
Cornell University

CS 5670: Introduction to Computer Vision

Fall 2025. Instructor: Andrew Owens

Problem Set 4: Image Generation

Posted: Friday, October 17, 2025 Due: Monday, November 3, 2025

Please submit your Colab notebook to Gradescope as a .pdf file. Please convert
your Colab notebook to PDF. For your convenience, we have included the PDF conversion
script at the end of the notebook.

Colab Notebooks:

• Problem 4.1: https://drive.google.com/file/d/1BlUdgwFBRdWsNRIC6D7vJWEAnhxig0gm

• Problem 4.2: https://drive.google.com/file/d/1EcvS0SML0Ub2y8Lwq0bFgflEzWspySew

Please see GPU Tips at the end of this document to better understand how to efficiently use
GPUs for this homework set (and all future homeworks that require GPUs). tldr: your code
will run very slow if you run out of GPU hours early and you have to train your models on
CPUs. Please follow the tips we provide to avoid this! We recommend editing and running
your code in Google Colab, although you are welcome to use your local machine instead.

Problem 4.1 (12 points) Generative Adversarial Networks

Colab Notebook: https://drive.google.com/file/d/1BlUdgwFBRdWsNRIC6D7vJWEAnhxig0gm

In this problem, we will implement an image-to-image translation program based on pix2pix [3].
We will train the pix2pix model on the edges2shoes dataset [3, 6] to translate images containing
only the edges of a shoe, to a full image of a shoe. The edges are automatically extracted from
the real shoe images. Some example edge/image pairs are shown in Figure 1.

The pix2pix model is based on a conditional GAN (Figure 3). The generator G maps the
source image x to a synthesized target image. The discriminator takes both the source image
and predicted target image as its inputs, and predicts whether the input is real or fake.

1. (6 points) Let us first define the network based on the architecture from the paper.
The generator follows a U-net architecture, where the activations from the encoder are
concatenated with the inputs to the decoder (Figure 2). We have included a toy U-net
example in the Colab notebook.

Note: We use the notation Ck to denote a Convolution-BatchNorm-ReLU layer with
k filters. All convolutions are 4× 4 spatial filters applied with padding 1, and stride 2,
except for the last 2 layers in the discriminator, which have stride 1. Convolutions in the

1

https://www.gradescope.com/courses/1083751
https://drive.google.com/file/d/1BlUdgwFBRdWsNRIC6D7vJWEAnhxig0gm
https://drive.google.com/file/d/1EcvS0SML0Ub2y8Lwq0bFgflEzWspySew
https://drive.google.com/file/d/1BlUdgwFBRdWsNRIC6D7vJWEAnhxig0gm
https://phillipi.github.io/pix2pix/

Figure 1: Example sketch-image pairs from the edges2shoes dataset. The edges are extracted with
HED edge detector [5] from the raw shoe images. A model trained on this dataset can also work with
user-provided sketches.

encoder and the discriminator downsample the input by a factor of 2, while convolutions
in the decoder upsample the input by a factor of 2.

(a) (3 points) Generator architectures

The U-Net encoder-decoder architecture consists of:

U-Net encoder:

C64-C128-C256-C512-C512-C512-C512-C512

U-Net decoder:

C512-C512-C512-C512-C256-C128-C64-C3

As a special case, batch normalization is not applied to the first and last layers
in the encoder. All nonlinearities in the encoder are Leaky ReLUs, with slope
0.2, while the nonlinearities in the decoder are ReLUs. After the last layer in the
decoder, a convolution is applied to map to the number of output channels, which
is 3 in our problem, followed by a tanh function.

Please complete the generator class in the starter code.

Hint: you can use torch.cat to concatenate the decoder and the encoder inputs

Figure 2: U-net architecture.

2

(b) (3 points) Discriminator architectures

The discriminator architecture is:

C64-C128-C256-C512

As an exception to the above notation, batch normalization is not applied to the
first and last layers. All nonlinearities are Leaky ReLUs, with slope 0.2. After the
last layer, a convolution is applied to map to a 1-dimensional output, followed by a
sigmoid function.

Please complete the discriminator class in the starter code.

Hint: Using torch.nn.functional.leaky relu for Leaky ReLU.

Figure 3: Conditional GAN for image translation.Training a conditional GAN to map edges→photo.
The discriminator, D, learns to classify between fake (synthesized by the generator) and real edge,
photo tuples. The generator, G, learns to fool the discriminator. Unlike an unconditional GAN, both
the generator and discriminator observe the input edge map. The Pokémon images shown here come
from Pokémon Images Dataset [1, 2].

2. (6 points) Now, we will implement the training routine and start training the models.

The conditional GAN (cGAN) loss function can be written as:

LcGAN (G,D) =
1

N

N∑
i=1

logD(xi, yi) +
1

N

N∑
i=1

log(1−D(xi, G(xi)). (1)

We also add an L1 loss to the total total loss function:

LL1(G) =
1

N

N∑
i=1

[∥yi −G(xi)∥1] (2)

Each iteration, we first train discriminator D by using the average loss of real image and
fake images. We then train generator G by using the following loss:

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G). (3)

You will train two different models: one with only L1 loss (we call this the L1 only
model), the other with Equation 3 and λ = 100 (we call this the L1 + cGAN model).
Train the L1 only model for 10 epochs and the L1 + cGAN model for 20 epochs. You
are welcome to train longer to potentially obtain better results.

3

Please complete the following tasks:

• Complete all the incomplete code blocks in the Colab notebook.

• In the specified text cell of the Colab notebook (marked by TODO at the end of
Part 2.1 in the notebook), comment on the difference between the translated images
obtained from the L1 only and L1 + cGAN models.

• Show the history of the generator and the discriminator L1 loss vs. iteration for
the L1 only model in 2 separate plots.

• Show the history of the generator’s BCE and L1 losses and the discriminator’s loss
vs. iteration for the L1 + cGAN model in 3 separate plots.

• In the specified text cell of the Colab notebook (marked by TODO at the end of
Part 2.2 in the notebook), comment on the difference among the history of loss
plots for the L1 only and L1 + cGAN models. Specifically, what are the behaviors
of BCE and L1 losses for the L1 + cGAN model?

Note: Each epoch should take less than 2 minutes. If your training takes significantly
longer than this, there is likely a mistake in your implementation.

3. (Optional) After the pix2pix model has been trained on this dataset, we can apply the
trained generative model to translate any user-provided sketch to a synthetic image. An
example sketch and its corresponding synthesized shoe image are plotted in Figure 4.

Figure 4: Left: An example sketch. Right: the synthesized shoe image.

Please draw a shoe in the sketch panel we provide in the Colab notebook and translate
it to a shoe image with the trained model.

Problem 4.2 (18 points) Diffusion Models

Colab Notebook: https://drive.google.com/file/d/1EcvS0SML0Ub2y8Lwq0bFgflEzWspySew

In this problem, we will explore using a pre-trained diffusion model (DeepFloyd IF [4]) to
perform image generation and editing. DeepFloyd IF is a two stage model trained by Stability
AI. Here, the first stage produces images of size 64× 64 and the second stage takes the output
of the first stage and generates images of size 256× 256.

Below, we list the questions to be solved for this problem. Please refer to the Colab notebook
for detailed instructions on how to solve these problems.

4

https://drive.google.com/file/d/1EcvS0SML0Ub2y8Lwq0bFgflEzWspySew

Figure 5: Example of a visual anagram. When flipped upside down, the image changes its appearance.

• (1 points) Part 1: Implementing the forward process.

• (1 points) Part 2: Classical denoising.

• (2 points) Part 3: One step diffusion denoising.

• (2 points) Part 4: Iterative diffusion denoising.

• (1 points) Part 5: Diffusion model sampling using your functions.

• (2 points) Part 6: Classifier free guidance.

• (1 points) Part 7.1: Image to image translation.

• (1 points) Part 7.2: Translating your own images.

• (1 points) Part 7.3: Text conditioned image editing.

• (2 points) Part 8: Inpainting.

• (2 points) Part 9: Visual anagrams.

• (2 points) Part 10: Hybrid images.

Acknowledgements. The GAN problems were created as part of UMich’s EECS 442 by
Andrew Owens. The diffusion problems were created as part of a joint effort by UMich EECS
442 and UC Berkeley’s CS 180/280A, by Daniel Geng, Hang Gao, Ryan Tabrizi, Liyue Shen,
Andrew Owens, and Alexei A. Efros.

5

1 GPU Tips

For the remainder of the class, we will be using GPUs with Google Colab. We use Colab, since
we believe that it is the best possible option (given the fact that high quality GPUs are very
expensive). However, there are a number of challenges due to the limits that Colab puts on
GPU usage for free accounts. To help you get some information on this and make the most
use of the free limits we have compiled a list of best practices to follow.

Colaboratory or simply Colab is part of the Google suite of products. Put simply, Colab is a
free Jupyter notebook environment that runs entirely in the cloud. You can read more about
it here: https://colab.research.google.com/. We use Colab with Python environment
and to speed up model training. We will be using a very important feature of Colab which is
GPU access.

Colab usually provides T4 GPU for free accounts. Very rarely you’ll get a A100 or L4, which
are much faster. Colab has time and usage limits for GPU access and the rules for these
limits are vague so we have to be careful using them. The general observation is that you start
off with a fixed (4 to 8hr, could be lower) bank. Once you exhaust that, you will not longer be
able to use GPU for upto 24hrs. Once the counter resets, you get lower hours of usage each
time. So how do we maximize our free GPU resources?

(1) Use CPU for debugging

The majority of the implementation in most of the assignments can be completed in CPU; you
should only switch to GPU once you are confident about your code and ready to train your
finals models. The notebook we give you might connect to a GPU runtime by default. You can
change between CPU and GPU instances using Runtime → Change Runtime Type; this resets
the notebook backend, so you’ll need to rerun all cells after switching instance types. You will
also need to change device = torch.device(’cuda’) to device = torch.device(’cpu’)

Please make sure you don’t have any .cuda() statements but rather .to(device)

Also, please note that you do not need the GPU for problems 2.1 and 2.2, so make
sure to run in CPU-only mode for these problems.

(2) Use other Google accounts

If you have multiple Google accounts, please note that each one has a separate limit.

Enable cell execution notifications: Colab can notify you of completed executions even if you
switch to another tab, window, or application. You can enable it via Tools → Settings →
Site → Show desktop notifications (and allow browser notifications once prompted) to check it
out. This is helpful when training models so you don’t leave GPU connected and idle for long
times.

(3) Debugging tips for GPU

RuntimeError: CUDA device-side assert triggered

Do not rely on the line where this error is raised. Even the error traceback says this:

6

https://colab.research.google.com/

RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be
asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA LAUNCH BLOCKING=1

The stack trace might be incorrect. For better debugging, re-run your code as

CUDA LAUNCH BLOCKING=1 python script.py

or add

import os

os.environ["CUDA LAUNCH BLOCKING"] = 1

at the top of your code (temporarily) for debugging. The traceback you get now will point
you to the actual line where the error occurs.

(4) Non-Colab options

We highly recommend using Colab. However, there are several other options.

If you have a GPU in your local machine and can set it up to use within Jupyter notebooks,
you can use it to run the notebooks. In our experience, this approach is also less reliable,
so we recommend using Colab when possible. Also, since the problem sets are designed
for Colab, running them here will require modifications. You can also connect Colab to a
local runtime with GPU. Instructions here: https://research.google.com/colaboratory/
local-runtimes.html. Please note that the instructors will not be able to help debug
environment setup and code issues on non-Colab systems.

(5) Colab Pro

Google offers paid premium upgrades: Colab Pro and Pro Plus which are $10/month and
$50/month respectively. These upgrades have access to faster GPUs and for longer. If you
need more access, you can consider these options. All assignments will be thoroughly tested
to ensure that it can completed within the limits of free Colab resources.

References

[1] Pokemon images dataset. https://www.kaggle.com/kvpratama/pokemon-images-dataset.

[2] zaidalyafeai.github.io. https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/

master/pix2pix/datasets, 2018.

[3] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial
networks. In CVPR, 2017.

[4] StabilityAI. Deepfloyd if. https://github.com/deep-floyd/IF.

[5] S. Xie and Z. Tu. Holistically-nested edge detection. In Proceedings of IEEE International Conference
on Computer Vision, 2015.

[6] A. Yu and K. Grauman. Fine-grained visual comparisons with local learning. In Computer Vision
and Pattern Recognition (CVPR), Jun 2014.

7

https://research.google.com/colaboratory/local-runtimes.html
https://research.google.com/colaboratory/local-runtimes.html
https://www.kaggle.com/kvpratama/pokemon-images-dataset
https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/pix2pix/datasets
https://github.com/zaidalyafeai/zaidalyafeai.github.io/tree/master/pix2pix/datasets
https://github.com/deep-floyd/IF

	GPU Tips

