Cornell University
CS 5670: Introduction to Computer Vision
Fall 2025. Instructor: Andrew Owens

Problem Set 3: Transformers

Posted: Monday, September 29, 2025 Due: Friday, October 17, 2025

Please submit your Colab notebook to Gradescope as a .pdf file. Please convert
your Colab notebook to PDF. For your convenience, we have included the PDF conversion
script at the end of the notebook.

The starter code can be found at:
https://colab.research.google.com/drive/1DEqd3sC5xU31FUMQNtvFG6mhLxGzbofp

Please see GPU Tips at the end of this document to better understand how to efficiently use
GPUs for this homework set (and all future homeworks that require GPUs). tldr: your code
will run very slow if you run out of GPU hours early and you have to train your models on
CPUs. Please follow the tips we provide to avoid this! We recommend editing and running
your code in Google Colab, although you are welcome to use your local machine instead.

Problem 3.1 Vision Transformer

In the previous problem set, we implemented MLPs, CNNs, and networks with residual con-
nections. In this assignment, we’ll take a step further by implementing the Vision Transformer
(ViT) [1]. Inspired by advances in NLP, ViTs treat an image as a sequence of fixed-size patch
tokens and process them with a transformer. Unlike CNNs, which introduce strong spatial
biases through convolution, ViTs rely more on data to learn these structures. This makes them
more data hungry but also arguably more flexible and scalable. However, as a consequence,
the ViT will not perform quite as well as the CNNs from PS2, due to the small dataset and
model size.

In the first half of this problem set, we will build a ViT incrementally, starting with the
patch embedding and the positional encoding, then implementing multi-head self-attention
and transformer blocks. Finally, you will assemble these components into a tiny ViT model
and train it for image classification (Fig. 1).

As in the previous problem set, we will continue to use CIFAR-10 [3]. Since CIFAR images
are only 32 x 32 pixels, we will use a patch size of 4 (instead of 16 in standard ViTs).

We will train the model using the AdamW optimizer [4], which is standard for transformers.
While we didn’t discuss this optimizer in class, it is quite closely related to stochastic gradient

descent with momentum. You can find more information about it here.

Important: For each subproblem in Problem 3.1, we provide a test network to verify the



https://www.gradescope.com/courses/1083751
https://colab.research.google.com/drive/1DEqd3sC5xU31FUMQNtvFG6mhLxGzbofp
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/readings/L05_normalization.pdf

correctness of your implementation. Be sure to train each test network and confirm it reaches
the expected accuracy before proceeding. We will also take these training results into account
when grading your work. Please do not modify the architecture or training hyperparameters
of these networks, as they have been carefully calibrated.
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Figure 1: Vision transformer overview. (Left) We will create a transformer whose tokens come
from image patches. (Right) Transformer architecture diagram. Figure source: Dosovitskiy et al. [1]



(a) (1 point) Patch Embedding. We will obtain tokens from image patches. The patch
embedding module splits the image into non-overlapping patches (e.g., (16 x 16) pixels), flattens
each patch into a vector, and passes it through a linear projection to a common embedding
dimension (C). If the input image has shape ((B, 3, H, W)) and the patch size is (P), the
output becomes a sequence of (H - W/P?) tokens, each of feature dimension (C).

i. Patchify. Implement the patchify function following the instructions. You should not
use any for loop.

ii. Patch Embed. Complete the implementation of the PatchEmbed module following the
instructions.

(b) (1 point) Positional Embedding. ViT (and Transformer in general) is order-agnostic.
They treat input tokens as a set instead of a sequence. To inject information about the spatial
layout of image patches, we need to add a positional embedding to each token. The positional
vectors have the same dimension as the patch embeddings and are simply added to them
before feeding the sequence into the Transformer.

i. Sinusoidal embedding is a non-learnable encoding based on sine and cosine functions
(of different frequencies) on the token position. Run the visualization code we provided.

ii. Learnable embedding is a trainable parameter that learns an embedding for each
token position. Implement the LearnablePosEmbed module following the instructions.

(¢) (1 point) Layer Normalization. Layer normalization stabilizes and accelerates training
by normalizing activations across the feature dimension of each input token. Given an input
vector € R?, LayerNorm will normalize it to zero mean and unit variance, then rescale and
shift the result using learnable parameters 7 (scale) and § (bias):

LayerNorm(z) = v - \/x% + 8,
o2 +e

Implement the LayerNorm module following the instructions.

(d) (3 points) Transformer Block. A Transformer block is the main building unit of Vision
Transformers. Each block contains two key components: multi-head self-attention (MHA),
which allows tokens to exchange information globally, and a feed-forward network (FFN),
which refines each token’s representation.

i. FFN. is a two-layer MLP applied independently to each token. We usually expand the
hidden dimension by a factor (e.g., 4) inside the two linear layers. Implement the MLP
module following the instructions.

ii. MHA. computes the scaled dot-product attention by projecting tokens into query, key,
and value vectors, which allows each token to aggregate information from the entire
sequence:

. QKT
Attention(Q, K, V) = softmax| —— | V
Vg
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Using multiple heads allows the attention block to attend to different types of relation-
ships or spatial patterns in parallel. Implement the Attention module following the
instructions.

iii. TransformerBlock. combines MHA and FFN. It applies LayerNorm to both MHA
and FFN and adds skip connections after each of them. Modern architectures commonly
use the pre-norm design, which applies normalization before each subblock:

z =z + MHA(LN(2)),
z =z +FFN(LN(z)).

In contrast, post-norm applies Layer Normalization after each subblock’s residual
addition, which modifies the identity branch and makes training harder. Implement the
TransformerBlock module following the instructions.

(e) (2 points) Vision Transformer. Let’s put everything together into a ViT. Since CIFAR
is a small dataset, we set our ViT with {feature dimension: 192, number of heads: 3, patch
size: 4}. We also use a smaller learning rate (le-4) to stablize training.

i. Implement the VisionTransformer module following the instructions. ViT introduces
a learnable [CLS] token (classification token) that is prepended to the token sequence.
This token works as a summary that attends to all other tokens through the attention
layers. After passing through all Transformer blocks, we will take the [CLS] token as a
global representation of the image and feed it into the linear classification head.

ii. Notice that our ViT overfits due to insufficient data. One way to mitigate this is data
augmentation. Implement data augmentation following the instructions and re-train
our model.

Problem 3.2 Masked Autoencoder

In this problem, we will implement and train the Masked Autoencoder (MAE) [2], a self-
supervised learning framework designed to pretrain ViTs without labeled data. Instead of
predicting class labels, the model learns to reconstruct the original image from a heavily
masked version. It consists of a ViT encoder and a lightweight decoder (Fig. 2):

Encoder: The encoder processes the unmasked patches. We will first randomly shuffle and
mask a large portion of image patches (often 75% or more). We feed only the remaining visible
patches into the ViT encoder. This encoder produces latent representations for the visible
tokens.

Decoder: The decoder reconstructs the image, given the output of the encoder. It takes the
encoder outputs and inserts a set of special [mask tokens] to represent the missing patches.
We will reorder the sequence to the original patch order using an index map (saved when we
shuffle image patches). We then add decoder positional embeddings to the tokens so the model
knows where each token is spatially. This full sequence (visible + mask tokens) is fed through
a lightweight Transformer decoder. Finally, a linear projection head maps each token to the
pixel space to predict the pixel values of all patches.
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Figure 2: Masked autoencoder. We randomly mask (i.e., drop) image patches from an input image.
We then train a transformer to recover the original image. From this process, the network learns a
feature representation that we can transfer to other tasks. Figure source: He et al. [2]

In order to reconstruct the image, the encoder needs to capture the relationship between
different patches. Through this process, it learns a representation that conveys information
about objects and visual structures in the scene. After pretraining, the decoder is discarded,
and the encoder can be fine-tuned for downstream tasks such as classification or detection.

(a) (2 points) Implement the functions forward_encoder and forward decoder following
the instructions. Pretrain the MAE. Note: training may take roughly an hour, so please plan

ahead. Make sure you save the weights properly. We will use it in the next problem.

(b) (1 point) We can now fine-tune the encoder for classification, starting from the pretrained
weights. Implement the function forward following the instructions and train the model.

Acknowledgements. This problem set was created by Xuanchen Lu.



1 GPU Tips

For the remainder of the class, we will be using GPUs with Google Colab. We use Colab, since
we believe that it is the best possible option (given the fact that high quality GPUs are very
expensive). However, there are a number of challenges due to the limits that Colab puts on
GPU usage for free accounts. To help you get some information on this and make the most
use of the free limits we have compiled a list of best practices to follow.

Colaboratory or simply Colab is part of the Google suite of products. Put simply, Colab is a
free Jupyter notebook environment that runs entirely in the cloud. You can read more about
it here: https://colab.research.google.com/. We use Colab with Python environment
and to speed up model training. We will be using a very important feature of Colab which is
GPU access.

Colab usually provides T4 GPU for free accounts. Very rarely you’ll get a A100 or L4, which
are much faster. Colab has time and usage limits for GPU access and the rules for these
limits are vague so we have to be careful using them. The general observation is that you start
off with a fixed (4 to 8hr, could be lower) bank. Once you exhaust that, you will not longer be
able to use GPU for upto 24hrs. Once the counter resets, you get lower hours of usage each
time. So how do we maximize our free GPU resources?

(1) Use CPU for debugging

The majority of the implementation in most of the assignments can be completed in CPU; you
should only switch to GPU once you are confident about your code and ready to train your
finals models. The notebook we give you might connect to a GPU runtime by default. You can
change between CPU and GPU instances using Runtime — Change Runtime Type; this resets
the notebook backend, so you'll need to rerun all cells after switching instance types. You will
also need to change device = torch.device(’cuda’) to device = torch.device(’cpu’)
Please make sure you don’t have any .cuda() statements but rather .to(device)

Also, please note that you do not need the GPU for problems 2.1 and 2.2, so make
sure to run in CPU-only mode for these problems.

(2) Use other Google accounts

If you have multiple Google accounts, please note that each one has a separate limit.

Enable cell execution notifications: Colab can notify you of completed executions even if you
switch to another tab, window, or application. You can enable it via Tools — Settings —
Site — Show desktop notifications (and allow browser notifications once prompted) to check it
out. This is helpful when training models so you don’t leave GPU connected and idle for long
times.

(3) Debugging tips for GPU

RuntimeError: CUDA device-side assert triggered

Do not rely on the line where this error is raised. Even the error traceback says this:


https://colab.research.google.com/

RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be
asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH _BLOCKING=1

The stack trace might be incorrect. For better debugging, re-run your code as
CUDA_LAUNCH_BLOCKING=1 python script.py

or add

import os
os.environ["CUDA_LAUNCH BLOCKING"] = 1

at the top of your code (temporarily) for debugging. The traceback you get now will point
you to the actual line where the error occurs.

(4) Non-Colab options
We highly recommend using Colab. However, there are several other options.

If you have a GPU in your local machine and can set it up to use within Jupyter notebooks,
you can use it to run the notebooks. In our experience, this approach is also less reliable,
so we recommend using Colab when possible. Also, since the problem sets are designed
for Colab, running them here will require modifications. You can also connect Colab to a
local runtime with GPU. Instructions here: https://research.google.com/colaboratory/
local-runtimes.html. Please note that the instructors will not be able to help debug
environment setup and code issues on non-Colab systems.

(5) Colab Pro

Google offers paid premium upgrades: Colab Pro and Pro Plus which are $10/month and
$50/month respectively. These upgrades have access to faster GPUs and for longer. If you
need more access, you can consider these options. All assignments will be thoroughly tested
to ensure that it can completed within the limits of free Colab resources.
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