CS5670: Computer Vision

Course review

Class	Date	Topic/notes	Readings	Assignments, etc.
0	Jan 24	Introduction and Overview [ppt\|pdf] a	Szeliski 1	
	29		Szeliski 3.1	
2	31		Szeliski 3.2	
3	31		Szeliski 3.4, 2.3.1	
4	Feb 4		Szeliski 4.1	
5	4		Szeliski 4.1	
6	7		Szeliski 4.1	
7	12	Image Transformation [ppt\|pdf]	Szeliski 3.6	
8	14		Szeliski 6.1	PA1 due
9	14		Szeliski 6.1	
10	21		Szeliski 2.1.3-2.1.6	
11	28		Szeliski 9	

Announcements

- Final exam to be distributed on Piazza on Monday, 5/11, at approximately 5pm
- Will be due electronically (likely on Gradescope) by Thursday, 5/14, at 5pm

Topics: Image processing

- Filtering
- Edge detection
- Image resampling / aliasing / interpolation
- Feature detection
- Harris corners
- SIFT
- Invariant features
- Feature matching

Topics: 2D geometry

- Image transformations
- Image alignment / least squares
- RANSAC
- Panoramas

Topics: 3D geometry

- Cameras
- Perspective projection
- Single-view modeling (points, lines, vanishing points, etc.)
- Stereo
- Two-view geometry (F-matrices, E-matrices)
- Structure from motion
- Multi-view stereo

Topics: Geometry, continued

- Light, color, perception
- Lambertian reflectance
- Photometric stereo

Topics: Recognition

- Different kinds of recognition problems
- Classification, detection, segmentation, etc.
- Machine learning basics
- Nearest neighbors
- Linear classifiers
- Hyperparameters
- Training, test, validation datasets
- Loss functions for classification

Topics: Recognition, continued

- Neural networks
- Convolutional neural networks
- Architectural components: convolutional layers, pooling layers, fully connected layers
- Training CNNs
- Generative methods (GANs)
- Deep learning and geometry

Questions?

Image Processing

Linear filtering

- One simple function on images: linear filtering (cross-correlation, convolution)
- Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask","filter")

10	5	3
4	6	1
1	1	8

Local image data | 0 | 0 | 0 |
| :---: | :---: | :---: |
| 0 | 0.5 | 0 |
| 0 | 1 | 0.5 |
| kernel | | |

Convolution

- Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

This is called a convolution operation:

$$
G=H * F
$$

- Convolution is commutative and associative

Gaussian Kernel

Image gradient

- The gradient of an image: $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity
$\nabla f=\left[\frac{\partial f}{\partial x}, 0\right]$

$\xrightarrow[\sim]{\wedge} \nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The edge strength is given by the gradient magnitude:

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

The gradient direction is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- how does this relate to the direction of the edge?

Finding edges

gradient magnitude

Finding edges

thinning

Image sub-sampling

Why does this look so crufty?

Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/4

G 1/8

- Solution: filter the image, then subsample

Image interpolation

Linear interpolation
$\xrightarrow{\operatorname{gauss}(x)} \underset{ }{\text { A }}$

Gaussian reconstruction

Image interpolation

Original image: $\times 10$

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

The second moment matrix

The surface $E(u, v)$ is locally approximated by a quadratic form.

$$
\begin{aligned}
& E(u, v) \quad \approx A u^{2}+2 B u v+C v^{2} \\
& \approx\left[\begin{array}{ll}
u & v
\end{array}\right] \underbrace{\left[\begin{array}{ll}
A & B \\
B & C
\end{array}\right]}_{H}\left[\begin{array}{l}
u \\
v
\end{array}\right] \\
& A=\sum_{(x, y) \in W} I_{x}^{2} \\
& B=\sum_{(x, y) \in W} I_{x} I_{y} \\
& C=\sum_{(x, y) \in W} I_{y}^{2}
\end{aligned}
$$

The Harris operator

$\lambda_{\text {min }}$ is a variant of the "Harris operator" for feature detection

$$
\begin{aligned}
& f=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
= & \frac{\operatorname{determinant}(H)}{\operatorname{trace}(H)}
\end{aligned}
$$

- The trace is the sum of the diagonals, i.e., $\operatorname{trace}(H)=h_{11}+h_{22}$
- Very similar to $\lambda_{\text {min }}$ but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

Laplacian of Gaussian

- "Blob" detector

- Find maxima and minima of LoG operator in space and scale

Scale-space blob detector: Example

Feature distance

How to define the difference between two features f_{1}, f_{2} ?

- Better approach: ratio distance $=\left\|f_{1}-f_{2}\right\| /\left\|f_{1}-f_{2}{ }^{\prime}\right\|$
- f_{2} is best SSD match to f_{1} in I_{2}
- $f_{2}{ }^{\prime}$ is $2^{\text {nd }}$ best SSD match to f_{1} in I_{2}
- gives large values for ambiguous matches

I_{1}

I_{2}

2D Geometry

Parametric (global) warping

$$
\mathbf{p}=(x, y)
$$

$$
\mathbf{p}^{\prime}=\left(x^{\prime}, y^{\prime}\right)
$$

- Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

- What does it mean that T is global?
- Is the same for any point p
- can be described by just a few numbers (parameters)
- Let's consider linear xforms (can be represented by a 2D matrix):

$$
\mathbf{p}^{\prime}=\mathbf{T} \mathbf{p} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\checkmark
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\checkmark
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

These transformations are a nested set of groups

- Closed under composition and inverse is a member

Projective Transformations aka Homographies aka Planar Perspective Maps

Called a homography

(or planar perspective map)

Inverse Warping

- Get each pixel $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}(x, y)$ in $f(x, y)$
- Requires taking the inverse of the transform

Affine transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c \\
d x+e y+f \\
1
\end{array}\right]
$$

Solving for affine transformations

- Matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
& & \vdots & & \\
& & & & & \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime} \\
y_{n}^{\prime}
\end{array}\right]} \\
& \text { A } \\
& \mathbf{t}_{x}=\mathbf{b}
\end{aligned}
$$

RANSAC

- General version:

1. Randomly choose s samples

- Typically $s=$ minimum sample size that lets you fit a model

2. Fit a model (e.g., line) to those samples
3. Count the number of inliers that approximately fit the model
4. Repeat N times
5. Choose the model that has the largest set of inliers

Projecting images onto a common plane

Can't create a 360 panorama this way...
Mosaic projection plane

3D Geometry

Pinhole camera

- Add a barrier to block off most of the rays
- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right] }
\end{aligned}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\frac{\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}{\left[-d \frac{y}{z}\right)} \underset{ }{\left[\begin{array}{c}
(\text { divide by third coordinate }
\end{array}\right.}
$$

This is known as perspective projection

- The matrix is the projection matrix

Projection matrix

$$
\begin{aligned}
& {[\mathbf{R} \mid-\mathbf{R c}]} \\
& \text { (t in book's notation) } \\
& \boldsymbol{\Pi}=\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}]
\end{aligned}
$$

Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) \mathbf{p} on the line: $\boldsymbol{I} \cdot \mathbf{p}=0$

What is the line \mathbf{I} spanned by rays $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$?

- \boldsymbol{I} is \perp to \mathbf{p}_{1} and $\mathbf{p}_{2} \Rightarrow \mathbf{I}=\mathbf{p}_{1} \times \mathbf{p}_{2}$
- I can be interpreted as a plane normal

What is the intersection of two lines I_{1} and I_{2} ?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

Vanishing points

- Properties
- Any two parallel lines (in 3D) have the same vanishing point \mathbf{v}
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact, every image point is a potential vanishing point

Measuring height

Your basic stereo algorithm

For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

Stereo as energy minimization

- Better objective function

Fundamental matrix

- This epipolar geometry of two views is described by a Very Special 3×3 matrix \mathbf{F}, called the Fundamental matrix
- \mathbf{F} maps (homogeneous) points in image 1 to lines in image 2 !
- The epipolar line (in image 2) of point \mathbf{p} is: $\mathbf{F p}$
- Epipolar constraint on corresponding points: $\mathbf{q}^{T} \mathbf{F p}=0$

Epipolar geometry example

Original stereo pair

Estimating F - 8-point algorithm

- The fundamental matrix F is defined by

$$
\mathbf{x}^{\prime \mathrm{T}} \mathbf{F} \mathbf{x}=0
$$

for any pair of matches x and x^{\prime} in two images.

- Let $\mathrm{x}=(u, v, 7)^{\top}$ and $\mathrm{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 7\right)^{\top}, \quad \mathbf{F}=\left[\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33}\end{array}\right]$ each match gives a linear equation

$$
u u^{\prime} f_{11}+v u^{\prime} f_{12}+u^{\prime} f_{13}+u v^{\prime} f_{21}+v v^{\prime} f_{22}+v^{\prime} f_{23}+u f_{31}+v f_{32}+f_{33}=0
$$

8-point algorithm

- As with homographies, instead of solving Af = 0, we seek \mathbf{f} to minimize $\|\mathbf{A f}\|$ least eigenvector of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$.

Structure from motion

Stereo: another view

Multiple-baseline stereo

Fig. 5. SSD values versus inverse distance: (a) $B=b$; (b) $B=2 b$; (c)
$B=3 b$; (d) $B=4 b$; (e) $B=5 b$; (f) $B=6 b$; (g) $B=7 b$; (h) $B=8 b$ $B=$ ori
The horizontal axis is normalized such that $8 b F=1$.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.

Plane-Sweep Stereo

- Sweep family of planes parallel to the reference camera image plane
- Reproject neighbors onto each plane (via homography) and compare reprojections

Light, reflectance, cameras

Radiometry

- What determines the brightness of an image pixel?

Materials - Three Forms

Ideal diffuse
(Lambertian)

Ideal specular

Directional diffuse

Photometric stereo

Can write this as a matrix equation:

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=k_{d}\left[\begin{array}{l}
\mathbf{L}_{1}{ }^{T} \\
\mathbf{L}_{2}^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right] \mathbf{N}
$$

Example

Recognition

Image Classification

(assume given set of discrete labels) \{dog, cat, truck, plane, ...\}

cat

Object detection

k-nearest neighbor

- Find the k closest points from training data
- Take majority vote from K closest points

NN classifier

5-NN classifier

Hyperparameters

- What is the best distance to use?
- What is the best value of \mathbf{k} to use?
- These are hyperparameters: choices about the algorithm that we set rather than learn
- How do we set them?
- One option: try them all and see what works best

Setting Hyperparameters

Idea \#1: Choose hyperparameters
BAD: K = 1 always works
that work best on the data
perfectly on training data
Your Dataset
Idea \#2: Split data into train and test, choose BAD: No idea how algorithm hyperparameters that work best on test data
will perform on new data
train

	test	
Idea \#3: Split data into train, val, and test; choose		
hyperparameters on val and evaluate on test		
train	validation	test

Parametric approach: Linear classifier

Loss function, cost/objective function

- Given ground truth labels $\left(y_{i}\right)$, scores $f\left(x_{i}, \mathbf{W}\right)$
- how unhappy are we with the scores?
- Loss function or objective/cost function measures unhappiness
- During training, want to find the parameters W that minimizes the loss function

Softmax classifier

$$
f\left(x_{i}, W\right)=W x_{i} \quad \begin{aligned}
& \text { score function } \\
& \text { is the same }
\end{aligned}
$$

softmax function

$$
[1,-2,0] \rightarrow\left[e^{1}, e^{-2}, e^{0}\right]=[2.71,0.14,1] \rightarrow[0.7,0.04,0.26]
$$

Interpretation: squashes values into range 0 to 1

$$
P\left(y_{i} \mid x_{i} ; W\right)
$$

Neural networks

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Convolutional neural networks

[Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]

BW \rightarrow Color

Data from [Russakovsky et al. 2015]

Labels \rightarrow Street Views

Synthesized image

Learning 3D geometry

Mapping images to images with the UNet architecture

Questions?

- Good luck!

