Cornell University
CS 5670: Introduction to Computer Vision
Fall 2025. Instructor: Andrew Owens

Problem Set 2: Machine Learning

Posted: Monday, September 15, 2025 Due: Monday, September 29, 2025

Please submit your Colab notebook to Gradescope as a .pdf file. Please convert
your Colab notebook to PDF. For your convenience, we have included the PDF conversion
script at the end of the notebook.

The starter code can be found at:
https://colab.research.google.com/drive/1AAXdHBC7C2fgwUONwEA06t5sua790n-87usp=
sharing

Please see GPU Tips at the end of this document to better understand how to efficiently use
GPUs for this homework set (and all future homeworks that require GPUs). tldr: your code
will run wvery slow if you run out of GPU hours early and you have to train your models on
CPUs. Please follow the tips we provide to avoid this!

We recommend editing and running your code in Google Colab, although you are welcome to
use your local machine instead.

Problem 2.1 Nearest Neighbor Classification

In this problem, we will implement the k-nearest neighbor algorithm to recognize objects in
tiny images. We will use images from CIFAR-10 [2], a small dataset (by today’s standards)
with 60,000 32x32 color images across 10 classes for image classification (Fig. 1). The code
for loading and pre-processing the dataset has been provided for you. For this problem, we
will subsample the dataset for less compute time.

Note: There is a DEBUG flag in the starter code that you can set to True while you are
debugging your code. When the flag is set, only 20% of the training set will be loaded, so
the rest of the code should take less time to run. However, before reporting the answers to
questions, please remember to set the flag back to False, and to rerun the cells! There is also
an option to run the code with a different image size, which you are welcome to experiment
with (again, please set this back to the default before submitting!).

https://www.gradescope.com/courses/1083751
https://colab.research.google.com/drive/1AAXdHBC7C2fgwU0Nw6AO6t5sua79On-8?usp=sharing
https://colab.research.google.com/drive/1AAXdHBC7C2fgwU0Nw6AO6t5sua79On-8?usp=sharing

airplane %.% V..z-h_l
automobile EEEEH“
bird a;. ﬁ- ™ .--

cat EHIIII«!
deer Lol lag BN =l

w EEsAnBA R
v EEEWRSIEE
RGP
O
mo il P R S

Figure 1: A sample of images from CIFAR-10 [2]

horse

(a) For the class KNearestNeighbor defined in the notebook, please finish implementing the
following methods:

i. (1 point) Please read the header for the method compute_distance_two_loops and
understand its inputs and outputs. Fill the remainder of the method as indicated in the
notebook, to compute the L2 distance between the images in the test set and the images
in the training set. The L2 distance is computed as the square root of the sum of the
squared differences between the corresponding pixels of the two images.

Hint: You may use np.linalg.norm to compute the L2 distance.

ii. (1 point) It will be important in subsequent problem sets to write fast vectorized code:
that is, code that operates on multiple examples at once, using as few for loops as
possible. As practice, please complete the methods compute_distance_one_loops which
computes the L2 distance only using a single for loop (and is thus partially vectorized)
and compute_distance no_loops which computes the L2 distance without using any
loops and is thus fully vectorized.

Hint: |z —y|? = [la[2 + Jy||? — 22Ty

iii. (1 point) Complete the implementation of predict_labels to find the k nearest
neighbors for each test image.
Hint: 1t might be helpful to use the function np.argsort.

(b) (0 points) Run the subsequent cells, so that we can check your implementation above.

You will use KNearestNeighbor to predict the labels of test images and calculate the accuracy
of these predictions. We have implemented the code for k = 1 and k = 3. For k = 1, you
should expect to see approximately 33% test accuracy.

(¢) (1 point) Find the best value for k using grid search on the validation set: for each value
of k, calculate the accuracy on the validation set, then choose the highest one. Report the
highest accuracy and the associated k in the provided cell below in the notebook. Also, please
run the code that we’ve provided which uses the best k to calculate accuracy on the test set,
and to see some visualizations of the nearest neighbors.

(optional, 0 points) Run the provided cells below to see the effects of normalization on the
accuracy.

Problem 2.2 Linear classifier with Multinomial Logistic (Softmax) Loss

In this problem, we will train a linear classifier using the softmax (multinomial logistic) loss
(Equation 2) for image classification (Figure 1), using stochastic gradient descent.

(a) (3 points) Estimating the loss and gradients. Complete the implementation of the
softmax_loss_naive function and its gradients using the formulae we have provided, following
its specification. Please note that we are calculating the loss on a minibatch of N images. The
inputs are (x1,¥1), (x2,¥2), ...(Xn,yn) where x; represents the i-th image in the batch, and y;
is its corresponding label.

We first calculate the scores for each object class, i.e. the unnormalized probability that the
image is of a particular class. We’ll denote the scores for a single image as si,s2,...,sc
where C' is the total number of classes, and compute them as, s = Wx;. The softmax loss for
a single image, L; can be defined as,

e’vi

Li(s,y) = —log W (1)
j=1

The total loss £ for all images in the minibatch can then be calculated by averaging the losses
over all of the individual examples:

L) =+ S L @)

Caution: When you exponentiate large numbers in your softmax layer, the result could be
quite large, resulting in values of inf. To avoid these numerical issues, you can first subtract
the maximum score from each scores as shown below:

5y —Mmaxp (sk)

2]21 eS] m. xk(sk)

L; =—log (3)

Gradients We provide the formulae for the gradients, 887%/’ which will also be returned by

softmax_loss_naive:

OL; 5y —maxy (sk)
aWyi (ZC . esj-—maxk(sk)) ()

Jj=

L, esjrfmaxk(sk) .
oW, = (ch:l esjman(Sk)) Ti, J# i ()

As described in the notebook, after implementing this, please run the indicated cells for loss
check and gradient check and make sure you get the expected values.

(b) (3 points) For the LinearClassifier class defined in the notebook, please complete the
implementation of the following:

i. Stochastic gradient descent. Read the header for the method train and fill in the
portions of the code as indicated, to sample random elements from the training data to
form batched inputs and perform parameter update using gradient descent. (Loss and
gradient calculation has already been taken care of by us) .

ii. Running the classifier. Similarly, write the code to implement predict method which
returns the predicted classes by the linear classifier.

(c) (optional, 0 points) Please run the rest of the code that we have provided, which uses
LinearClassifier to train on the training split of the dataset and obtain the accuracies on
the training and validation sets. Observe the accuracy on the test set, which should be around
38%.

(d) (optional, 0 points) Finally, please refer to the visualizations of the learned classifiers.
In these visualizations, we treat the classifier weights as though they were an image, and plot
them. You may observe some interesting patterns in the way that each classifier distributes its
weight.

(e) (optional, 0 points) (i) Show that Equation 1 is equivalent to Equation 3. That is,
subtracting the largest score does not change the result of softmax. (ii) Explain why this may
reduce numerical issues during training..

Problem 2.3 Neural Networks

In this problem, you will implement and train several neural networks with PyTorch for image
classification: a simple Multi-layer Perceptron (MLP), a convolutional network (CNN), and a
CNN with residual connections [1]. A residual connection is a shortcut that lets the network
pass information directly from earlier layers to later ones, making it easier to train very deep
networks without losing important information.

We will still use the CIFAR-10 dataset for this problem. Below is an outline for your
implementation. For more detailed instructions, please refer to the notebook.

(a) (2 points) We often train deep neural networks on very large datasets. Because it is
impossible to fit the whole dataset into the RAM, loading the data one batch at a time

is a common practice. We also often need to preprocess the data, which includes common
preprocessing steps like normalizing the pixel values, resizing the images to have a consistent
size, and converting NumPy arrays to PyTorch tensors. As the first step of this problem set,
please fill in the indicated part for building data loaders with the specified data preprocessing
steps (for the specific preprocessing you need to perform, please see the comments in the
provided notebook). You may also find the PyTorch tutorial! on data loading to be helpful.

(b) (1 points) Construct the MLP model, consisting of several linear layers and ReLU activations.
Make sure the neural network you build has the same architectures as the ones we give in the
notebook before you start training them.

(¢) (2 points) Implement the training and validation loops. For the training loop, you will
need to implement the following steps: i) compute the outputs for each minibatch using the
neural networks you build, ii) calculate the loss, iii) update the parameters using the SGD
optimizer (with momentum). Please use PyTorch’s built-in automatic differentiation, rather
than implementing backpropagation yourself. The validation loop is almost identical to the
training loop except that we do not perform gradient update to the model parameters; we’ll
simply report the loss and accuracy. Please see the notebook as well for further instructions.

(d) (1 point) Train the MLP network and visualize training and validation accuracy history
for the model. Note: the model is very small and can be trained entirely on CPU. Training
will take about 5 minutes on Colab with CPU.

(e) (2 points) Construct the CNN model, with convolutional layers, batch normalization, ReLU
activations, global average pooling, and a final linear layer. Train the network and visualize
training and validation accuracy history for the model. Make sure the neural network you
build has the same architectures as the ones we give in the notebook before you start training
them. Note: training will take about 5 minutes on Colab with T4 GPU.

(f) (1 points) Construct the Residual CNN model. The architecture is very similar to a
CNN, with the addition of residual connections. Train the network and visualize training and
validation accuracy history for the model. Make sure the neural network you build has the
same architectures as the ones we give in the notebook before you start training them. Note:
training will take about 5 minutes on Colab with T4 GPU.

(g) (0 points) Please run the code we provide to compute top-k accuracy of the three models.

(h) (optional, 0 points) Since we use Global Average Pooling (GAP), we can easily compute
the Class Activation Map (CAM) [3] to visualize where the network attends for a given category.
Complete the relevant blocks in the notebook. The implementation of CAM has already been
provided to you.

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

Australian
terrier

<zZ200O
<Z200
<200
<ZO0O0O
S\

Class Activation Mapping

Class
Activation
Map

(Australian terrier)

2 000 AF W, *

!

Figure 2: An overview of Class Activation Map (CAM). Figure source: Zhou et al. [3]

h | -

1 GPU Tips

For the remainder of the class, we will be using GPUs with Google Colab. We use Colab, since
we believe that it is the best possible option (given the fact that high quality GPUs are very
expensive). However, there are a number of challenges due to the limits that Colab puts on
GPU usage for free accounts. To help you get some information on this and make the most
use of the free limits we have compiled a list of best practices to follow.

Colaboratory or simply Colab is part of the Google suite of products. Put simply, Colab is a
free Jupyter notebook environment that runs entirely in the cloud. You can read more about
it here: https://colab.research.google.com/. We use Colab with Python environment
and to speed up model training. We will be using a very important feature of Colab which is
GPU access.

Colab usually provides T4 GPU for free accounts. Very rarely you'll get a A100 or L4, which
are much faster. Colab has time and usage limits for GPU access and the rules for these
limits are vague so we have to be careful using them. The general observation is that you start
off with a fixed (4 to 8hr, could be lower) bank. Once you exhaust that, you will not longer be
able to use GPU for upto 24hrs. Once the counter resets, you get lower hours of usage each
time. So how do we maximize our free GPU resources?

(1) Use CPU for debugging

The majority of the implementation in most of the assignments can be completed in CPU; you
should only switch to GPU once you are confident about your code and ready to train your
finals models. The notebook we give you might connect to a GPU runtime by default. You can
change between CPU and GPU instances using Runtime — Change Runtime Type; this resets
the notebook backend, so you’ll need to rerun all cells after switching instance types. You will
also need to change device = torch.device(’cuda’) to device = torch.device(’cpu’)
Please make sure you don’t have any .cuda() statements but rather .to(device)

Also, please note that you do not need the GPU for problems 2.1 and 2.2, so make

https://colab.research.google.com/

sure to run in CPU-only mode for these problems.
(2) Use other Google accounts
If you have multiple Google accounts, please note that each one has a separate limit.

Enable cell execution notifications: Colab can notify you of completed executions even if you
switch to another tab, window, or application. You can enable it via Tools — Settings —
Site — Show desktop notifications (and allow browser notifications once prompted) to check it
out. This is helpful when training models so you don’t leave GPU connected and idle for long
times.

(3) Debugging tips for GPU
RuntimeError: CUDA device-side assert triggered

Do not rely on the line where this error is raised. Even the error traceback says this:
RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be
asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH BLOCKING=1

The stack trace might be incorrect. For better debugging, re-run your code as
CUDA_LAUNCH_BLOCKING=1 python script.py

or add

import os
os.environ["CUDA_LAUNCH_BLOCKING"] = 1

at the top of your code (temporarily) for debugging. The traceback you get now will point
you to the actual line where the error occurs.

(4) Non-Colab options
We highly recommend using Colab. However, there are several other options.

If you have a GPU in your local machine and can set it up to use within Jupyter notebooks,
you can use it to run the notebooks. In our experience, this approach is also less reliable,
so we recommend using Colab when possible. Also, since the problem sets are designed
for Colab, running them here will require modifications. You can also connect Colab to a
local runtime with GPU. Instructions here: https://research.google.com/colaboratory/
local-runtimes.html. Please note that the instructors will not be able to help debug
environment setup and code issues on non-Colab systems.

(5) Colab Pro

Google offers paid premium upgrades: Colab Pro and Pro Plus which are $10/month and
$50/month respectively. These upgrades have access to faster GPUs and for longer. If you

https://research.google.com/colaboratory/local-runtimes.html
https://research.google.com/colaboratory/local-runtimes.html

need more access, you can consider these options. All assignments will be thoroughly tested
to ensure that it can completed within the limits of free Colab resources.

Acknowledgements. Some of the homework and the starter code was taken from previous
CS231n course at Stanford University by Fei-Fei Li, Justin Johnson and Serena Yeung.

References

[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

[2] A. Krizhevsky, V. Nair, , and G. Hinton. Cifar, 2009. URL https://www.cs.toronto.edu/~kriz/
cifar.html.

[3] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discrimina-
tive localization. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2921-2929, 2016.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	GPU Tips

