Cornell University
CS 5670: Introduction to Computer Vision
Fall 2025. Instructor: Andrew Owens

Problem Set 5: Panorama Stitching

Posted: Wednesday, November 5, 2025 Due: Wednesday, November 19, 2025

We have created two Gradescope assignments for PS5. This is because problems 5.1
and 5.2 are theory questions, and problems 5.3 and 5.4 are programming questions. For the
theory questions, please prepare a PDF with your solutions and upload it to the corresponding
assignment on Gradescope. For the programming questions, you should finish the Colab
Notebook, generate a PDF (using the conversion script at the end of the notebook) and then
upload it to the corresponding assignment on Gradescope.

Colab Notebook: https://drive.google.com/file/d/1LmE4bffsR6X0Jghg0YW4dTPagFrQxPC5
Problem 5.1 Linear transformations

(a) Effects of linear transformations (4 points). For each of the following matrices,
show the corresponding property. All variables are real numbers.
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Property: Lengths of line ségments are always preserved.

(ii) Transformation matrix:
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Property: Angles between lines are always preserved.
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(iii) Transformation matrix: [0 1
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Property: Parallel lines are not necessarily parallel.


https://www.gradescope.com/courses/1083751
https://drive.google.com/file/d/1LmE4bffsR6XOJghgOYW4dTPagFrQxPC5

Problem 5.2 Calculating homography from camera parameters

We will explore two situations where the image content in two images can be related by a
homography. In each case, we will derive the corresponding homography.

(a)

Homography induced by camera rotation (5 points). Suppose we have two
images, I; and Iy, captured by cameras C1 and Cs respectively. Their pose differs by a
rotation (there they have the same camera center). Let the intrinsic matrices for the
cameras be K7 and K> respectively. Finally, let R be a 3 x 3 rotation matrix that defines
the relative pose between the cameras.

(i) Given a 3D point X; in the C; coordinate system, please provide an expression
that you can use to compute the location of the pixel in the image I;.

(ii) Similarly, given the same 3D point X; in the Cy coordinate system, please provide
an expression that you can use to compute the location of the corresponding pixel
in the image I5.

(iii) Given a pixel 1 in the image I;, provide an expression that can represents the set
of possible 3D points in the C} coordinate system that project to this pixel. (Hint:
It would be useful to think about the properties of homogeneous coordinates)

(iv) Finally, given a pixel 21 in the image I, please provide an expression that computes
a corresponding pixel xo in the image Is.

(v) Show that the expression derived above is a homography.

Planar homography (4 points). Consider the plane z = 0 in a world coordinate
system. Suppose that there is a camera C; that views the plane, and has the 3 x 4
extrinsic matrix £ = [R | t]. Here, R is a 3 x 3 rotation matrix and ¢ is a 3 x 1
translation vector. The camera captures an image I;, and has an associated intrinsics
matrix K. Show that the projection of any point on the z = 0 plane to the image I; can
be represented by a homography. (Hint: use a step-by-step derivation similar to your
solution to 5.2(a)).

Problem 5.3 Homography estimation

In this problem, we will implement a function to compute a homography matrix H from a set
of point correspondences. You can implement this function using nonlinear least squares (or,
alternatively, the direct linear transform as described in class).

Hint: For nonlinear least squares, we recommend using scipy library’s built-in nonlinear
least squares. To use that function, you need to:

e Define a cost function, f(h;pts1,pts2), that calculates the projection error (a vector of

length 2N) between pts1 and projected pts2 using homography H. The vector r € R?
of residuals for point ¢ is:

r = ptsl[i] — cart(H * homog(pts2[i])). (1)


https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

Here, homog (x) converts x into homogeneous coordinates, cart(x) converts x to Carte-
sian coordinates, and h is a flattened version of the homography H, which is what we
will estimate.

e Provide an initial guess for the homography h. A length 9 vector filled with ‘1’s should
be good enough.

(a) (4 points) Implement a function fit_homography(ptsi,pts2) that computes the ho-
mography matrix from a set of point correspondences.

(b) (4 points) Complete the function apply homography and apply the computed homog-
raphy H to the original points. Plot these original points, the desired destination points,
and the transformed points using matplotlib, as a scatter plot. Make sure the destination
and transformed points are very close together. Include the visualization in the Colab
notebook.

Problem 5.4 Panorama stitching

In this problem we will develop an algorithm for stitching a panorama from overlapping
photos (Figure 1), which amounts to estimating a transformation that aligns one image to
another. To do this, we will compute ORB features” in both images and match them to obtain
correspondences. We will then estimate a homography from these correspondences, and we’ll
use it to stitch the two images together in a common coordinate system.

Figure 1: Panorama produced using our implementation. The image pair shown on the left represents
the keypoints in the two source images and below them are the predicted feature correspondences. On
the right is the stitched panorama.

In order to get an accurate transformation, we will need many accurate feature matches.
Unfortunately, feature matching is a noisy process: even if two image patches (and their ORB
descriptors) look alike, they may not be an actual match.

! Alternatively, you can try minimizing this loss using PyTorch and gradient descent. We didn’t do this in
our implementation, but it should have a very similar result — nonlinear least squares can sometimes provide a
big improvement, but probably not for a simple problem like this one!

20ORB is a hand-crafted feature similar to SIFT. Until recently, SIFT was unfortunately patented, and was
therefore difficult to use in OpenCV.



To make our algorithm robust to matching errors, we will use RANSAC, a method for
estimating a parametric model from noisy observations. We will detect keypoints and represent
descriptors using ORB. We will then match features, using heuristics to remove bad matches.
We have provided you with two images (Figure 1) that you’'ll use to create a panorama.

(a) You will start by computing features and image correspondences.

¢ (2 points) Implement get_orb_features(img) to compute orb features for both
of the given image.

¢ (2 points) Implement match keypoints(descl, desc2) to compute keypoint
correspondences between the two source images using the ratio test. Run the
plotting code to visualize the detected features and resulting correspondences.

(b) (2 points) Your homography-fitting function from problem 8.1 will only work well
if there are no mismatched features. To make it more robust, implement a function
fit_homography ransac(ptsl, pts2) that fits a homography using RANSAC. You can
call fit_homography(ptsl, pts2) inside the inner loop of RANSAC. You will also be
responsible for figuring out the set of parameters to use to produce the best results.

(c) (2 points) Now, using the functions implemented so far, complete
compute_homography_between images(imgl, img2). This function should return two
homography matrices, one representing the forward transformation from imgl to img2,
and the other representing the reverse transformation from img?2 to imgl.

(d) We are now ready to perform panorama stitching! To stitch the images together, you
will implement two types of image warping techniques. Your deliverables are:

(i) (2 points) Complete the function forward warp_image and visualize the stitched
images.

(ii) (2 points) Complete the function backward warp_image and visualize the stitched
images.

(iii) (1 points) Do you notice any differences between your forward warping and

backward warping implementations? Please comment briefly in the Colab Notebook
(there should be a cell where you can type your answer).

Hints:

e Do note that for both types of warping we are computing the color values for the
destination image. We have initialized the destination image with all zeros so that
you can fill in the color values.

e You may run into issues where the transformed pixels fall in locations that are
outside the image boundaries. One way to handle this issue is to clip such values to
the minimum or maximum allowed value depending on the type of the issue.

e The result for backward warping would look similar to the stitched panorama in
Figure 1 if implemented correctly.
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