CS5670: Computer Vision

Course review

0	Class	Date	Topic/notes	Readings	Assignments, etc.
	0	Jan 24	Introduction and Overview [ppt pdf]	Szeliski 1	
	1	29	Image filtering [ppt pdf]	Szeliski 3.1	
	2	31	Image filtering 2 [ppt pdf]	Szeliski 3.2	
	3	31	Image Resampling(ppt pdf)	Szeliski 3.4, 2.3.1	
	4	Feb 4	Features Detection [ppt pdf]	Szeliski 4.1	
	5	4	Features Invariance [ppt pdf]	Szeliski 4.1	
	6	7	Descriptors [ppt pdf]	Szeliski 4.1	
	7	12	Image Transformation [ppt pdf]	Szeliski 3.6	
	8	14	Alignment [ppt pdf]	Szeliski 6.1	PA1 due
	9	14	RANSAC [ppt pdf]	Szeliski 6.1	
	10	21	Cameras [ppt pdf]	Szeliski 2.1.3-2.1.6	
	11	28	Panoramas (ppt pdf)	Szeliski 9	

Announcements

- Final exam to be distributed on Piazza on Monday, 5/11, at approximately 5pm
- Will be due electronically (likely on Gradescope) by Thursday, 5/14, at 5pm

Topics: Image processing

- Filtering
- Edge detection
- Image resampling / aliasing / interpolation
- Feature detection
 - Harris corners
 - SIFT
 - Invariant features
- Feature matching

Topics: 2D geometry

- Image transformations
- Image alignment / least squares
- RANSAC
- Panoramas

Topics: 3D geometry

- Cameras
- Perspective projection
- Single-view modeling (points, lines, vanishing points, etc.)
- Stereo
- Two-view geometry (F-matrices, E-matrices)
- Structure from motion
- Multi-view stereo

Topics: Geometry, continued

- Light, color, perception
- Lambertian reflectance
- Photometric stereo

Topics: Recognition

- Different kinds of recognition problems
 - Classification, detection, segmentation, etc.
- Machine learning basics
 - Nearest neighbors
 - Linear classifiers
 - Hyperparameters
 - Training, test, validation datasets
- Loss functions for classification

Topics: Recognition, continued

- Neural networks
- Convolutional neural networks
 - Architectural components: convolutional layers, pooling layers, fully connected layers
 - Training CNNs
- Generative methods (GANs)
- Deep learning and geometry

Questions?

Image Processing

Linear filtering

- One simple function on images: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Finding edges

gradient magnitude

Finding edges

thinning

(non-maximum suppression)

Image sub-sampling

Why does this look so crufty?

Source: S. Seitz

Subsampling with Gaussian pre-filtering

• Solution: filter the image, then subsample

Source: S. Seitz

Image interpolation

Source: B. Curless

Image interpolation

Original image: 🔬 x 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

The second moment matrix

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u,v) \approx Au^2 + 2Buv + Cv^2$$

$$\approx \left[\begin{array}{ccc} u & v \end{array}\right] \left[\begin{array}{ccc} A & B \\ B & C \end{array}\right] \left[\begin{array}{ccc} u \\ v \end{array}\right]$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

The Harris operator

 λ_{min} is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The *trace* is the sum of the diagonals, i.e., $trace(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

Laplacian of Gaussian

"Blob" detector

minima

• Find maxima and minima of LoG operator in space and scale

Scale-space blob detector: Example

sigma = 11.9912

Feature distance

How to define the difference between two features f_1 , f_2 ?

- Better approach: ratio distance = $||f_1 f_2|| / ||f_1 f_2'||$
 - f₂ is best SSD match to f₁ in l₂
 - f_2' is 2^{nd} best SSD match to f_1 in I_2
 - gives large values for ambiguous matches

1

2D Geometry

Parametric (global) warping

• Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

- What does it mean that *T* is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's consider *linear* xforms (can be represented by a 2D matrix):

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \qquad \left[egin{array}{c} x' \ y' \end{array}
ight] = \mathbf{T} \left[egin{array}{c} x \ y \end{array}
ight]$$

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths $+\cdots$	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Projective Transformations aka Homographies aka Planar Perspective Maps

$$\mathbf{H} = \left[egin{array}{cccc} a & b & c \ d & e & f \ g & h & 1 \end{array}
ight]$$

Called a homography (or planar perspective map)

Inverse Warping

- Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x,y)$ in f(x,y)
 - Requires taking the inverse of the transform

Affine transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

Solving for affine transformations

Matrix form

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ \vdots & & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

$$\mathbf{A} \qquad \mathbf{t} = \mathbf{b}$$

RANSAC

- General version:
 - 1. Randomly choose *s* samples
 - Typically s = minimum sample size that lets you fit a model
 - 2. Fit a model (e.g., line) to those samples
 - 3. Count the number of inliers that approximately fit the model
 - 4. Repeat *N* times
 - 5. Choose the model that has the largest set of inliers

Projecting images onto a common plane

3D Geometry

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the **aperture**
 - How does this transform the image?

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as **perspective projection**

• The matrix is the **projection matrix**

Projection matrix

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3\times3} & -\mathbf{c} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$
(t in book's notation)
$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) **p** on the line: $\mathbf{l} \cdot \mathbf{p} = 0$

What is the line I spanned by rays p_1 and p_2 ?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I can be interpreted as a plane normal

What is the intersection of two lines l_1 and l_2 ?

• \mathbf{p} is \perp to $\mathbf{I_1}$ and $\mathbf{I_2}$ \Rightarrow $\mathbf{p} = \mathbf{I_1} \times \mathbf{I_2}$

Points and lines are *dual* in projective space

Vanishing points

- Properties
 - Any two parallel lines (in 3D) have the same vanishing point v
 - The ray from C through v is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point

Measuring height

Your basic stereo algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

Stereo as energy minimization

Better objective function

Fundamental matrix

- This *epipolar geometry* of two views is described by a Very Special 3x3 matrix \mathbf{F} , called the *Fundamental matrix*
- ${f F}$ maps (homogeneous) *points* in image 1 to *lines* in image 2!
- The epipolar line (in image 2) of point ${f p}$ is: ${f Fp}$
- Epipolar constraint on corresponding points: $\mathbf{q}^T\mathbf{F}\mathbf{p}=0$

Epipolar geometry example

Original stereo pair

Estimating F – 8-point algorithm

The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0$$

for any pair of matches x and x' in two images.

• Let
$$\mathbf{x} = (u, v, 1)^{\mathsf{T}}$$
 and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$ each match gives a linear equation

$$uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

8-point algorithm

8-point algorithm
$$\begin{bmatrix}
u_{1}u_{1} & v_{1}u_{1} & u_{1} & u_{1}v_{1} & v_{1}v_{1} & v_{1} & u_{1} & v_{1} & 1 \\
u_{2}u_{2} & v_{2}u_{2} & u_{2} & u_{2}v_{2} & v_{2}v_{2} & v_{2} & u_{2} & v_{2} & 1 \\
\vdots & \vdots \\
u_{n}u_{n} & v_{n}u_{n} & u_{n} & u_{n}v_{n} & v_{n}v_{n} & v_{n} & v_{n} & v_{n} & 1
\end{bmatrix}
\begin{bmatrix}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{bmatrix} = 0$$
• As with homographies, instead of solving $\mathbf{Af} = 0$,

• As with homographies, instead of solving $\mathbf{Af} = 0$, we seek \mathbf{f} to minimize $\|\mathbf{A}\mathbf{f}\|$ least eigenvector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

Structure from motion

Stereo: another view

Multiple-baseline stereo

Fig. 5. SSD values versus inverse distance: (a) B=b; (b) B=2b; (c) B=3b; (d) B=4b; (e) B=5b; (f) B=6b; (g) B=7b; (h) B=8b. The horizontal axis is normalized such that 8bF=1.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.

Plane-Sweep Stereo

- Sweep family of planes parallel to the reference camera image plane
- Reproject neighbors onto each plane (via homography) and compare reprojections

Light, reflectance, cameras

Radiometry

• What determines the brightness of an image pixel?

Materials - Three Forms

In computer vision, we like Lambertian materials

Photometric stereo

Can write this as a matrix equation:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = k_d \begin{vmatrix} \mathbf{L_1}^T \\ \mathbf{L_2}^T \\ \mathbf{L_3}^T \end{vmatrix} \mathbf{N}$$

Example

Recognition

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

----- cat

Object detection

k-nearest neighbor

- Find the k closest points from training data
- Take majority vote from K closest points

Hyperparameters

- What is the **best distance** to use?
- What is the best value of k to use?

 These are hyperparameters: choices about the algorithm that we set rather than learn

- How do we set them?
 - One option: try them all and see what works best

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset Idea #2: Split data into train and test, choose hyperparameters that work best on test data train BAD: No idea how algorithm will perform on new data train test Better!

Parametric approach: Linear classifier

Loss function, cost/objective function

- Given ground truth labels (y_i) , scores $f(x_i, \mathbf{W})$
 - how unhappy are we with the scores?

 Loss function or objective/cost function measures unhappiness

 During training, want to find the parameters W that minimizes the loss function

Softmax classifier

$$f(x_i, W) = Wx_i$$
 score function is the same

softmax function

$$[1,-2,0] o [e^1,e^{-2},e^0] = [2.71,0.14,1] o [0.7,0.04,0.26]$$

Interpretation: squashes values into range 0 to 1

$$P(y_i \mid x_i; W)$$

Neural networks

(**Before**) Linear score function: f = Wx(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

Convolutional neural networks

BW → Color

Data from [Russakovsky et al. 2015]

Labels → Street Views

Input labels

Synthesized image

Learning 3D geometry

RGB Image Depth map

Mapping images to images with the UNet architecture

Questions?

Good luck!