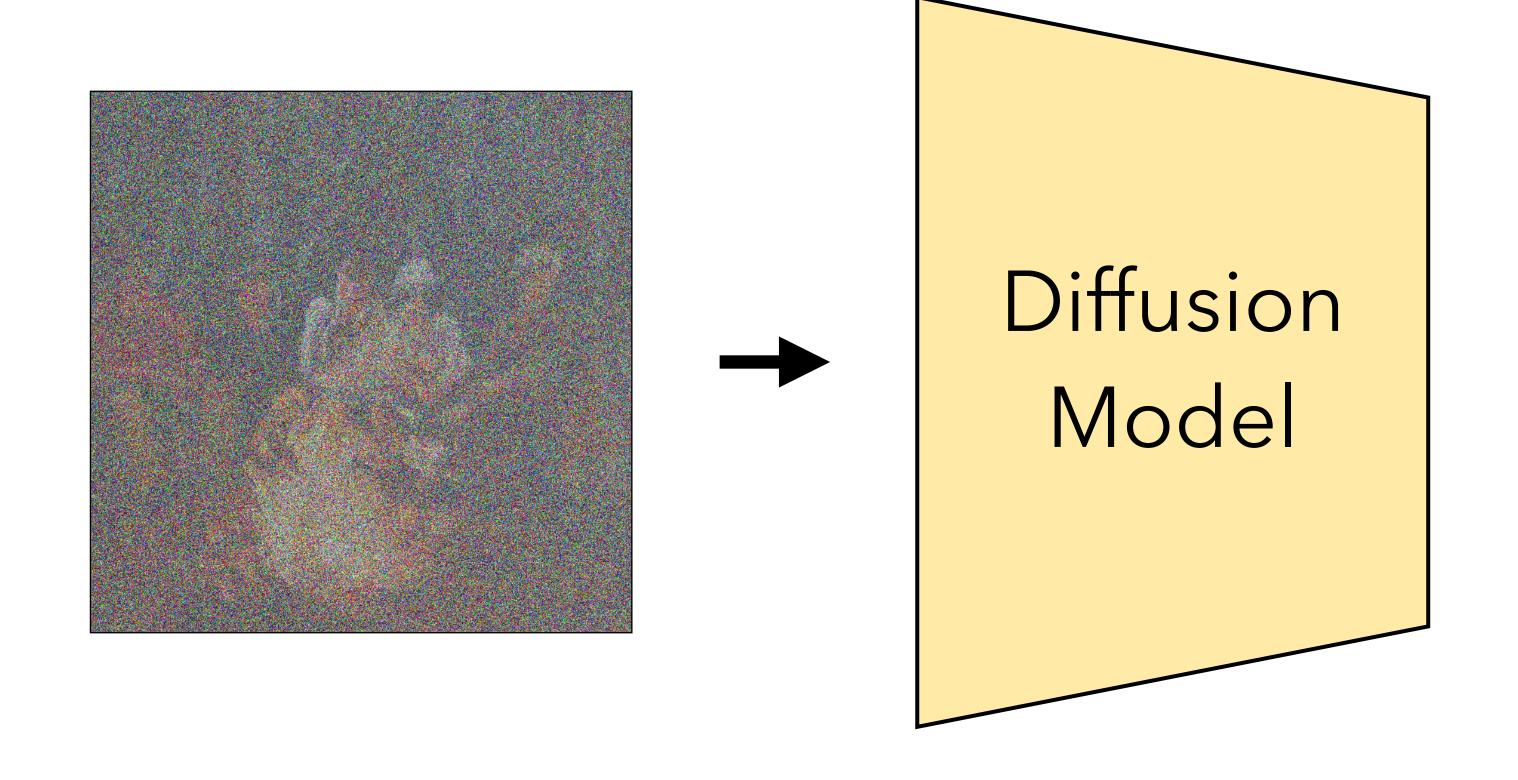


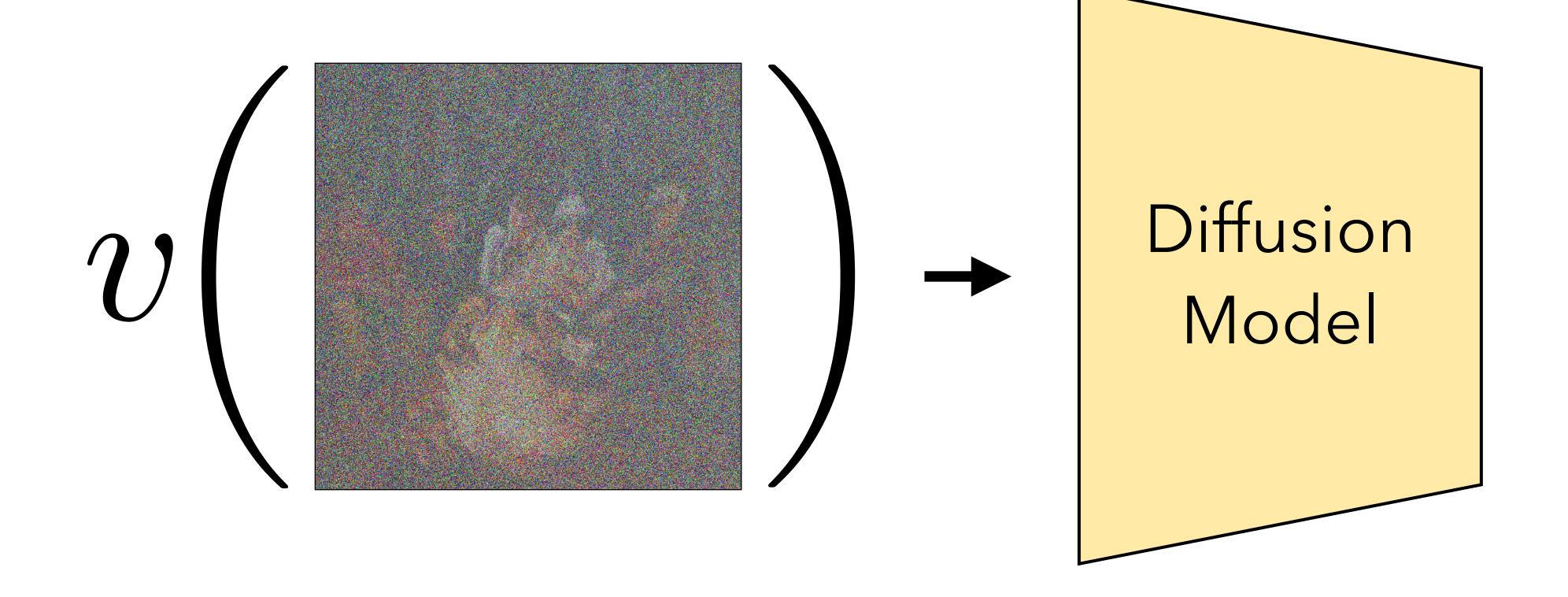
an oil painting of people around a campfire

180°

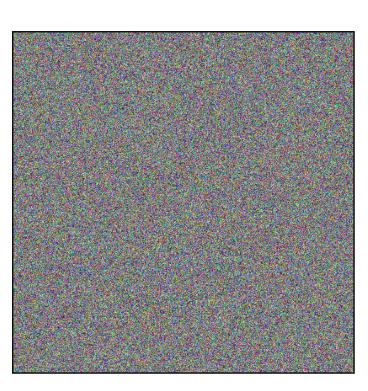
a pop art of albert einstein

a pop art of albert einstein





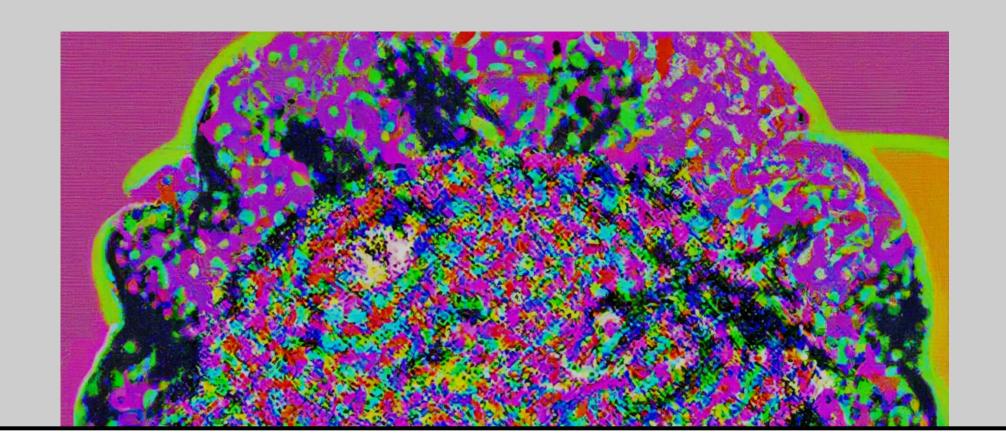




- $\sim \mathcal{N}(0, \mathbf{I})$
- 1. Noisy image is weighted sum of signal and noise
- 2. Noise must be i.i.d. standard Gaussian

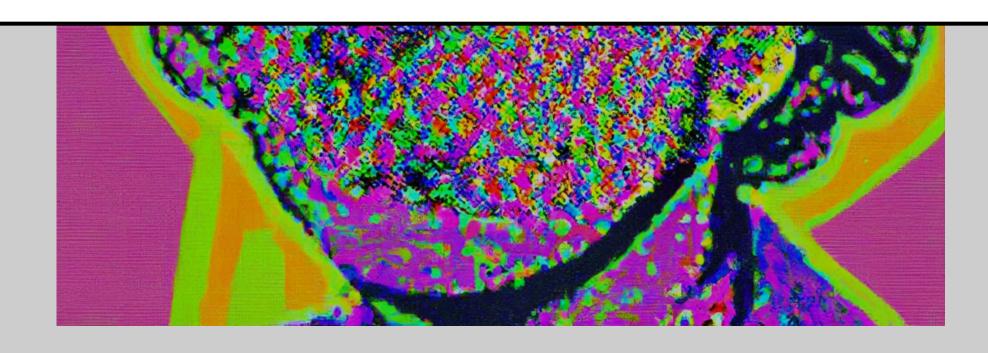
$$v\left(\begin{array}{c} \end{array}\right) = v\left(w_t^{\text{signal}} \right) + w_t^{\text{noise}}$$

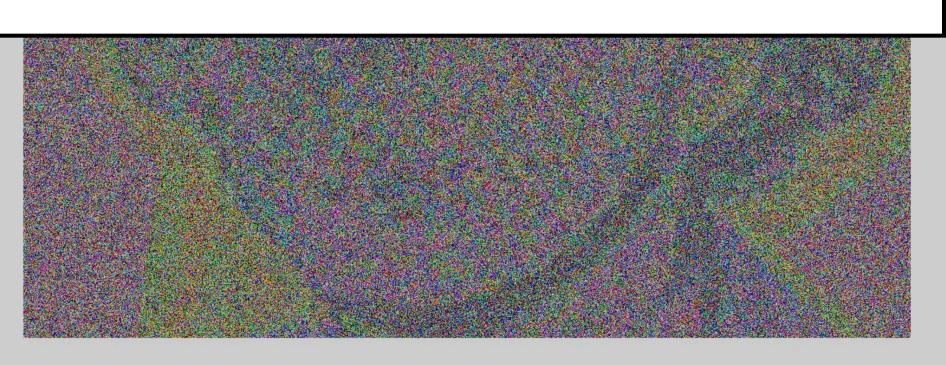
- 1. Noisy image is weighted sum of signal and noise
- 2. Noise must be i.i.d. standard Gaussian





Which transformations work?





a pop art of albert einstein

$$v\left(\begin{array}{c} \\ \\ \end{array}\right) = v\left(w_t^{\text{signal}} \right) + w_t^{\text{noise}} \left(\begin{array}{c} \\ \\ \end{array}\right)$$

- 1. Noisy image is weighted sum of signal and noise
- 2. Noise must be i.i.d. standard Gaussian

$$v\left(\begin{array}{|c|c|c|c|c|} \end{array}\right) = \mathbf{A}\left(w_t^{\mathrm{signal}} & \longrightarrow + w_t^{\mathrm{noise}} \\ \sim \mathcal{N}(0, \mathbf{I}) \end{array}\right)$$

- 1. Noisy image is weighted sum of signal and noise
- 2. Noise must be i.i.d. standard Gaussian

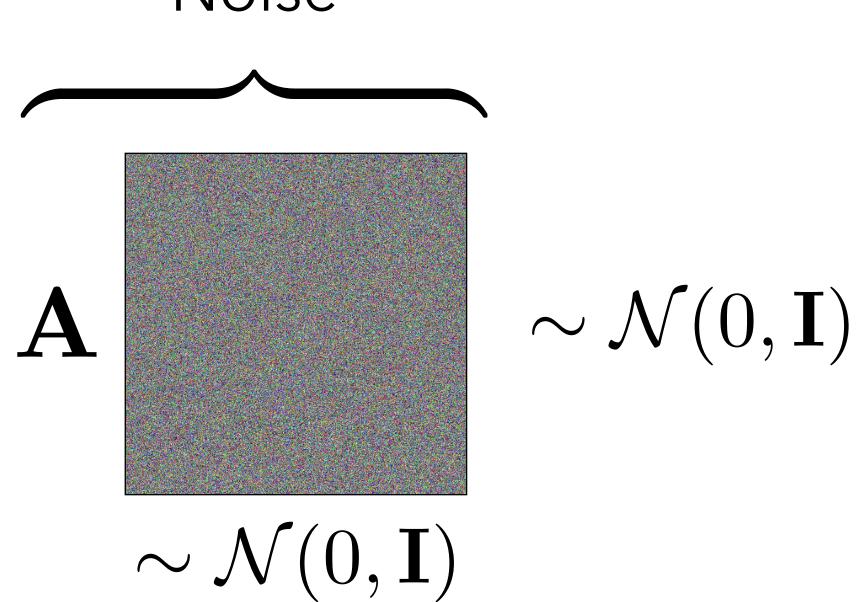
Transformed Transformed Noise Signal $= w_t^{\text{signal}}$ $w_t^{
m noise}$ ${f A}$ $\sim \mathcal{N}(0, \mathbf{I})$

- 1. Noisy image is weighted sum of signal and noise
- 2. Noise must be i.i.d. standard Gaussian

Transformed Transformed Noise Signal $= w_t^{\text{signal}}$ $\sim \mathcal{N}(0, \mathbf{I})$

- 1. Noisy image is weighted sum of signal and noise
- 2. Noise must be i.i.d. standard Gaussian

Transformed Noise



- 1. Noisy image is weighted sum of signal and noise
- 2. Noise must be i.i.d. standard Gaussian

Transformed Noise

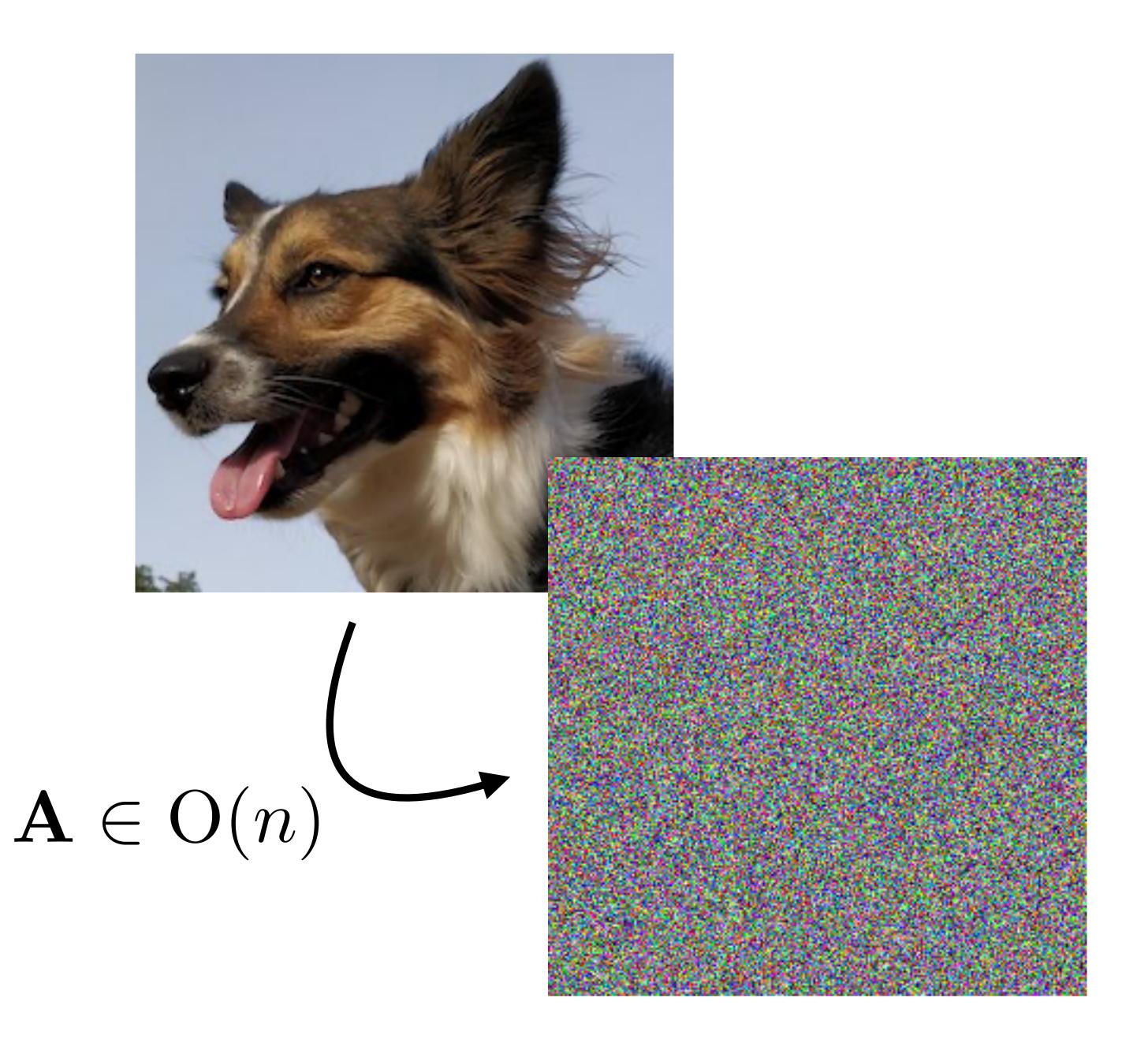
Transformations must be orthogonal

- 1. Noisy image is weighted sum of signal and noise
- 2. Noise must be i.i.d. standard Gaussian

lna

Most orthogonal transformations are uninterpretable...

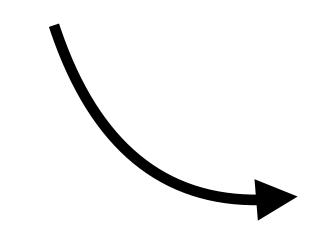
... but any permutation is orthogonal!



Visual Anagrams

An image that changes appearance under a permutation of its pixels

(an ambigram!)



180° Rotations

the word "happy", cursive writing

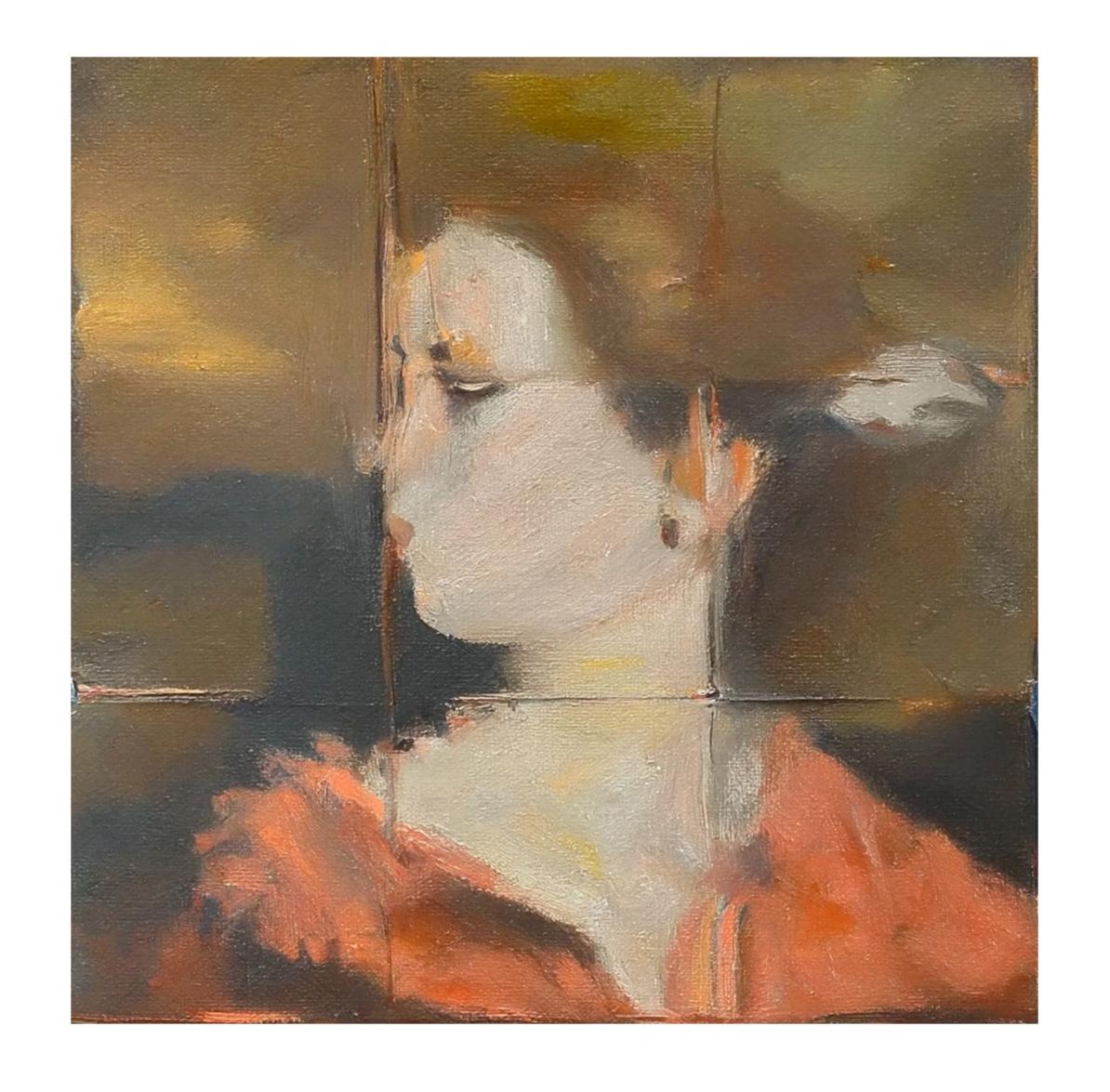
90° Rotations

a lithograph of a table

"Inner Circle"

an oil painting of an old man

"Square Hinge"



an oil painting of a young lady

"Polymorphic"
Jigsaw Puzzles

a watercolor of a kitten

"Polymorphic"
Jigsaw Puzzles

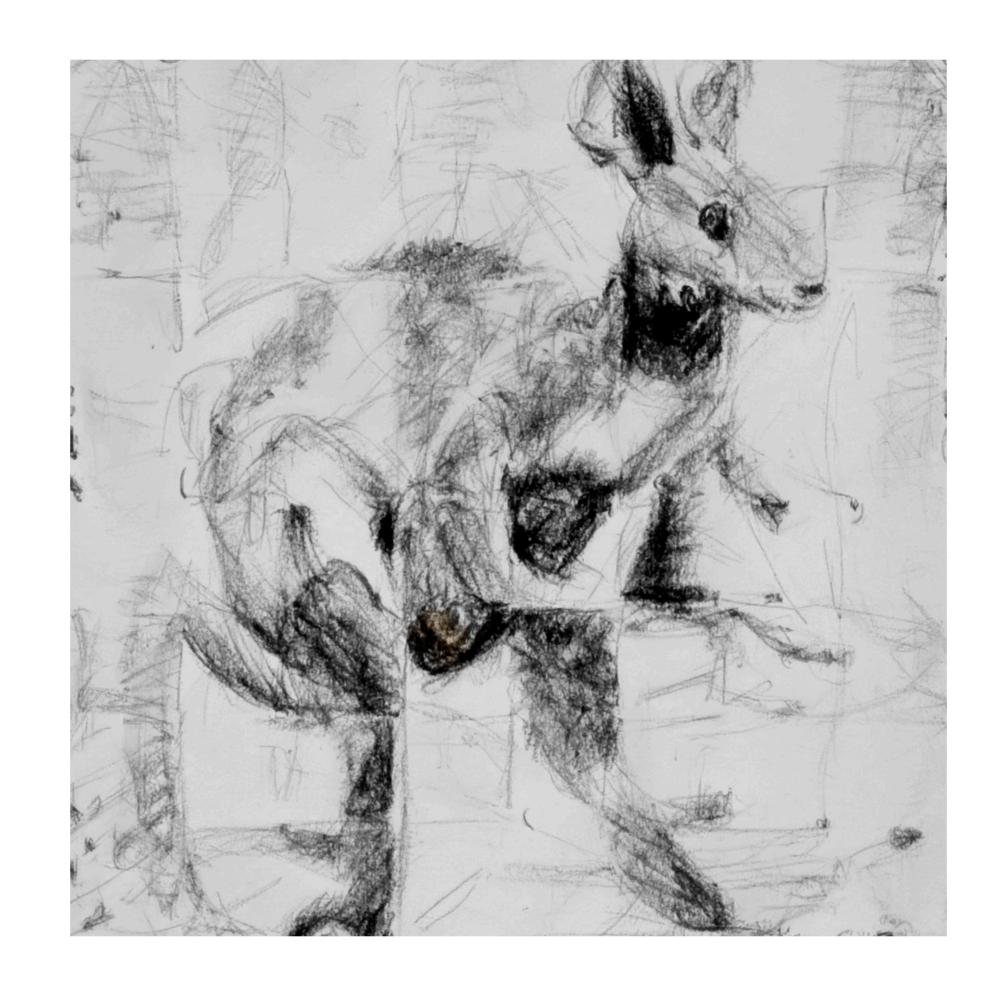
a watercolor of a rabbit

Real puzzles!

Patch Permutations

a watercolor of a rabbit

Patch Permutations



a pencil sketch of a kangaroo

Skews

Skews

an oil painting of a tudor portrait

Inversions

$$v(\mathbf{x}) = -\mathbf{x}$$

Inversions

a lithograph of a man

Inversions

a lithograph of a landscape

The limits of edge-based vision?

Thanks to Ted Adelson for pointing this out.

3-view Illusions

an oil painting of houseplants

3-view Illusions



an oil painting of elvis

Analysis

Latent vs. Pixel Models

We use DeepFloyd, a pixel diffusion model...

...because latent models produce artifacts

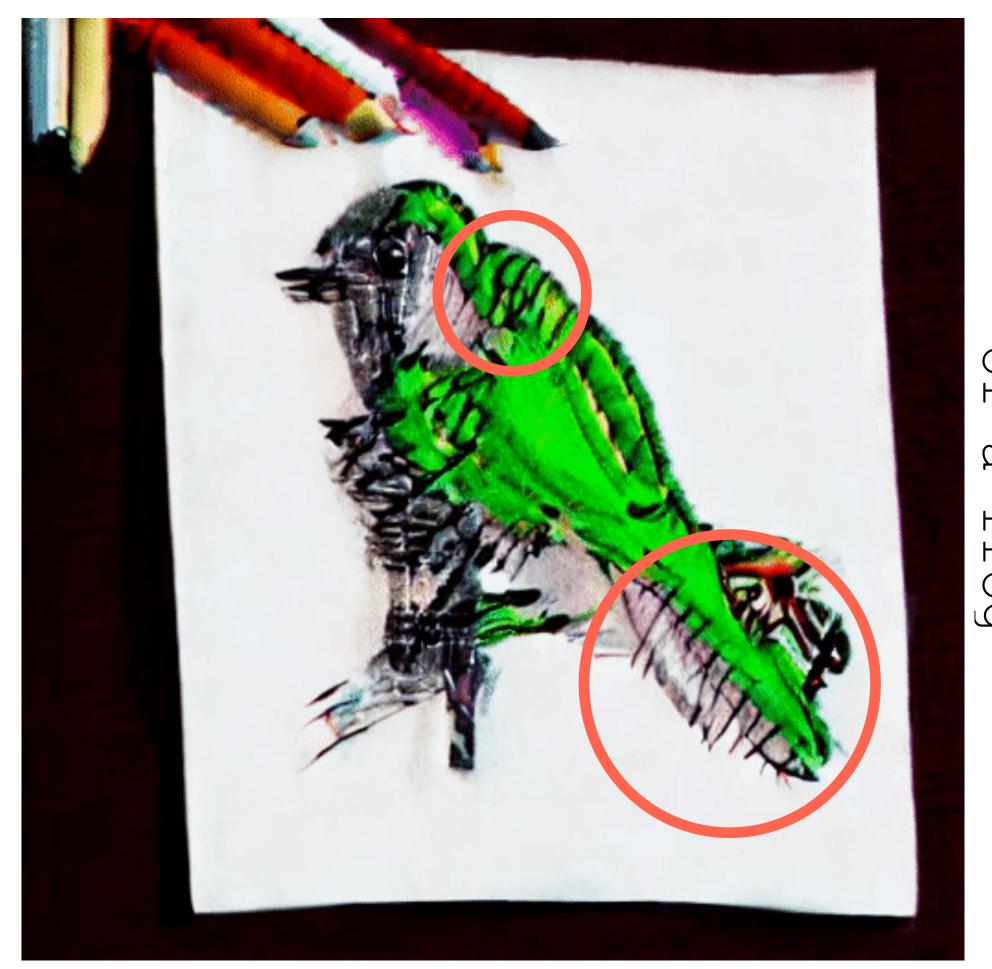
Latent vs. Pixel Models

We use DeepFloyd, a pixel diffusion model...

...because latent models produce artifacts

Latent vs. Pixel Models

Stable Diffusion v1.5

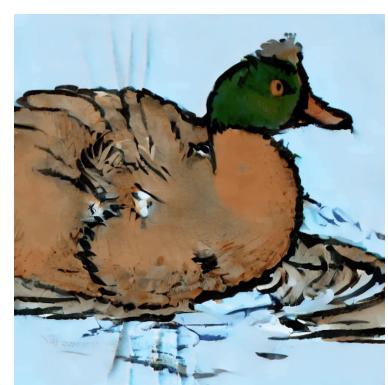


A cartoon drawing of a bird

Related Work

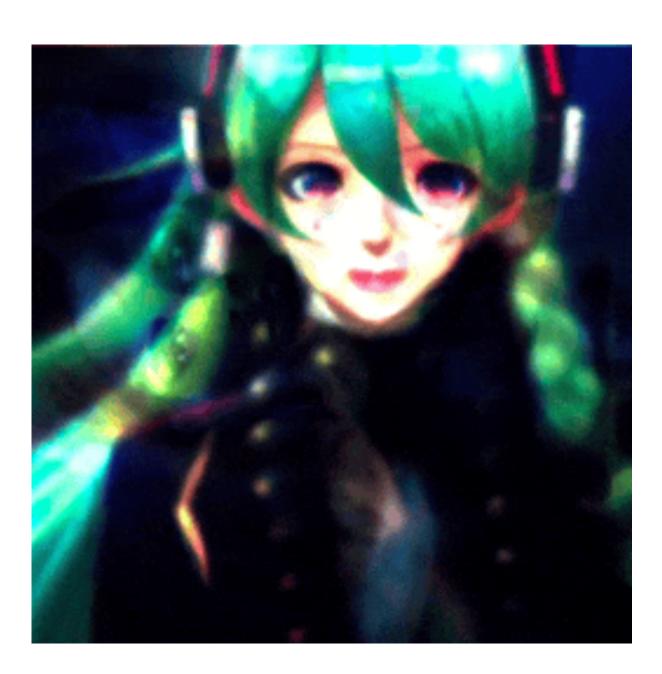
Illusion Diffusion
Matthew Tancik

Colab notebook that denoises multiple views



Diffusion Illusions
Ryan Burgert et al.
SIGGRAPH '24, CVPR Outstanding Demo
diffusionillusions.com

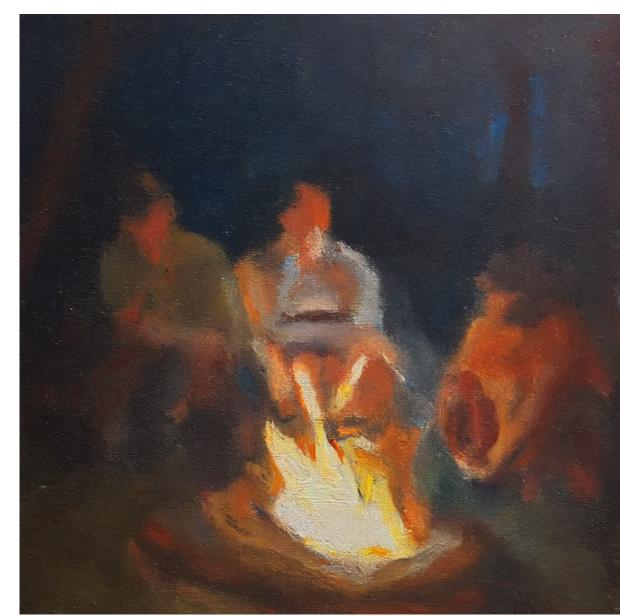
Use SDS to optimize multiple views of an image



Which Prompts Work?

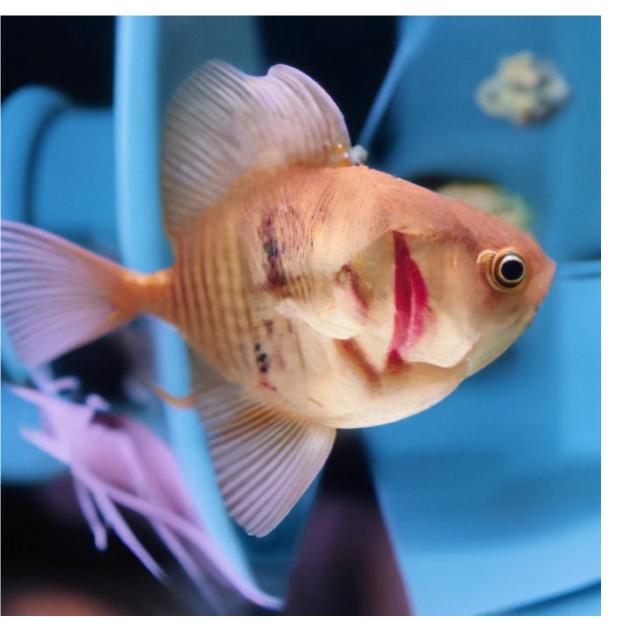
"an oil painting of people around a campfire"

"an oil painting of an old man"



"a photo of a goldfish"

"a photo of the queen of england"



Why does this work?

Recall connection to score function:

$$\epsilon_{\theta}(\mathbf{x}_t) \approx -\sigma_t \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$$

where \mathbf{x}_t is the data noised at step t of the diffusion model with Gaussian noise σ_t .

Compositionality

By learning the score... ...you get many other scores for free

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$$

$$\nabla_{\mathbf{x}_t} \log p_{\text{flipped},t}(\mathbf{x}_t)$$

$$\nabla_{\mathbf{x}_t} \log p_{\text{rotated},t}(\mathbf{x}_t)$$

$$\nabla_{\mathbf{x}_t} \log p_{\text{permuted},t}(\mathbf{x}_t)$$

Compositionality

$$\nabla_{\mathbf{x}_{t}} \log p_{t}(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p_{\text{flipped},t}(\mathbf{x}_{t})$$

$$= \nabla_{\mathbf{x}_{t}} \log \left(p_{t}(\mathbf{x}_{t}) p_{\text{flipped},t}(\mathbf{x}_{t}) \right)$$

$$\Longrightarrow$$

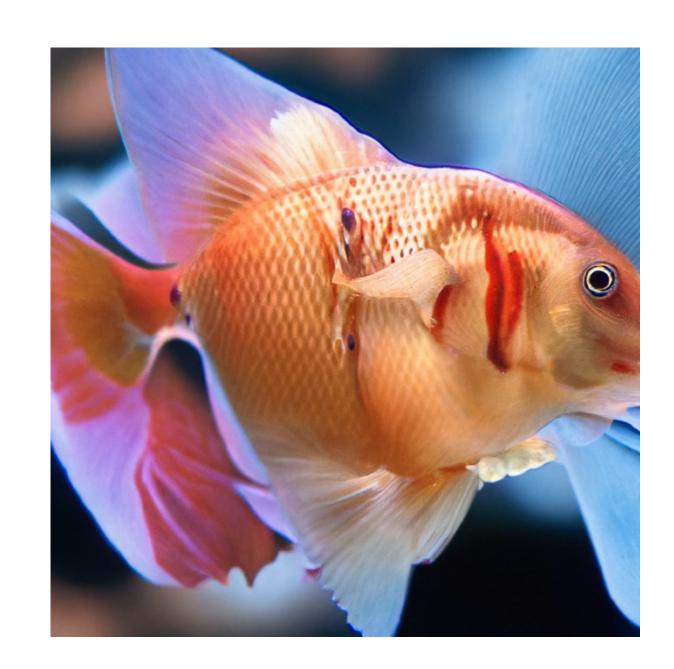
$$\mathbf{x} \sim p^{\text{prod}}(\mathbf{x}) \propto p(\mathbf{x}) p_{\text{flipped}}(\mathbf{x})$$

Limitations to this approach

Compositionality failures

Success rate depends on prompts

Orthogonal views

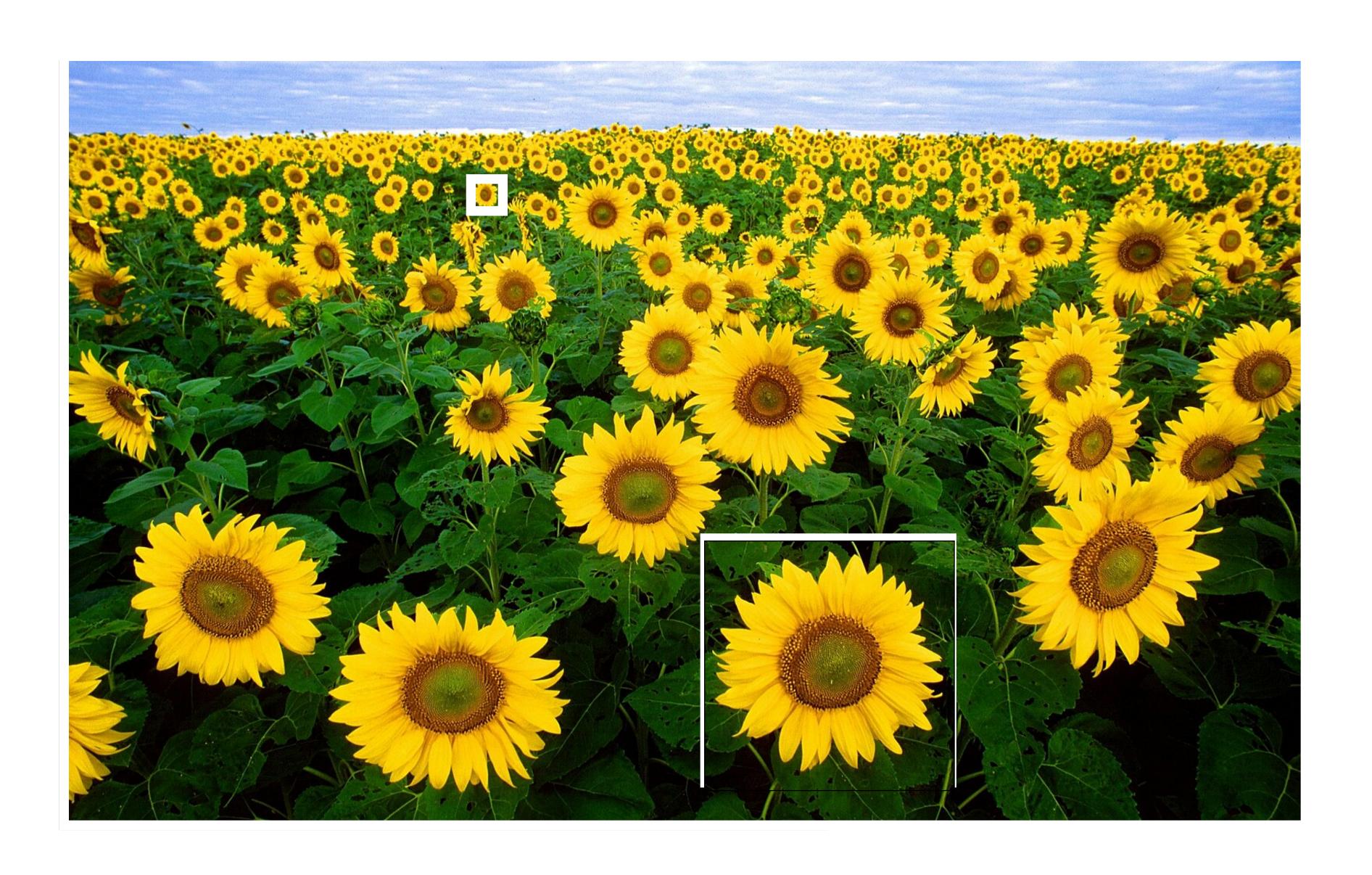


$$v\left(\begin{array}{c} \end{array}\right) = v\left(w_t^{\text{signal}} \right) + w_t^{\text{noise}} \left(\begin{array}{c} \end{array}\right)$$

Charles Allan Gilbert *All Is Vanity*. 1892.

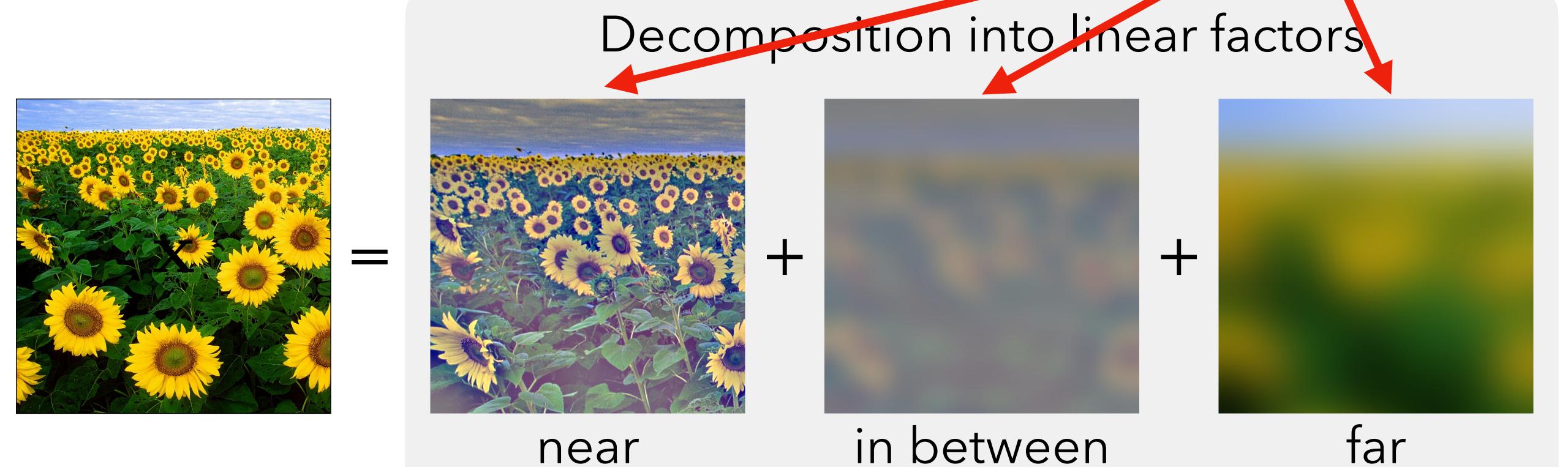
See also ["Hybrid Images," Oliva et al., 2006]

Frequency and distance



Frequency and distance

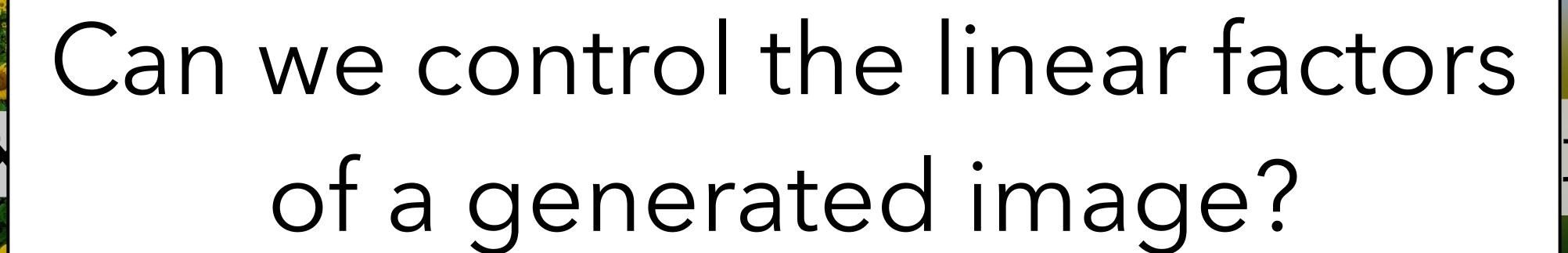
linear functions



[Burt & Adelson, "Laplacian Pyramid", 1983, Oliva et al., "Hybrid Images", 2006]

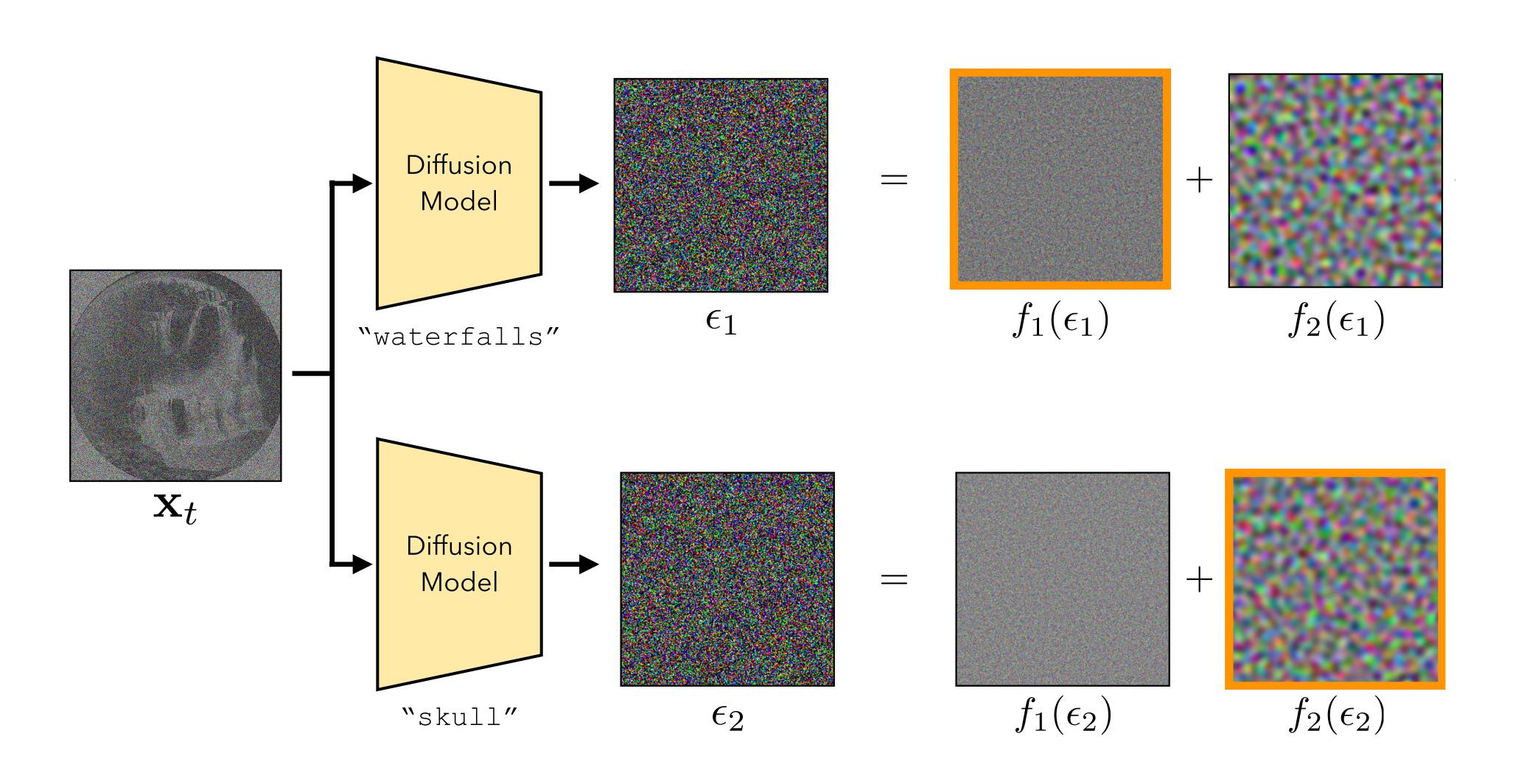
Frequency and distance

Decomposition into linear factors

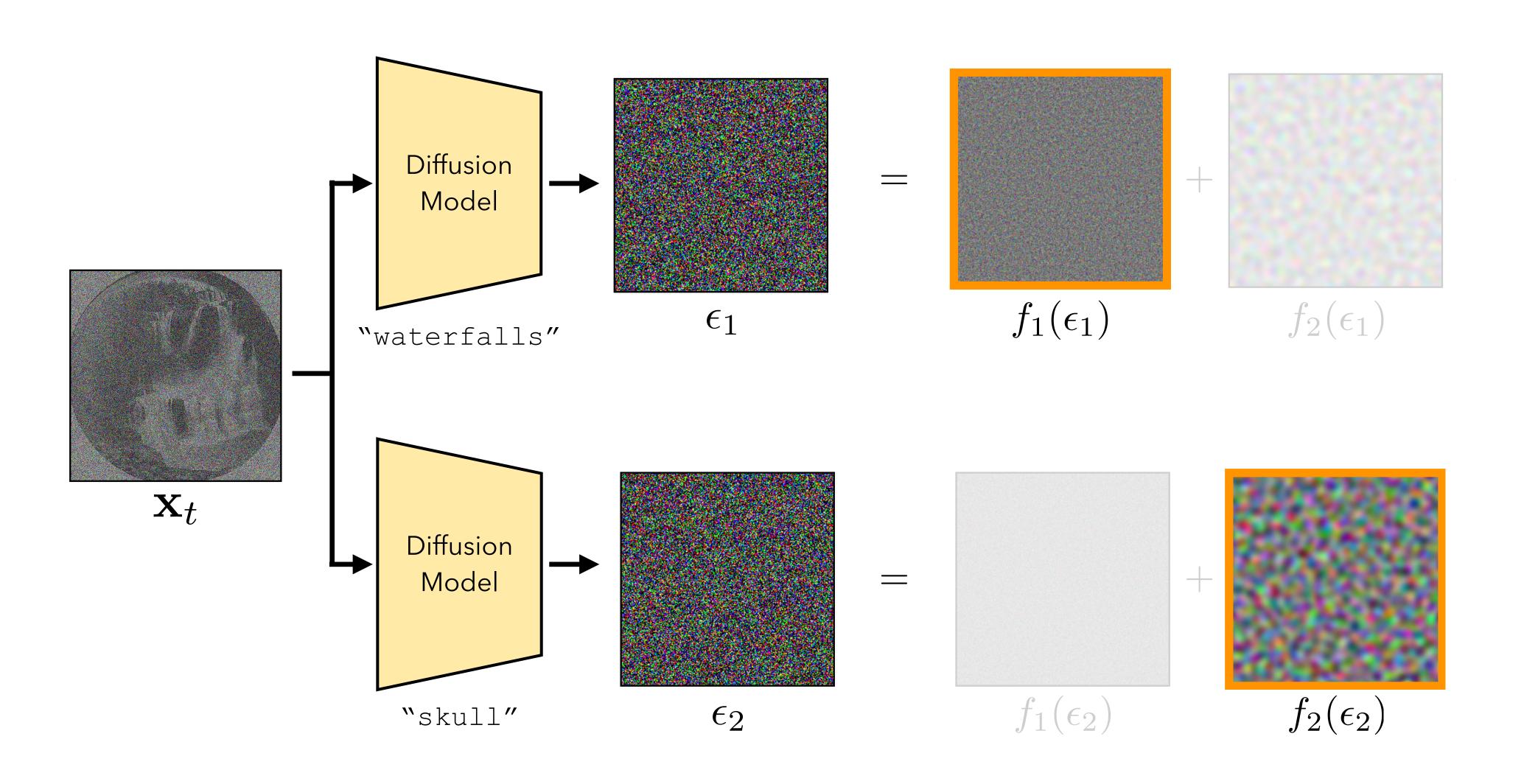


[Factorized Diffusion: Perceptual Illusions by Noise Decomposition, ECCV 2024]

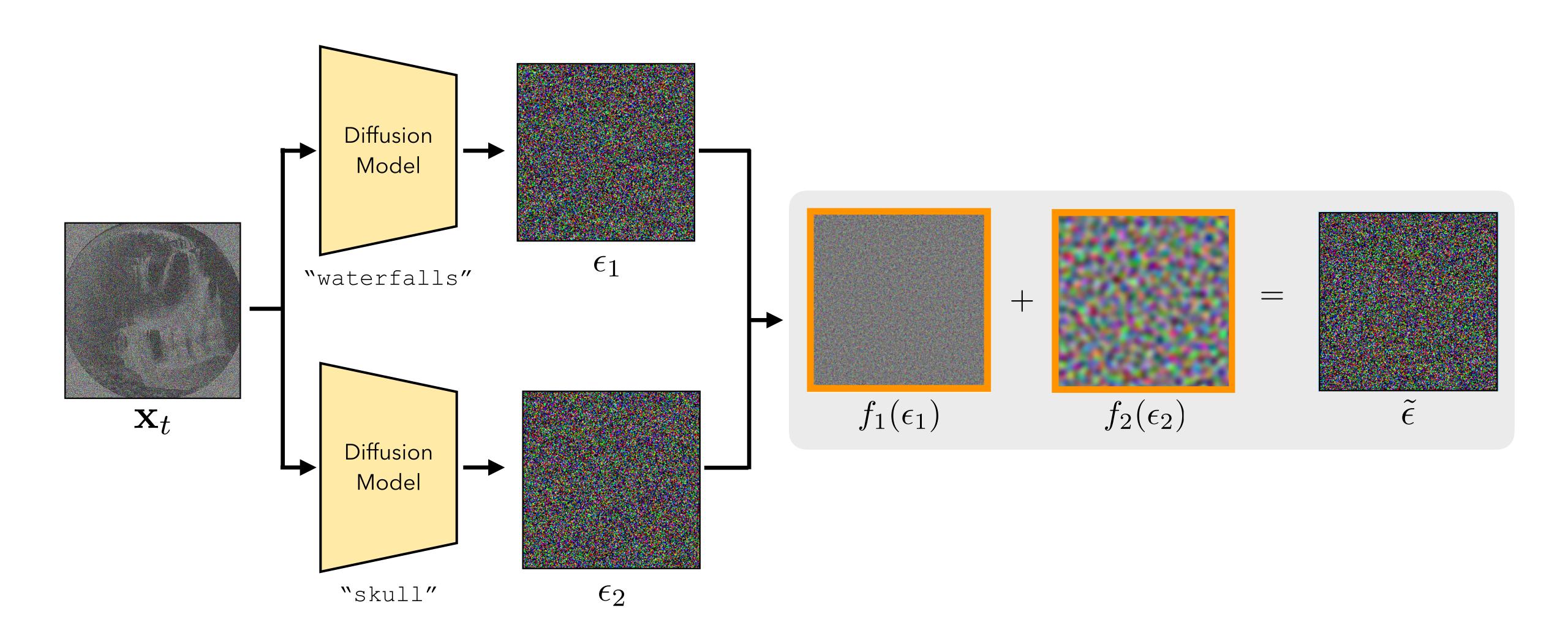
Factorized diffusion



Factorized diffusion



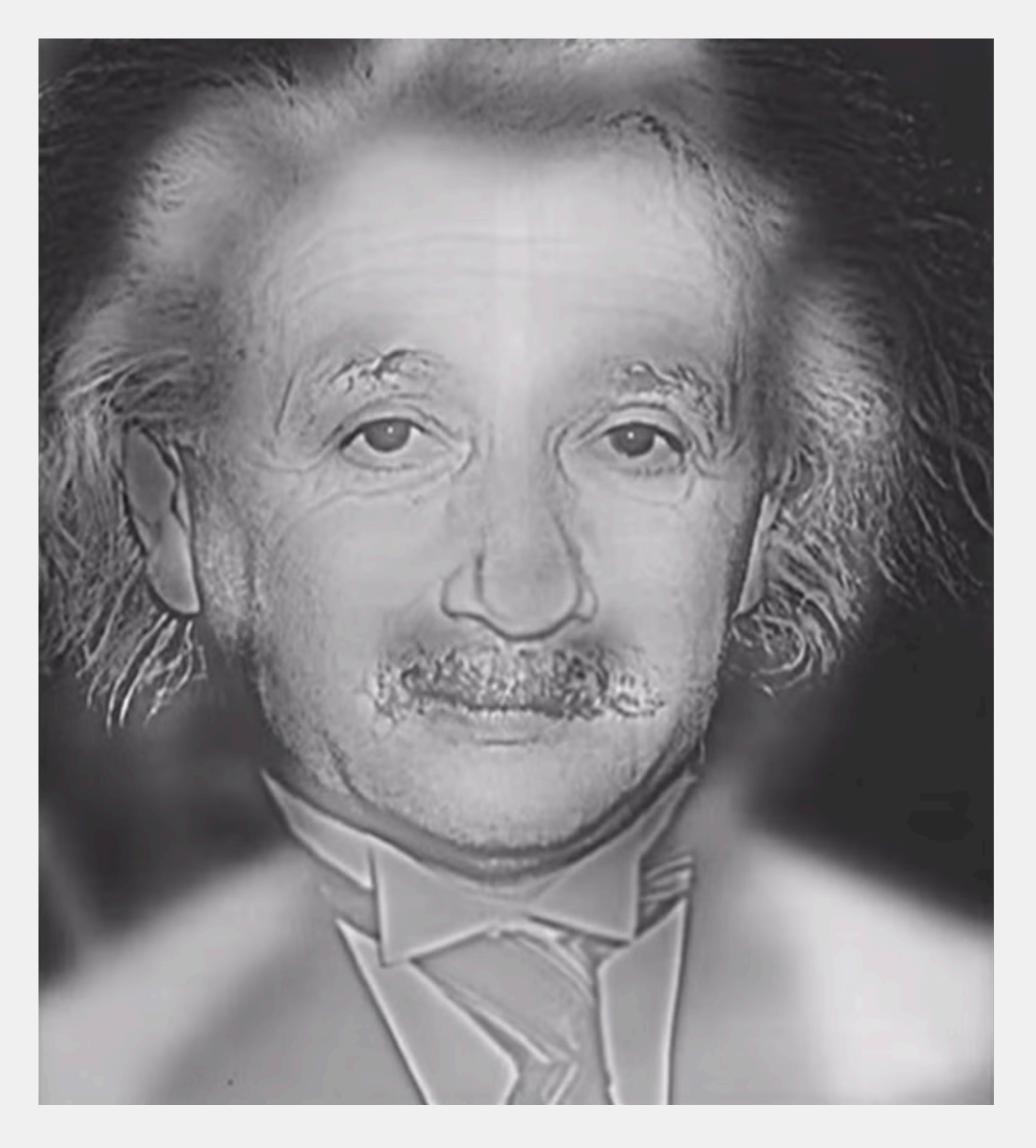
Factorized diffusion



Hybrid Decomposition

$$\mathbf{x} = \underbrace{\mathbf{x} - G_{\sigma}(\mathbf{x}) + G_{\sigma}(\mathbf{x})}_{f_{\text{high}}(\mathbf{x})} + \underbrace{G_{\sigma}(\mathbf{x})}_{f_{\text{low}}(\mathbf{x})}$$

Related work



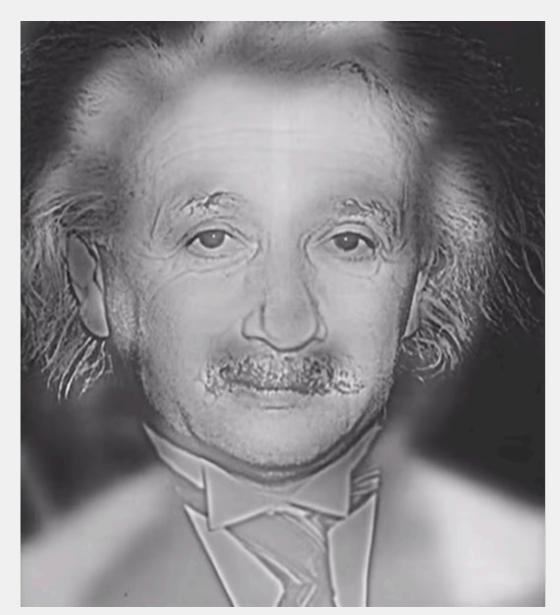
[Aude Oliva et al., "Hybrid Images," SIGGRAPH 2006]

Hybrid Decomposition

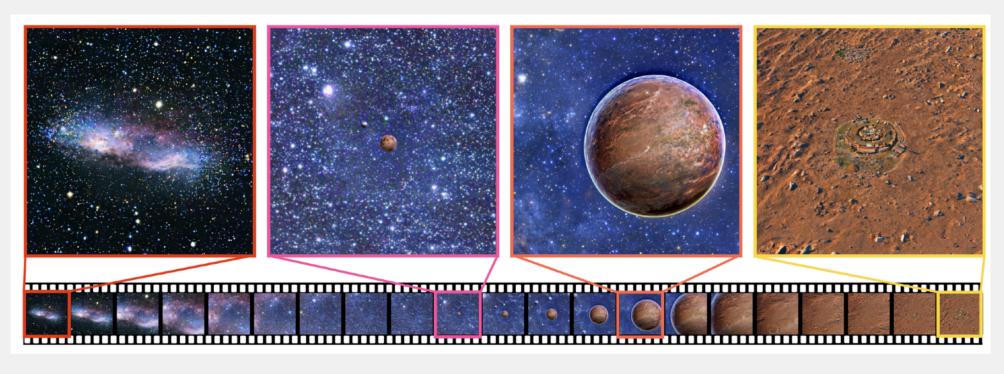
$$\mathbf{x} = \mathbf{x} - G_{\sigma}(\mathbf{x}) + G_{\sigma}(\mathbf{x})$$

$$f_{\text{high}}(\mathbf{x}) \qquad f_{\text{low}}(\mathbf{x})$$

Related work



[Aude Oliva et al., "Hybrid Images," SIGGRAPH 2006]



[Xiaojuan Wang et al., "Generative Powers of Ten", CVPR 2024]

"

Other "natural" linear decompositions

Color Decomposition

$$f_{\text{gray}}(\mathbf{x}) = \frac{1}{3} \sum_{c \in \{R, G, B\}} \mathbf{x}_c$$

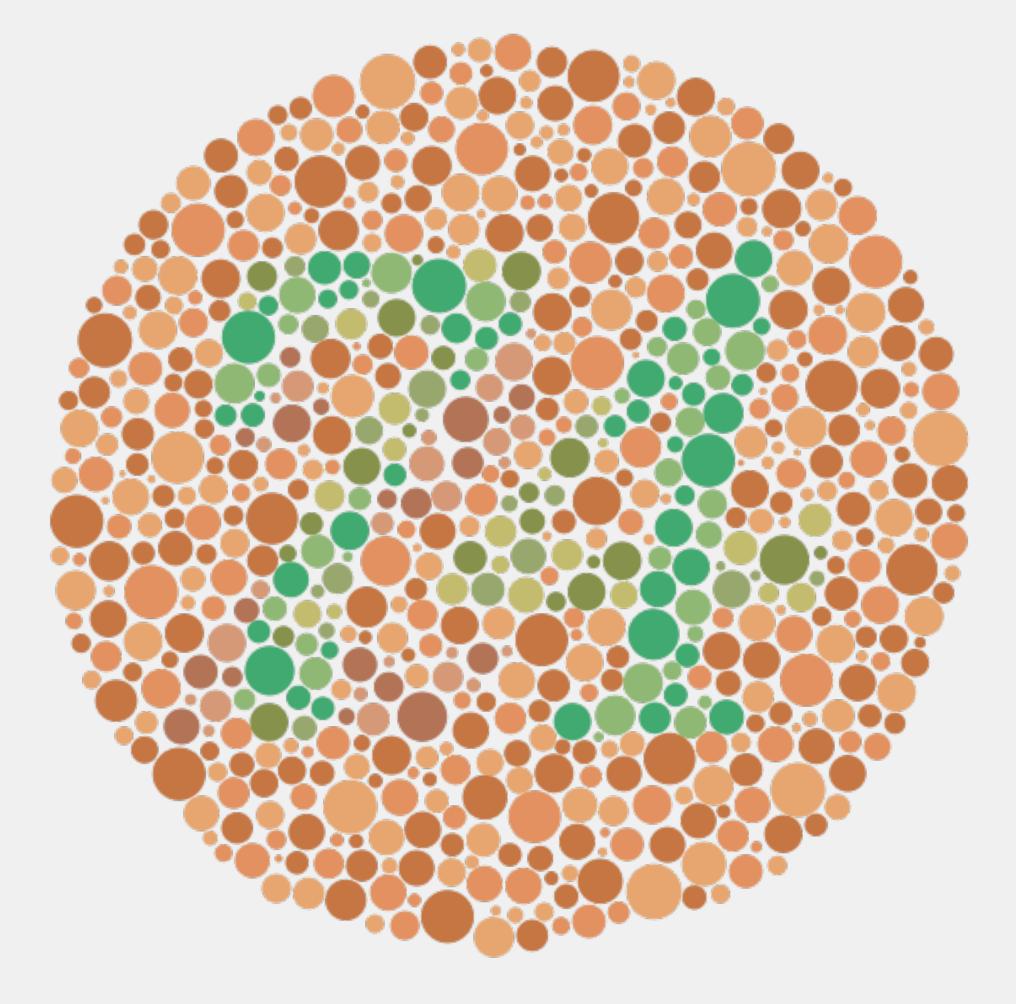
$$f_{\text{color}}(\mathbf{x}) = \mathbf{x} - f_{\text{gray}}(\mathbf{x})$$

Color Decomposition

$$f_{\text{gray}}(\mathbf{x}) = \frac{1}{3} \sum_{c \in \{R, G, B\}} \mathbf{x}_c$$

$$f_{\text{color}}(\mathbf{x}) = \mathbf{x} - f_{\text{gray}}(\mathbf{x})$$

Related work



Color blindness test [Ishihara 1917]

oil painting style, a flower arrangement

a lithograph of a landscape

oil painting style, a barn

Motion Blur Decomposition

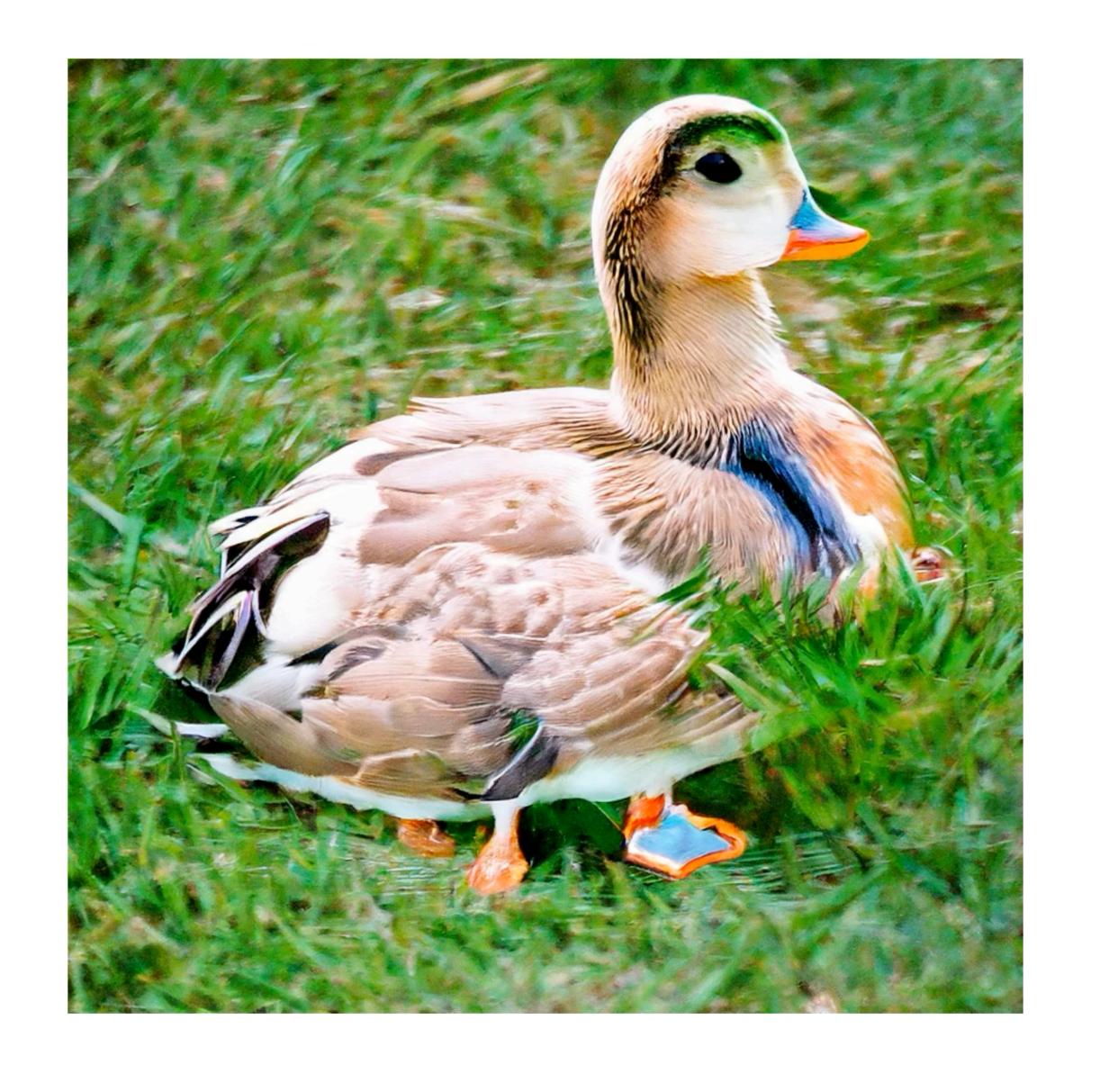
$$f_{\text{motion}}(\mathbf{x}) = \mathbf{h} * \mathbf{x}$$

$$f_{\text{res}}(\mathbf{x}) = \mathbf{x} - f_{\text{motion}}(\mathbf{x})$$

Motion Blur Decomposition

$$f_{\text{motion}}(\mathbf{x}) = \mathbf{h} * \mathbf{x}$$

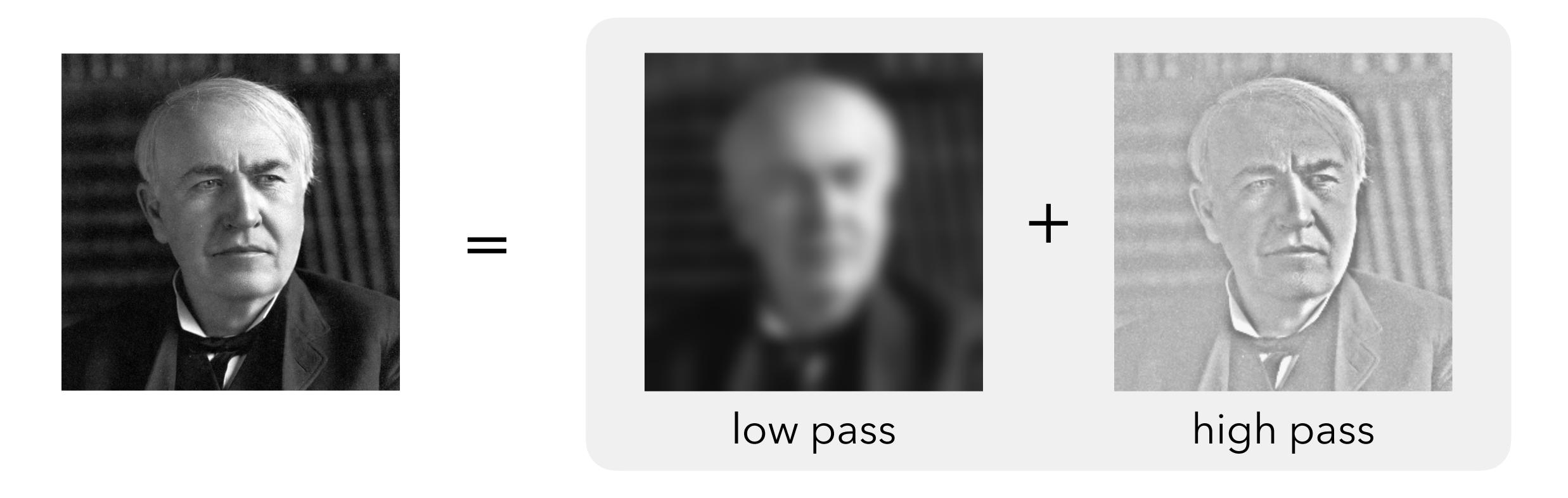
 $f_{\text{res}}(\mathbf{x}) = \mathbf{x} - f_{\text{motion}}(\mathbf{x})$



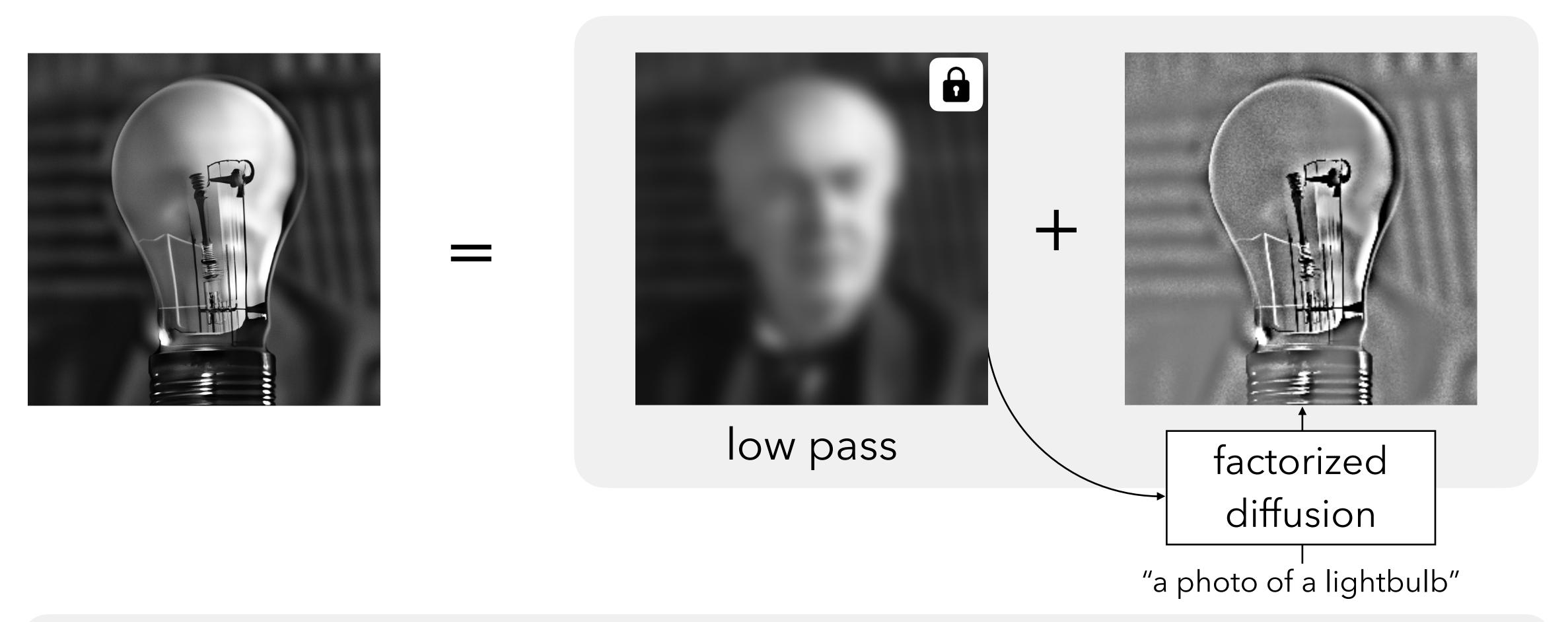
a photo of a duck

an oil painting of a beehive

Freeze one component and generate the other

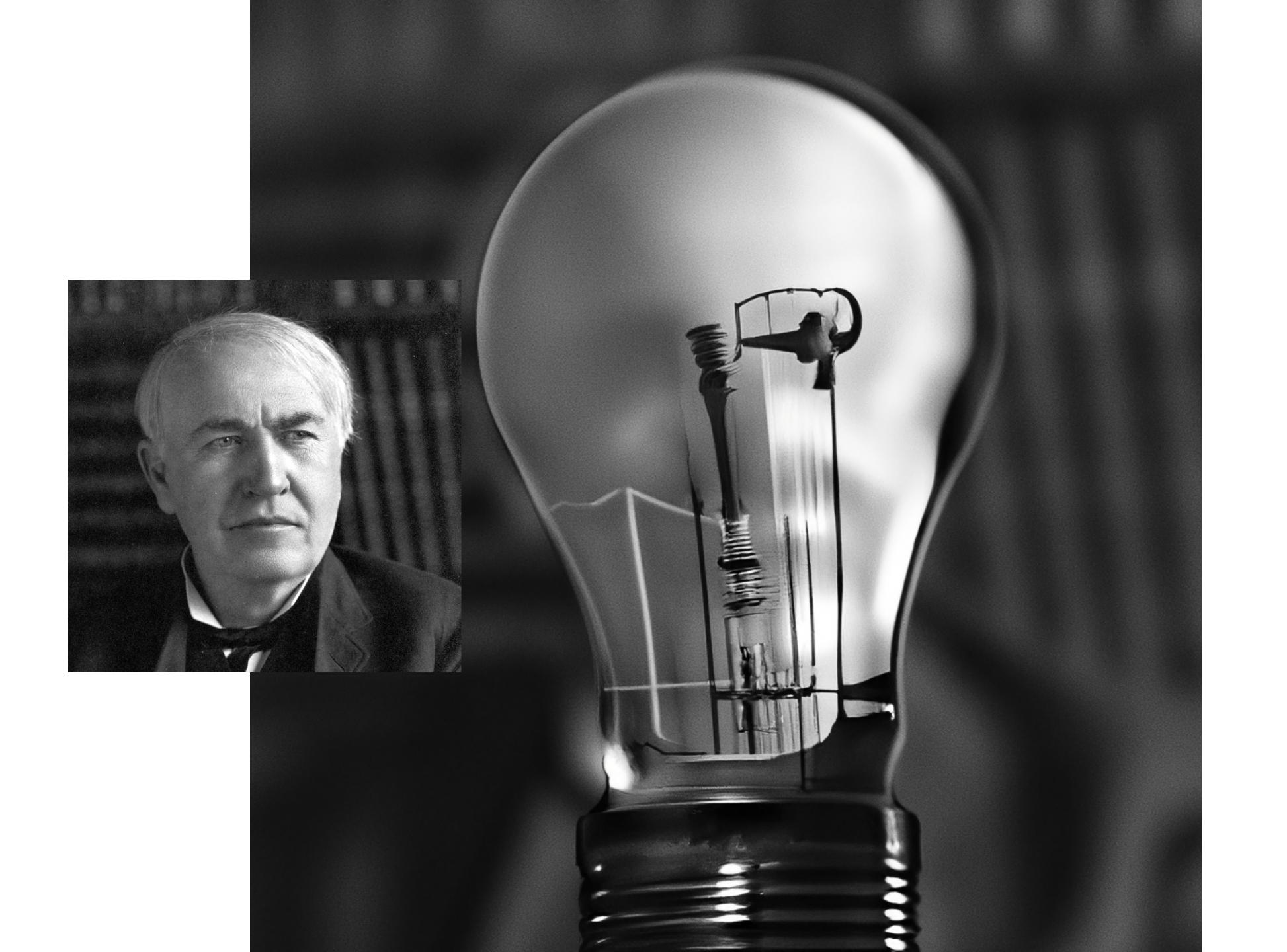


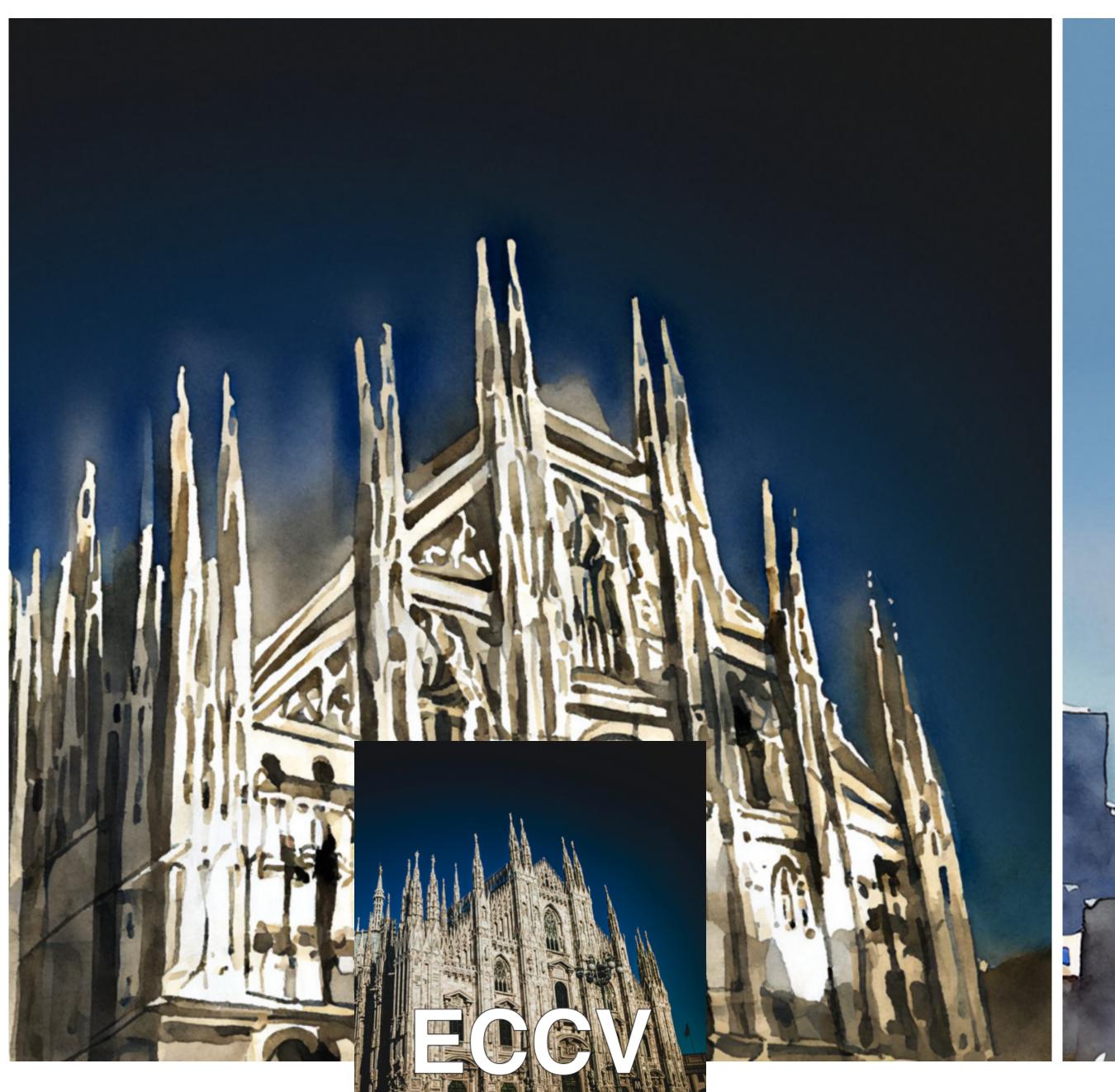
Freeze one component and generate the other



Closely related to work on inverse problems:

[Choi et al., "ILVR", 2021], [Song et al., 2021], [Wang et al., 2022], [Kawar, "DDRM", 2022], [Lugmayr, et al., "RePaint", 2022], and many more!

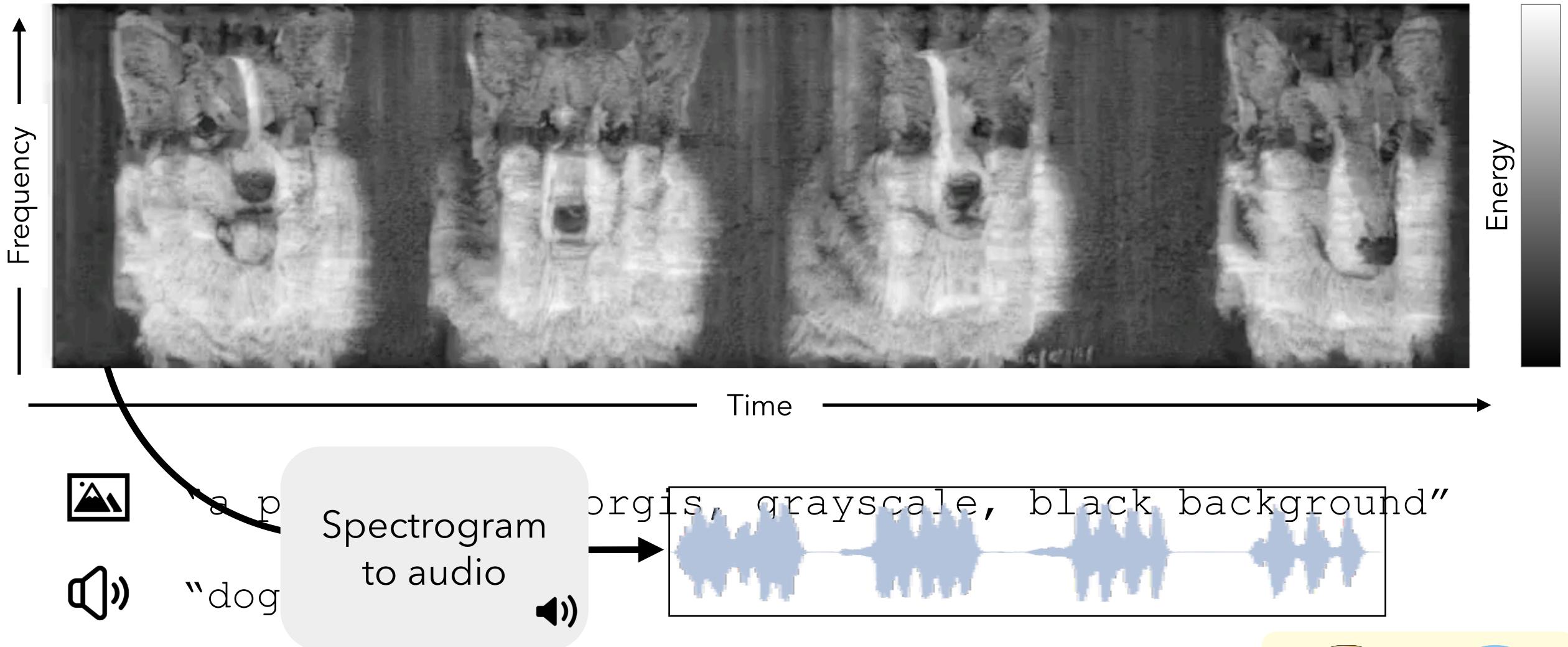




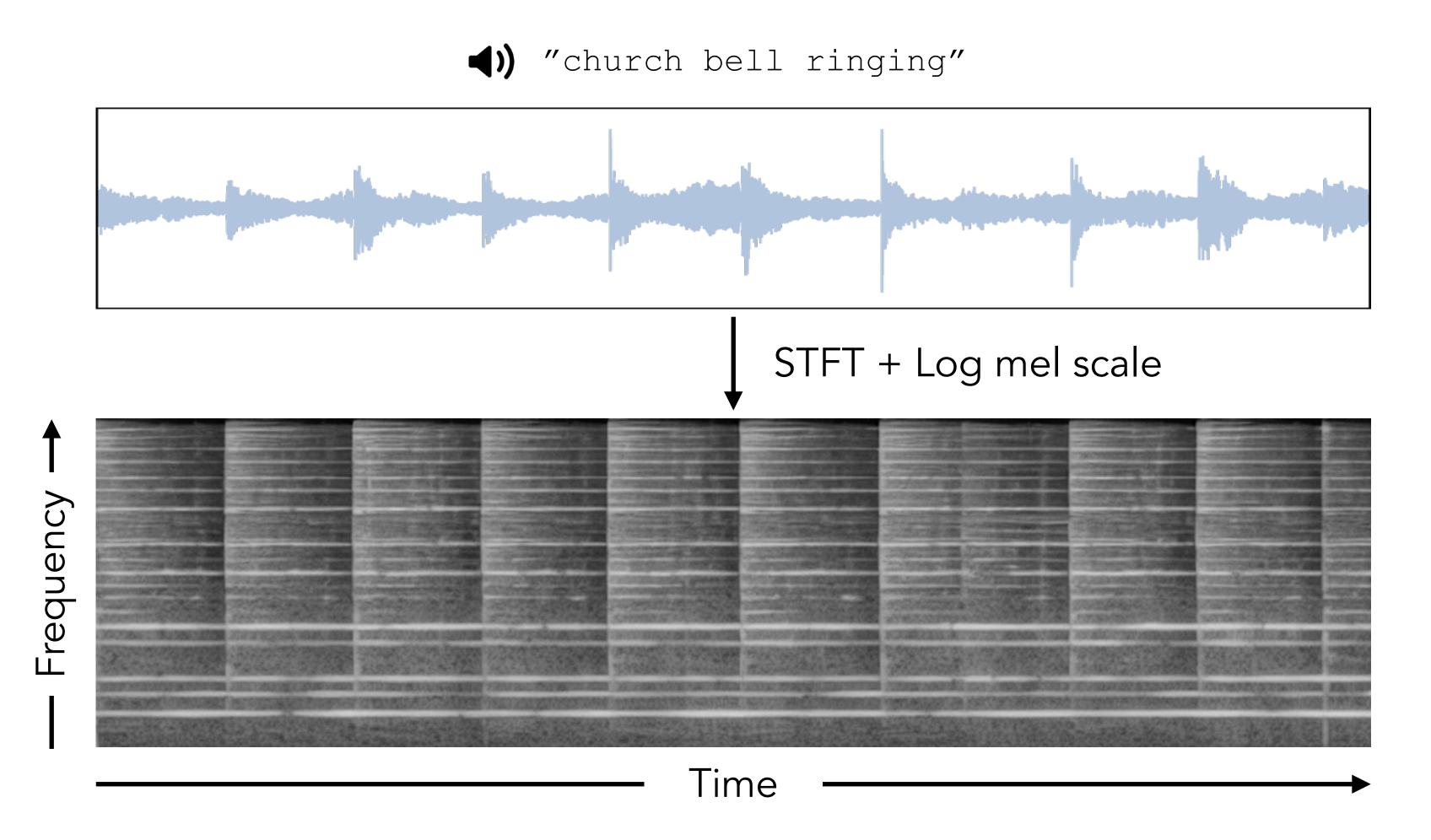
Discussion: different models

- GANs
- Autoregressive models
- Diffusion models

Next Monday: midterm

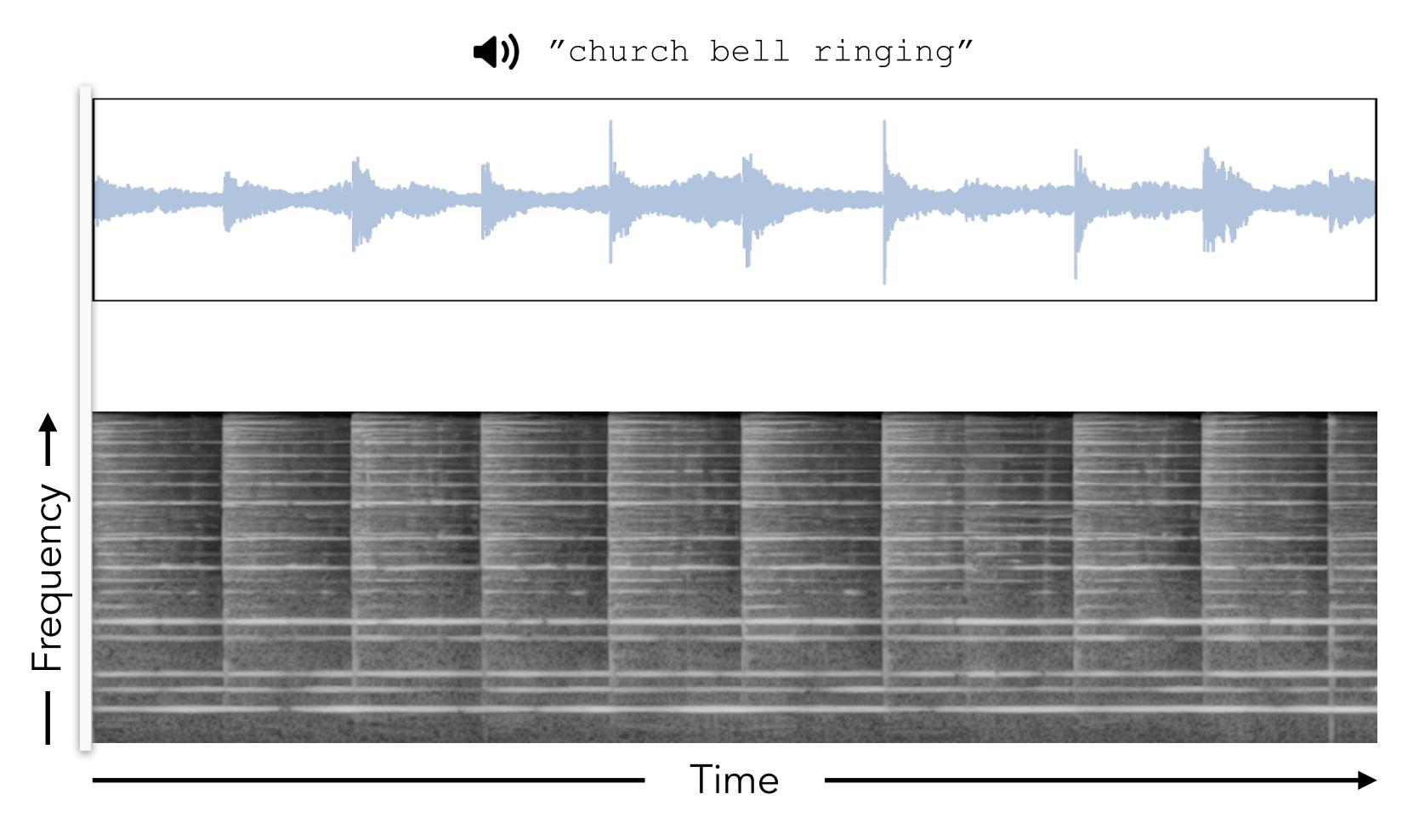


Audio spectrograms



[Chen, Geng, Owens. "Images that Sound: Composing Images and Sounds on a Single Canvas." NeurIPS, 2024]

Audio spectrograms



[Chen, Geng, Owens. "Images that Sound: Composing Images and Sounds on a Single Canvas." NeurIPS, 2024]

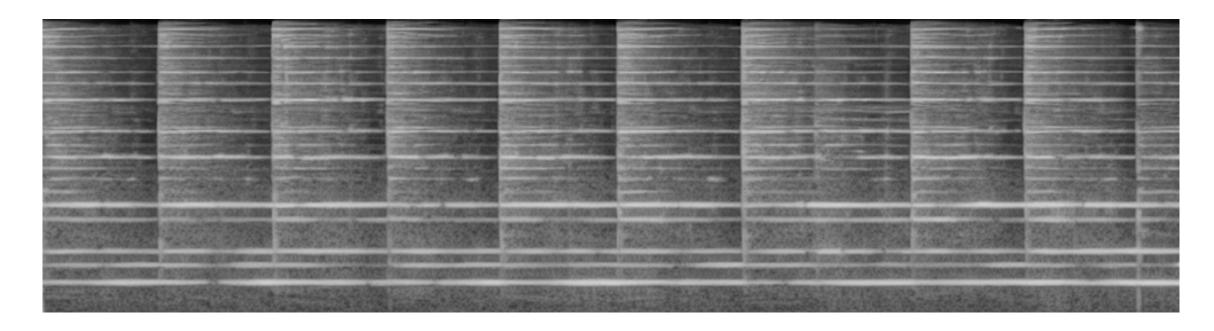
"Seeing" spectrograms

Images

"castles, grayscale"

Spectrograms

"church bell ringing"



"Seeing" spectrograms

Images

"castles, grayscale"

Spectrograms

"church bell ringing"

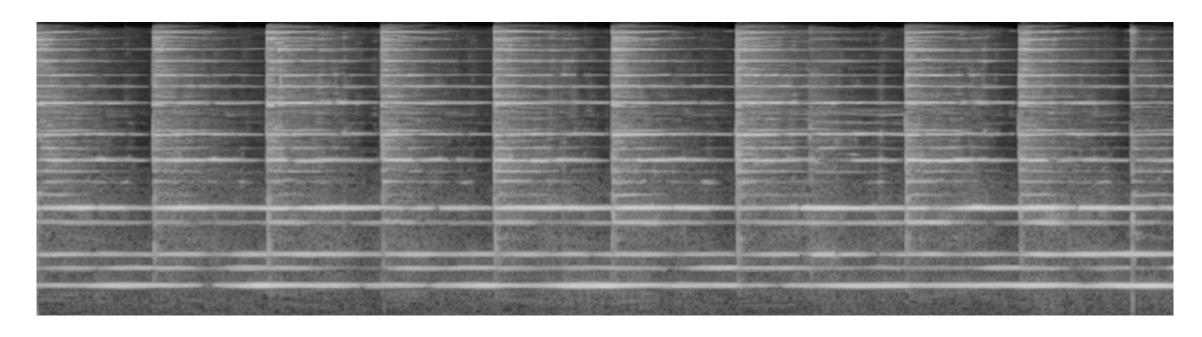
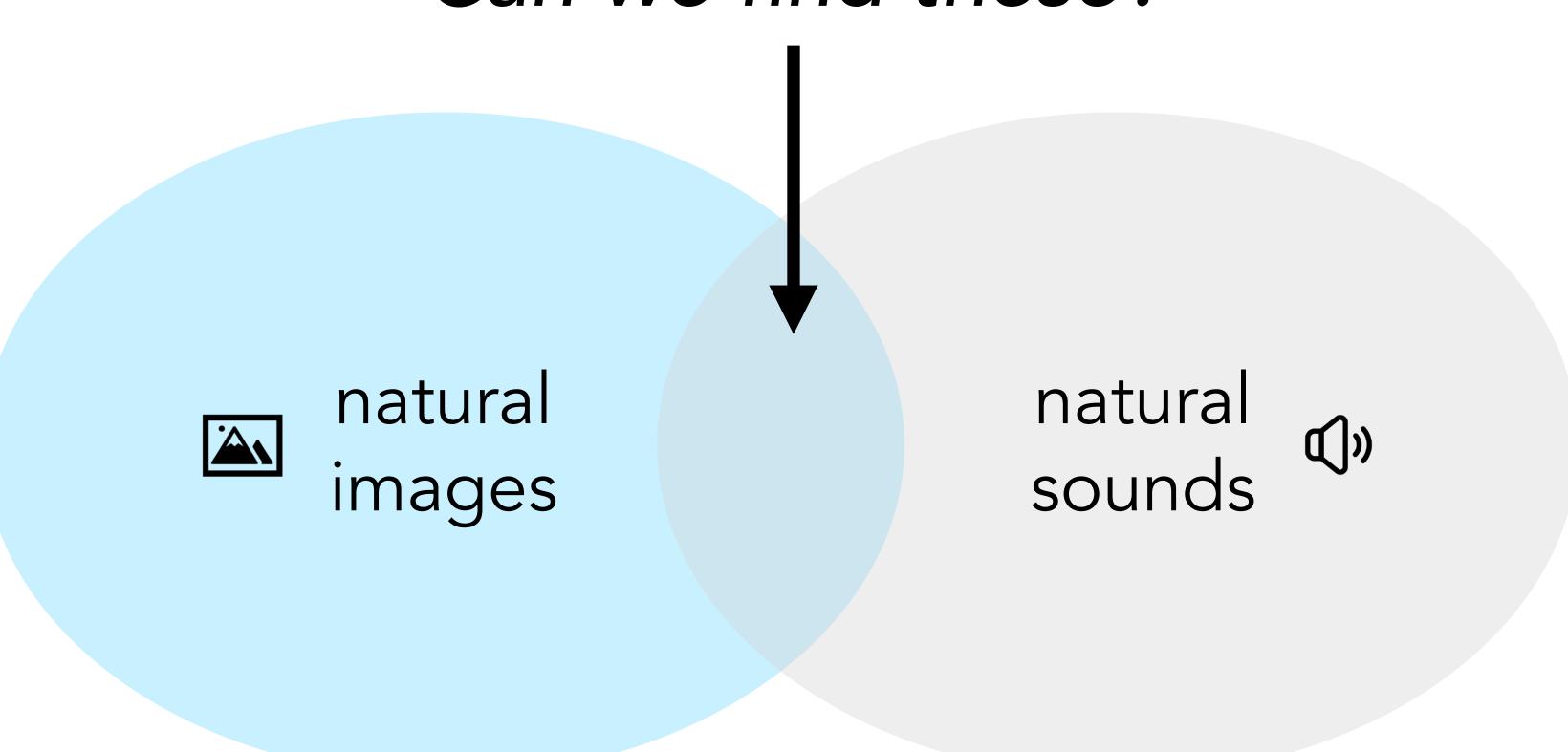


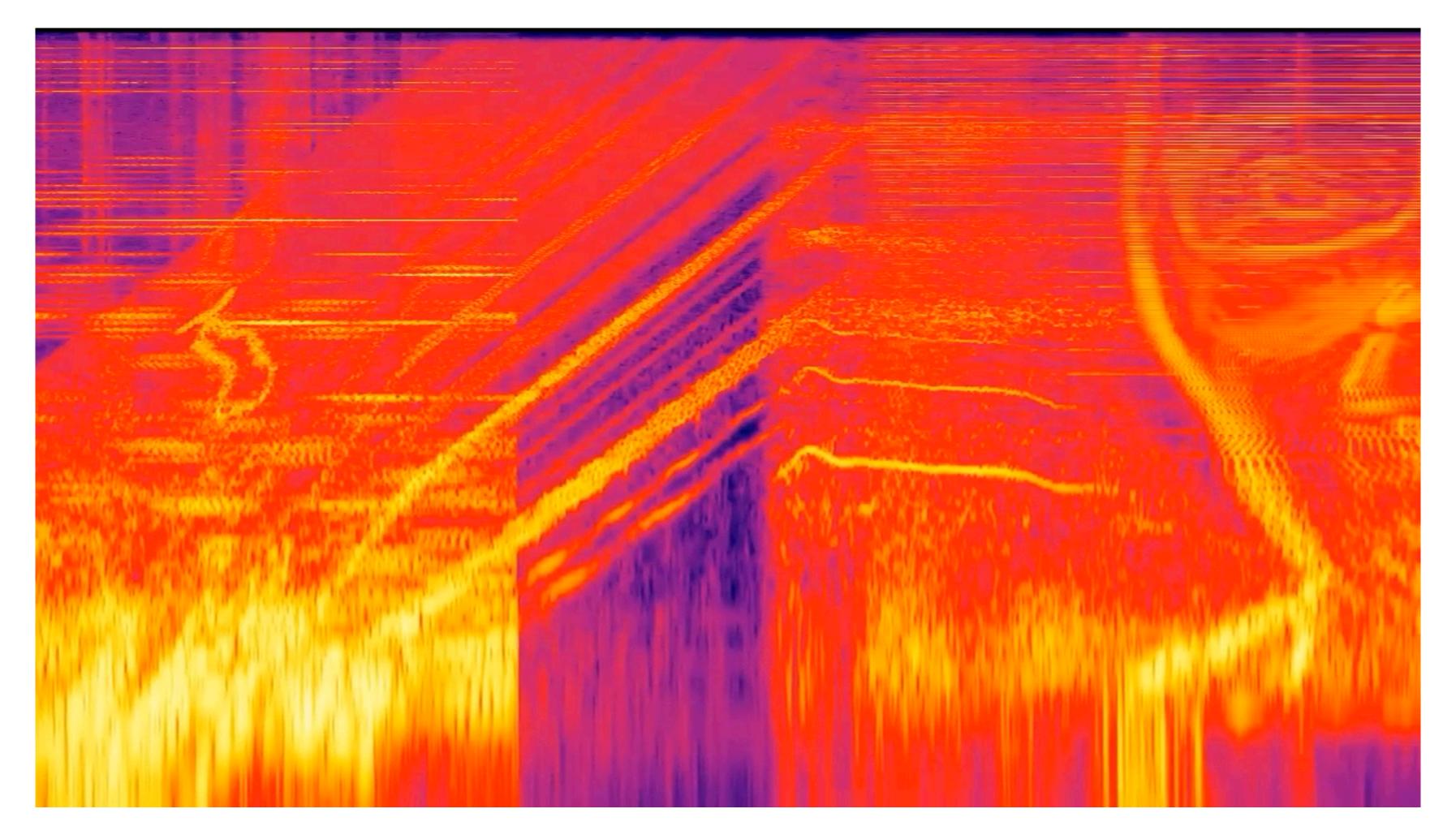
Image captioning [Li et al., BLIP-2, 2023]

"a black and white photo of a window with a curtain"

Can we find these?



Related work: spectrogram art



Aphex Twin, Formula, 2001

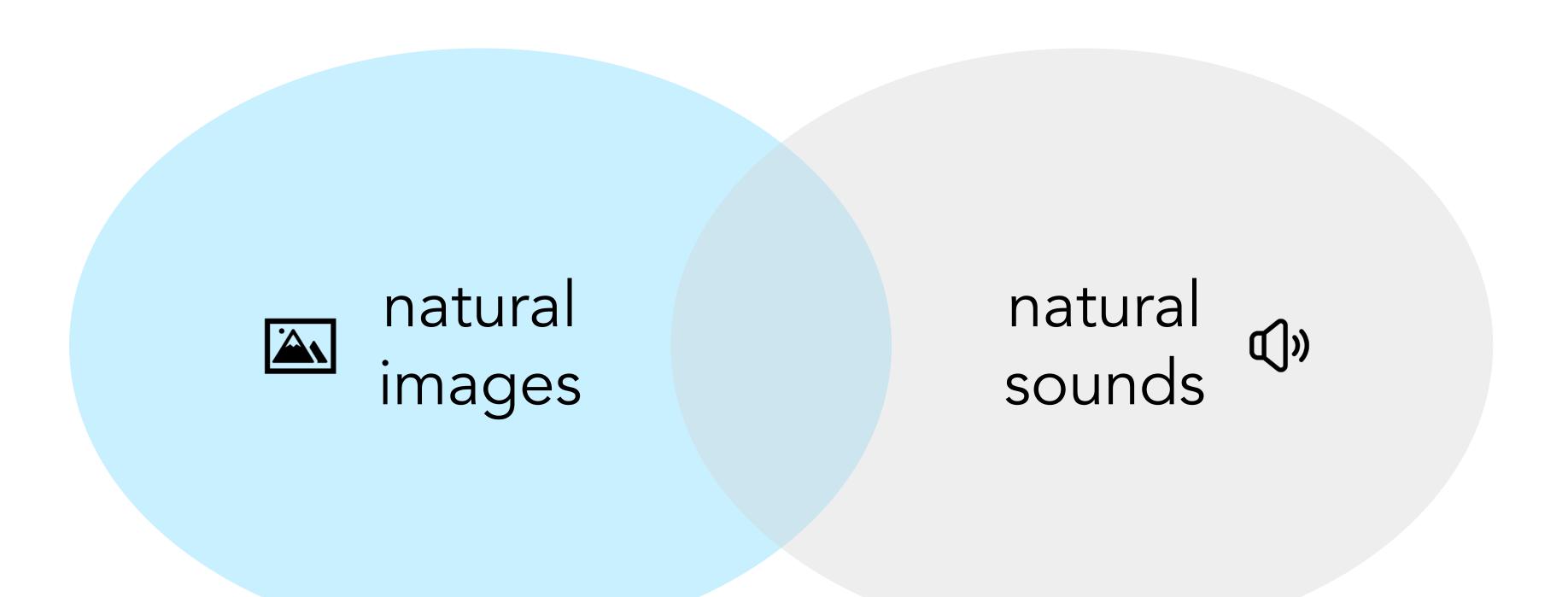
See also: [Nine Inch Nails, "My Violent Heart", 2007], [Venetian Snares, "Songs about my Cats", 2006]

natural images $p_v(\mathbf{x})$

$$p_v(\mathbf{x})$$

natural sounds **((**))

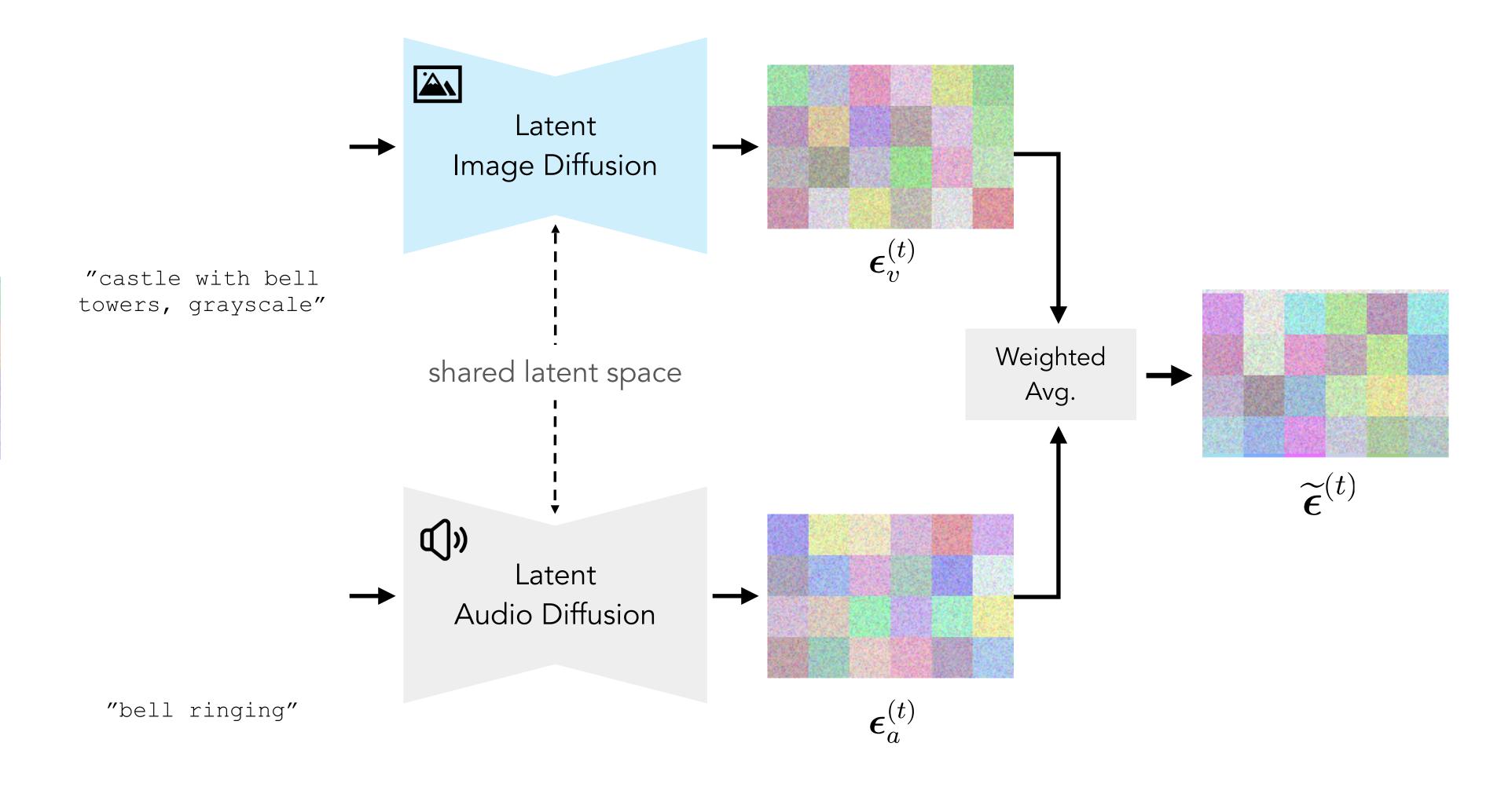
$$p_a(\mathbf{x})$$



Sample from product of experts:

$$p_{av}(\mathbf{x}) \propto p_v(\mathbf{x}) p_a(\mathbf{x})$$

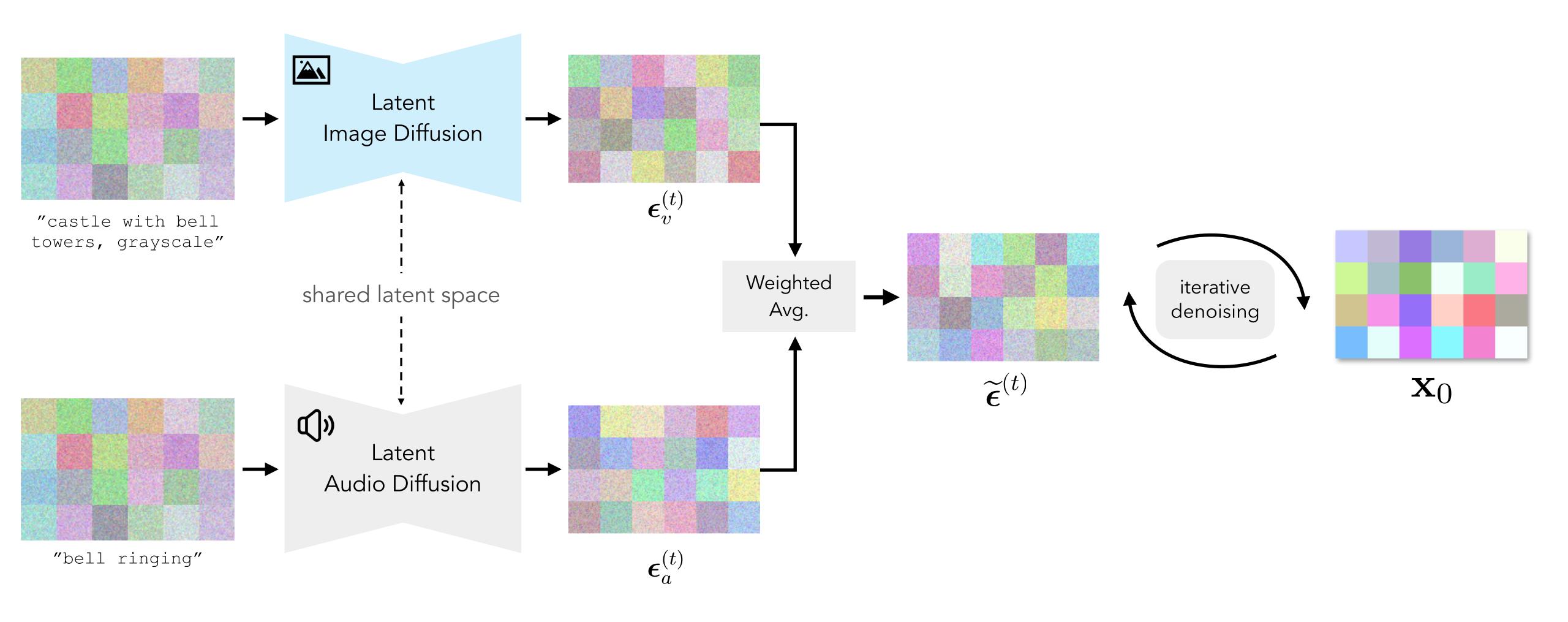
Composing sight with sound



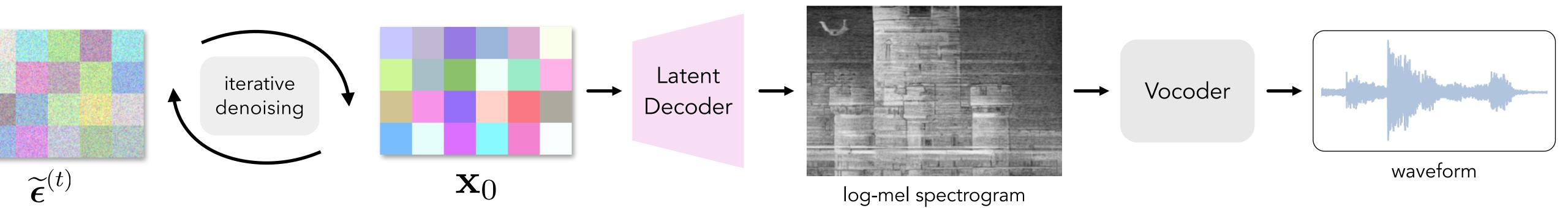
 \mathbf{x}_t

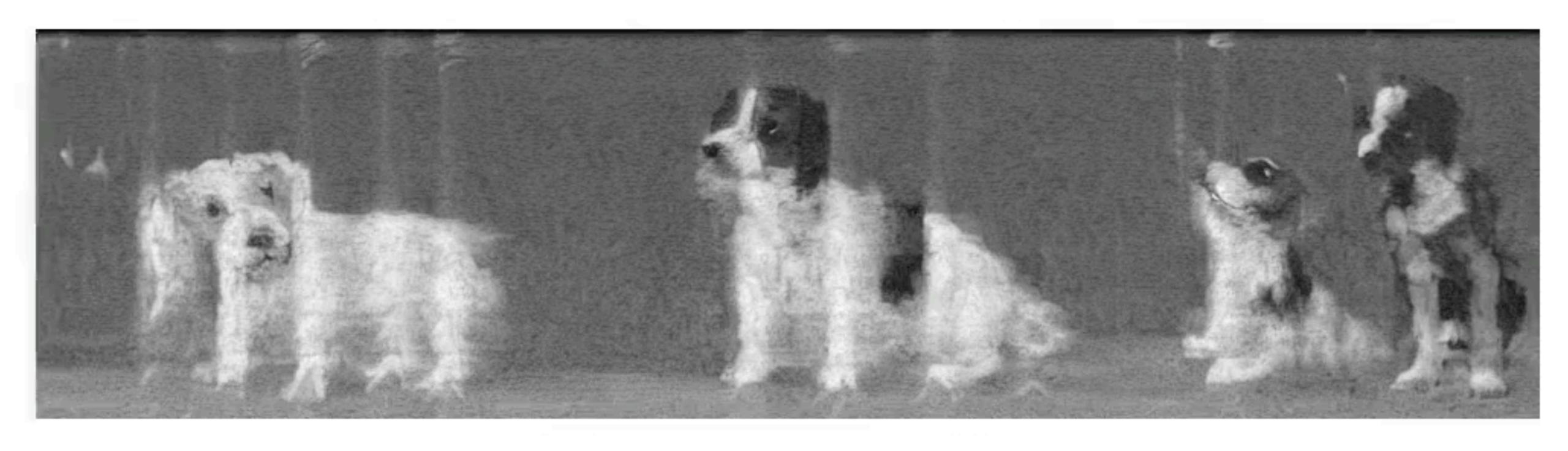


Composing sight with sound



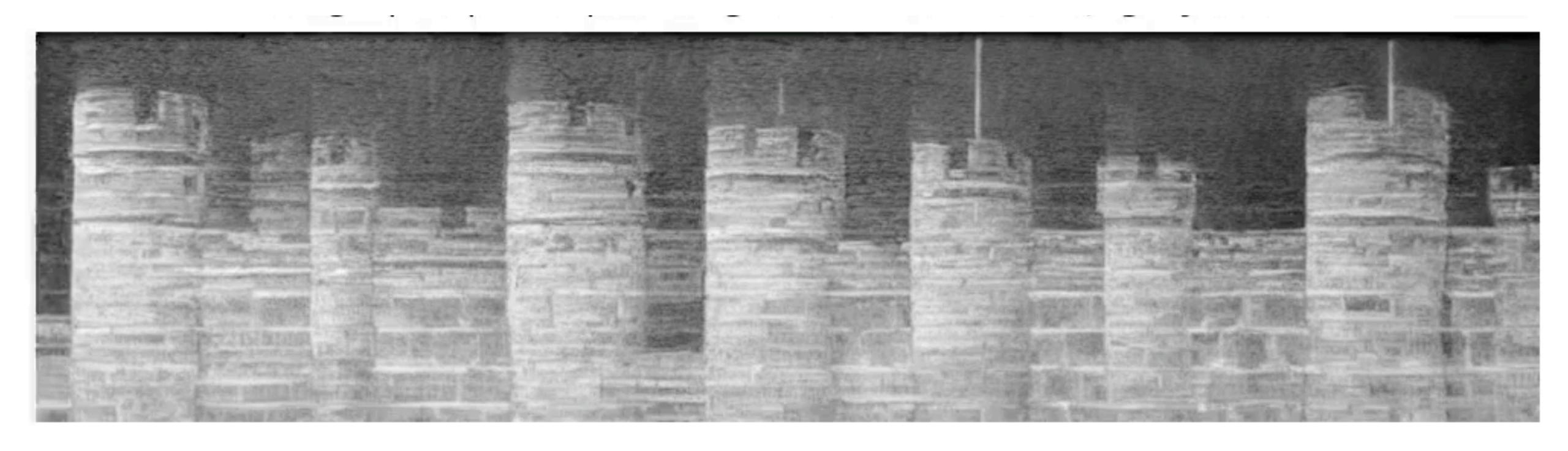
Composing sight with sound





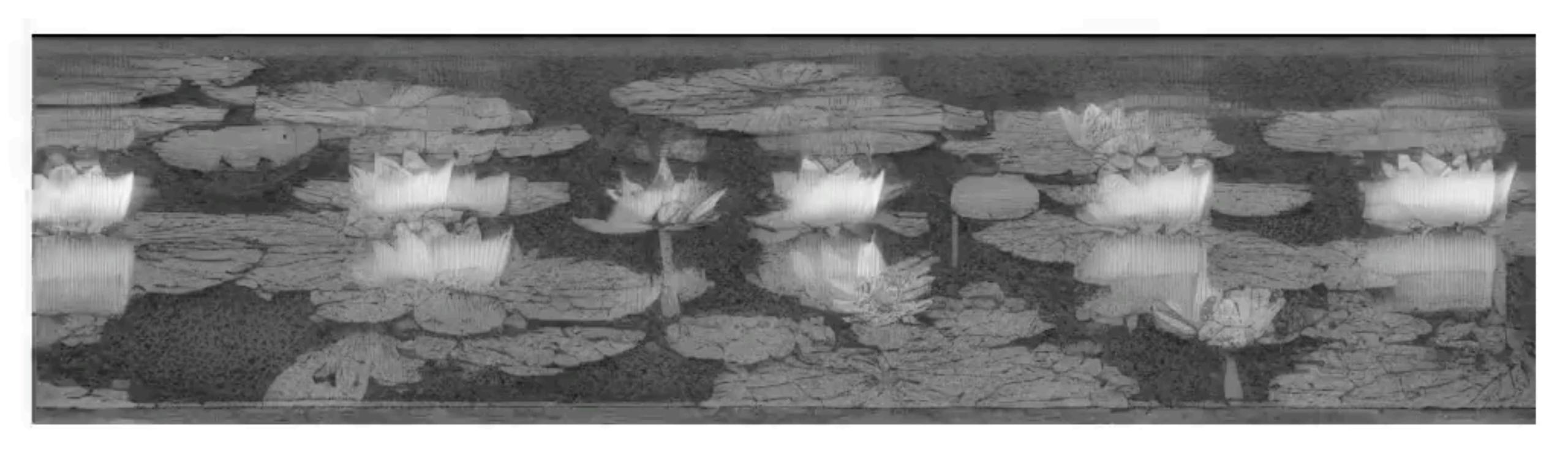
"a painting of cute dogs, grayscale"

"dog barking"



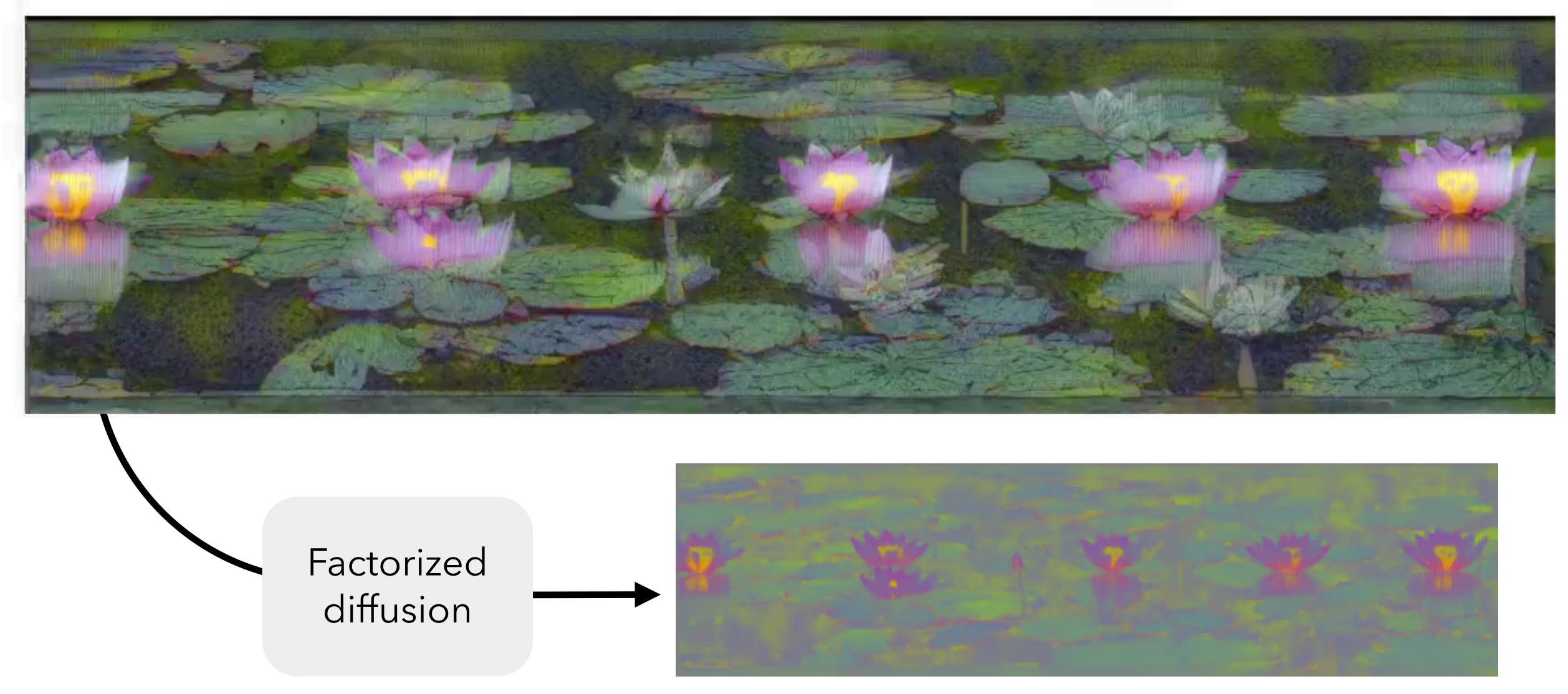
"a painting of castle towers, grayscale"

"bell ringing"



"a pond full of water lilies, grayscale, lithograph style"

Color images?



"a colorful photo of a water-lily pond"

[Geng*, Park*, Owens, Factorized Diffusion: Perceptual Illusions by Noise Decomposition, ECCV 2024]