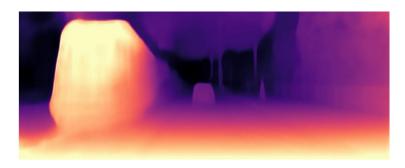
CS5670: Computer Vision

Learning 3D Geometry



Depth map

Announcements

- Please give us feedback! Fill out course evaluations here (for bonus points!):
 - <u>https://apps.engineering.cornell.edu/CourseEval/</u>
- Project 5 due Friday at 11:59pm
- Take-home final exam to be released May 11
- Monday: course wrap up (last lecture of class)

Single-view modeling

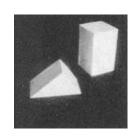
Vermeer's Music Lesson

Reconstructions by Criminisi et al.

Can we use deep learning to predict geometry from a single image?

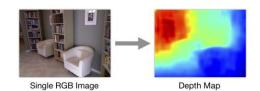
Astonishing recent progress in learning 3D perception

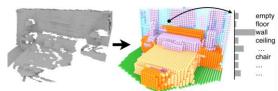
"Blocks world" Larry Roberts (1963)



Pre-deep era (2005)

[Saxena, Chung, Ng, NIPS 2005] [Hoiem, Efros, Hebert, SIGGRAPH 2005] Supervised deep learning (2014)

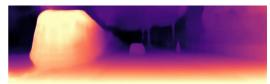




[Eigen, Puhrsch, Fergus, NIPS 2014] [Song et al, CVPR 2017]

go/im2depth

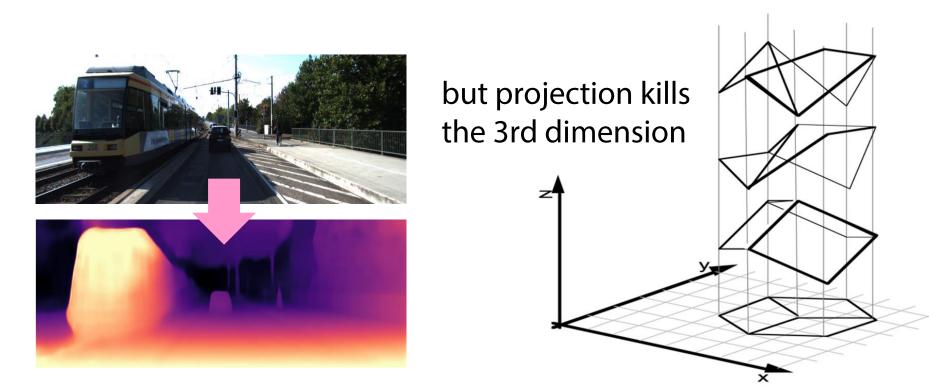
Multi-view supervision (2016)



[Garg, Kumar BG, Carneiro, Reid, ECCV 2016]
 [Xie, Girshick, Farhadi, ECCV 2016]
 [Zhou, Brown, Snavely, Lowe, CVPR 2017]
 [Vijayanarasimhan, et al., 2017]
 [Godard, Mac Aodha & Brostow, CVPR 2017]
 [Mahjourian, Wicke & Angelova, CVPR 2018]

•••

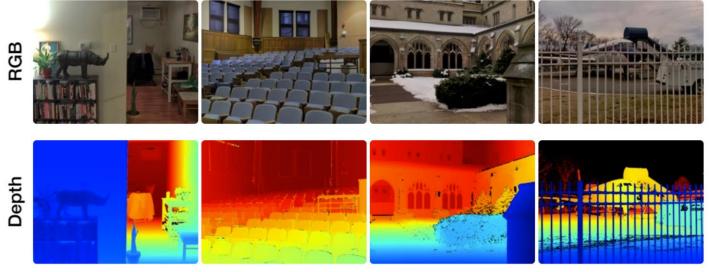
Canonical problem: single RGB view to depth



[Sinha & Adelson, 1993]

Learning single-view depth prediction

 To apply deep learning to this problem we need lots of training data in the form of RGB images and corresponding depth maps

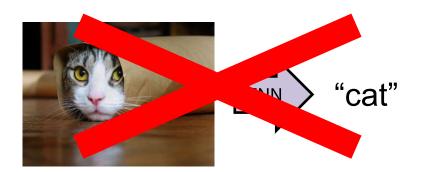


Source: https://diode-dataset.org/

CNN architectures for single-view depth

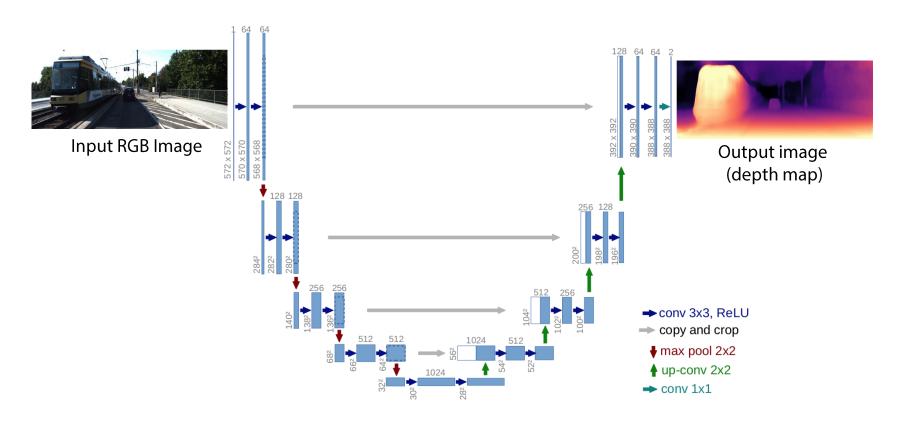
- Need an architecture that takes in an image (an RGB image) and produces another image (a depth map)
- Similar to other problems where images are the outputs (e.g., semantic segmentation, colorization, object boundary detection)
- In contrast to image classification, where outputs are probabilities for a set of object categories (e.g., vector of length 1000)

CNN architectures for single-view depth

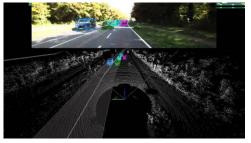


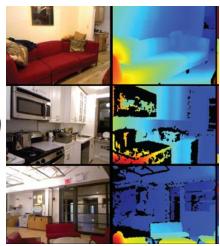


Common choice: UNet architecture



How to get training data?





KITTI [Geiger et al. 2012]

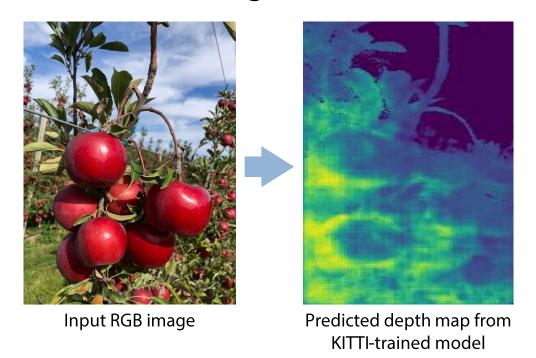
NYU [Eigen et al. 2014]

Depth in the Wild [Chen et al. 2016]

Direct, real-world training data is limited for geometric problems

Problem: generalizing beyond training data

• If you train on images of streets scenes from KITTI, you won't get good results on test images like this:



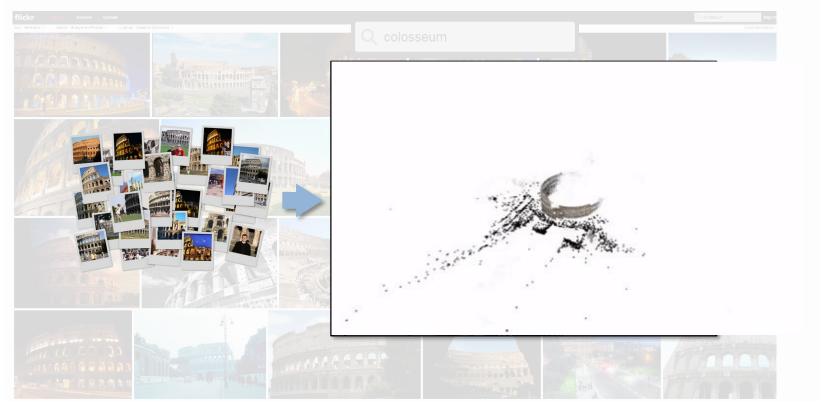
How can we gather more diverse data?

Can we learn 3D from simply observing all the images / videos on the Internet?

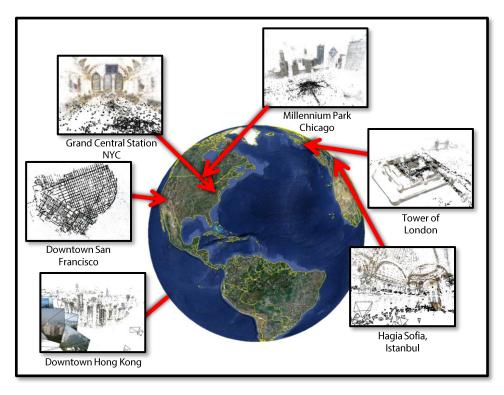
Training: Multiple views

Testing: Single Image

Another source of training data: Structure from Motion reconstructions

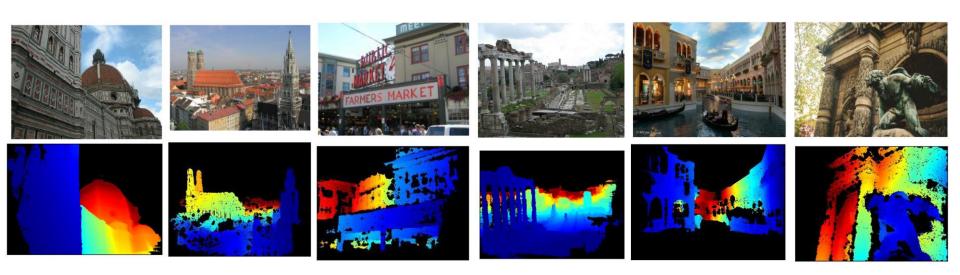


Reconstructing the World's Landmarks



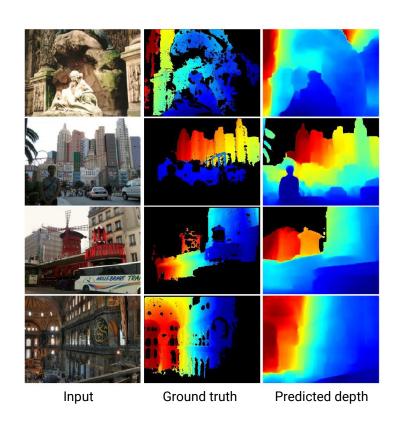
[Li, Snavely, Huttenlocher, Fua. ECCV 2012]

MegaDepth dataset

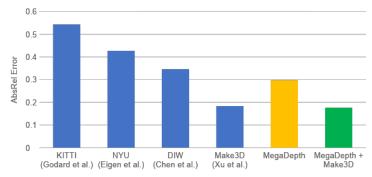


- >130K (RGB, depth map) pairs
 - generated from 200+ landmarks
 - reconstructed with SfM + MVS using COLMAP [Schoenberger et al]

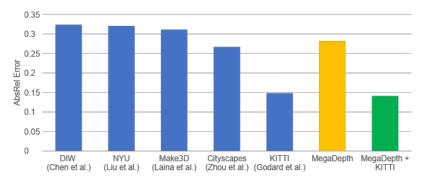
MegaDepth-trained prediction results



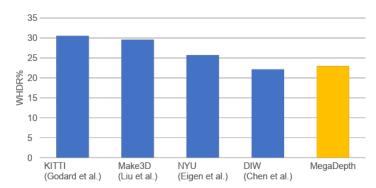
Internet data generalizes well



Train on X, test on Make3D

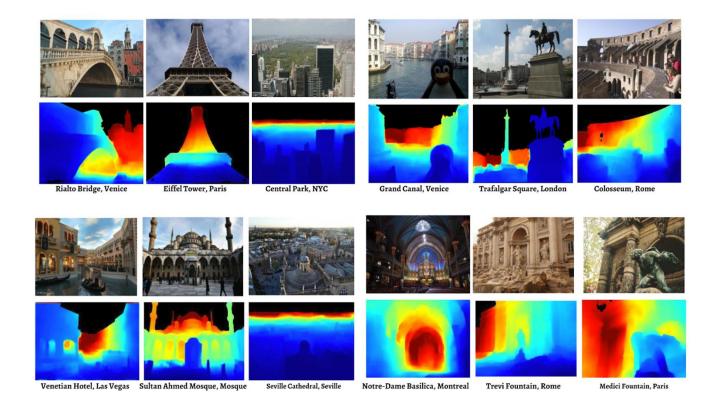


Train on X, test on KITTI

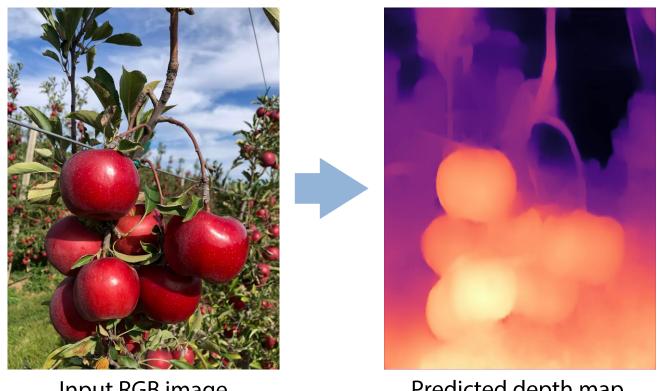


Train on X, test on DIW

More depth prediction results



Single-view depth from Megadepth model



Input RGB image

Predicted depth map

Questions?

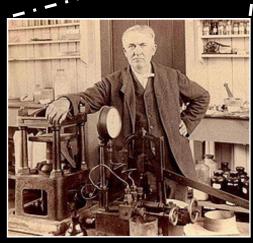
A related task: view synthesis

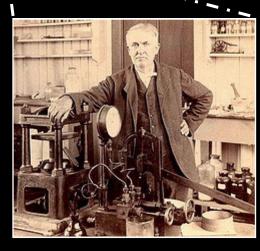
- So much for single-view depth
- Another thing we might want to do is render new views of the captured scene (i.e., view synthesis)
 - Related to light fields lecture from a few weeks back
- Involves more than just depth, but also filling in missing content behind the foreground

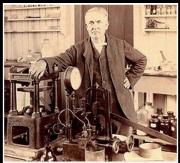
Cool recent work on view synthesis

- Meng-Li Shih, Shih-Yang Su, Johannes Kopf, Jia-Bin Huang
 3D Photography using Context-aware Layered Depth Inpainting
- https://shihmengli.github.io/3D-Photo-Inpainting/

3D Photography using Context-aware Layered Depth Inpainting



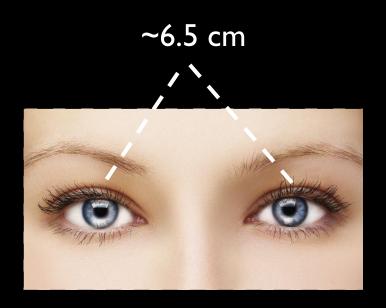




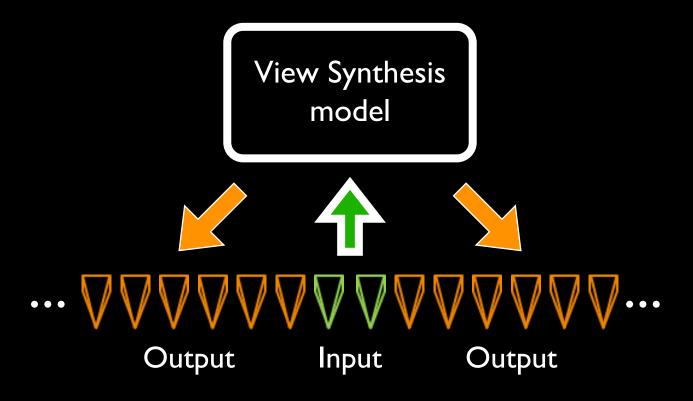
Viewing Devices

Queen Victoria at World Fair, 1851

Issue: Narrow Baseline

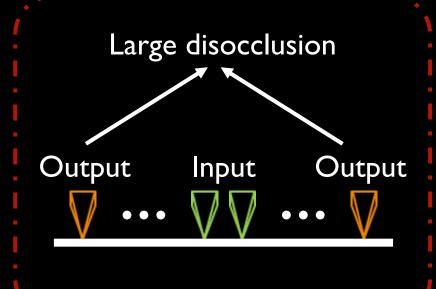


Problem Statement



Challenges

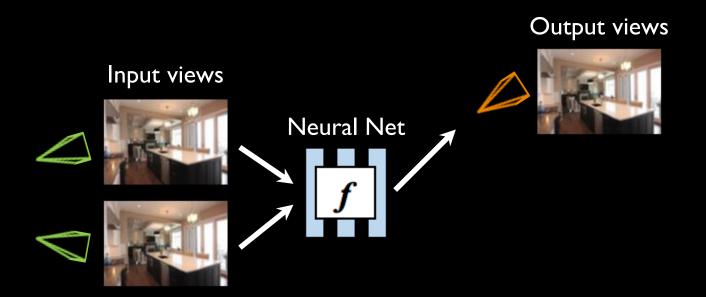
Extrapolation



Non-Lambertian Effects

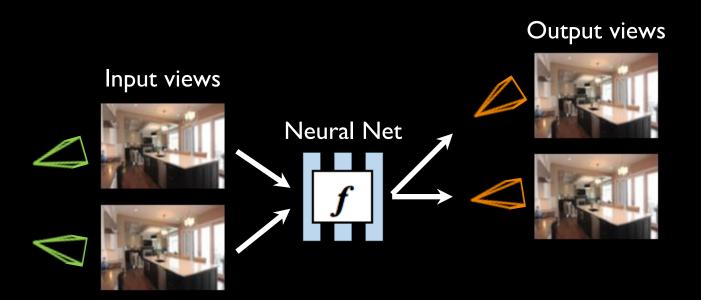
Reflections, transparencies, etc.

Prior Methods: No Shared Scene Representation



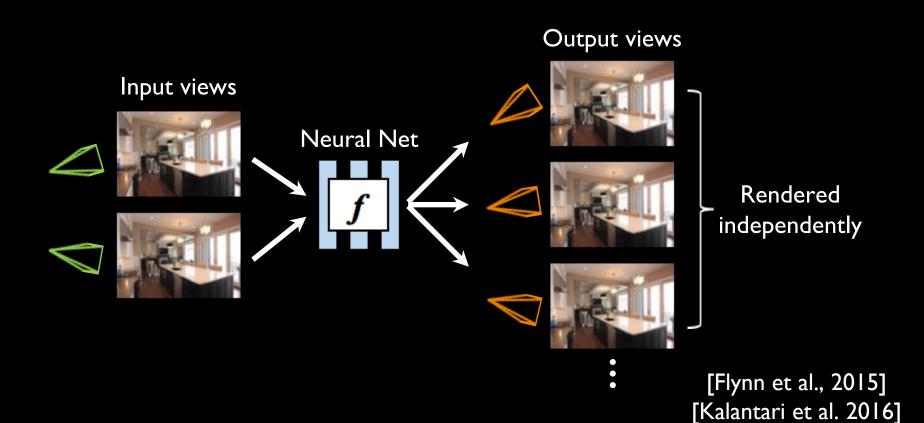
[Flynn et al., 2015] [Kalantari et al. 2016]

Prior Methods: No Shared Scene Representation

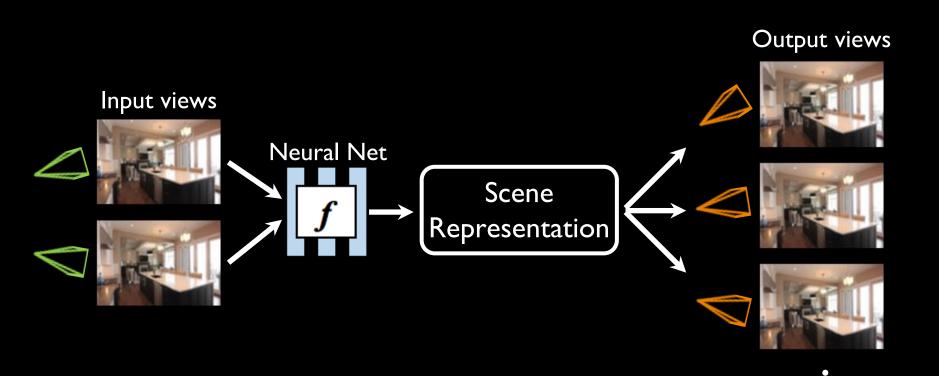


[Flynn et al., 2015] [Kalantari et al. 2016]

Prior Methods: No Shared Scene Representation



Ours: Shared Scene Representation



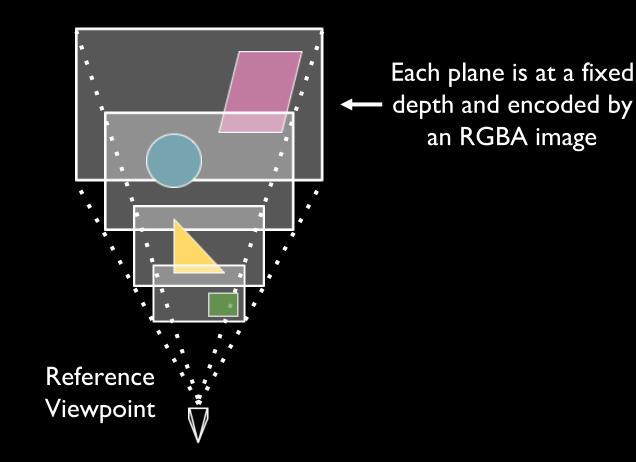
Stereo Magnification: Learning View Synthesis using Multiplane Images

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, Noah Snavely

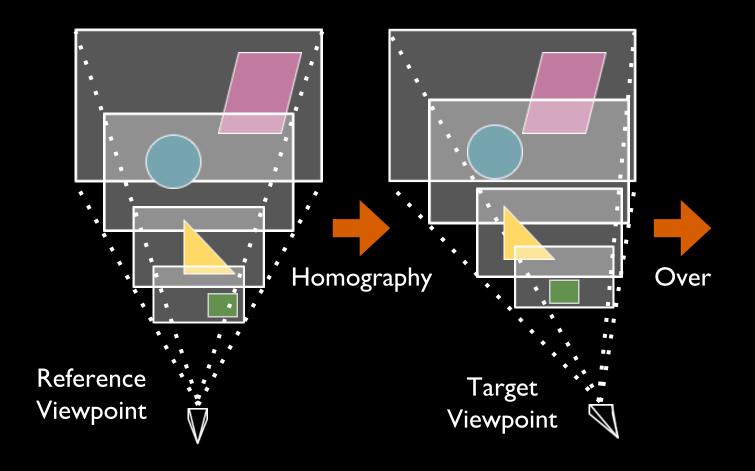
SIGGRAPH 2018

Multiplane Camera (1937)

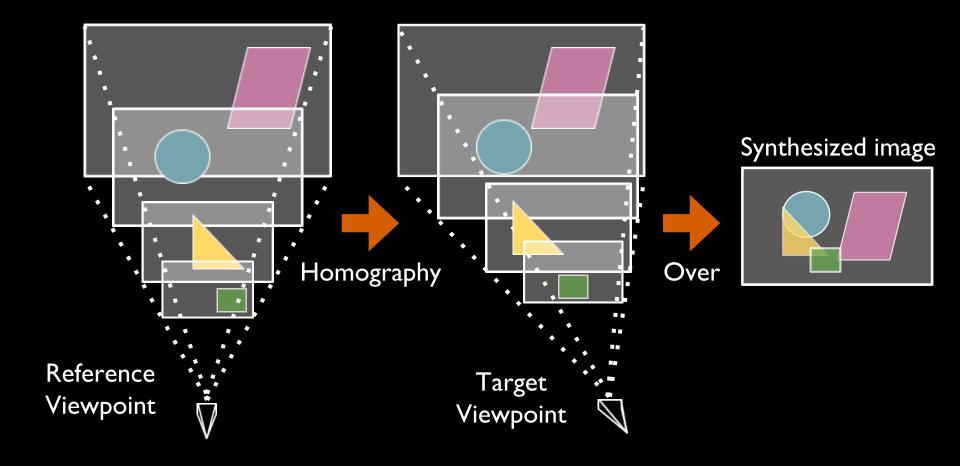
Multiplane Images (MPIs)

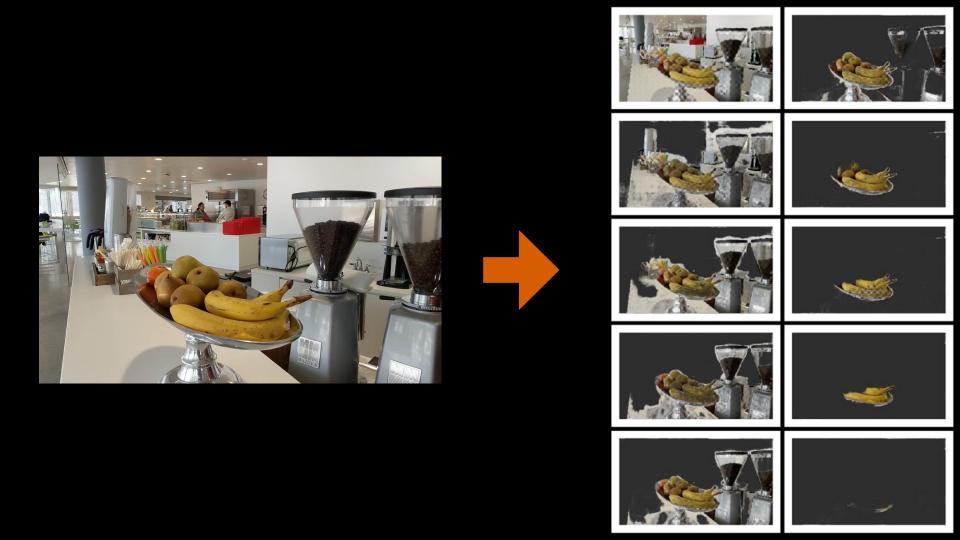


View Synthesis using Multiplane Images

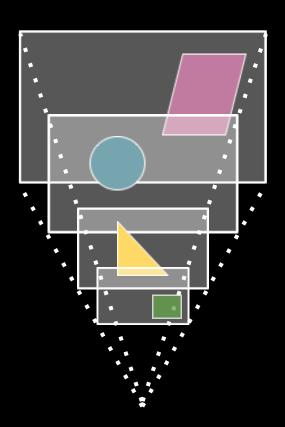


View Synthesis using Multiplane Images



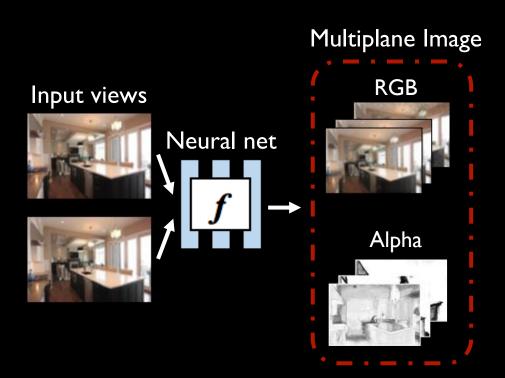


Properties of Multiplane Images

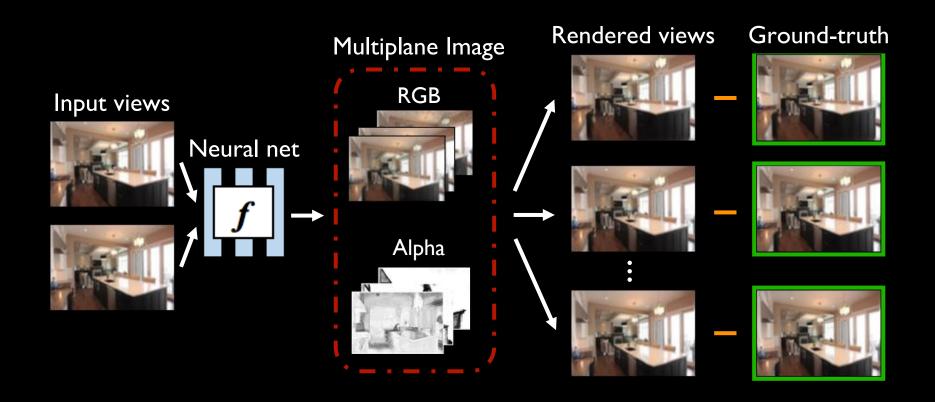


- Models disocclusion
- Models soft edges and non-Lambertian effects
- Efficient for view synthesis
- Differentiable rendering

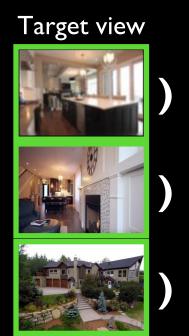
Learning Multiplane Images



Learning Multiplane Images

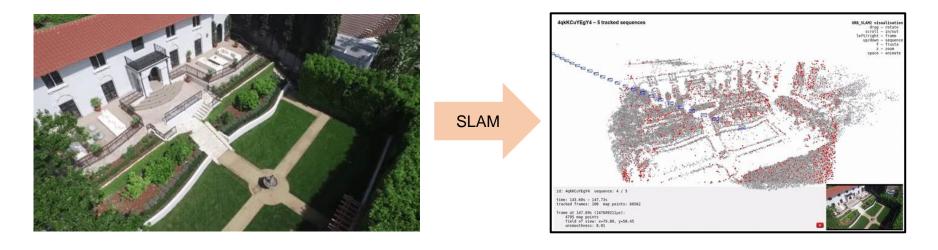


Training Data



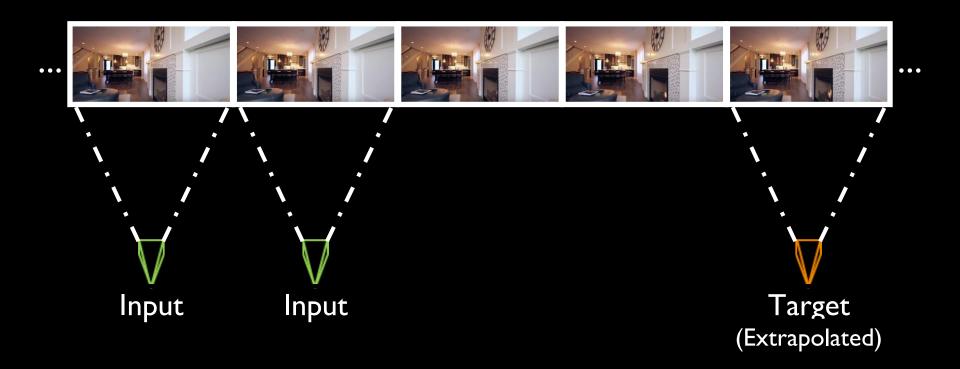
Need massive set of triplets with known camera poses

RealEstate10K

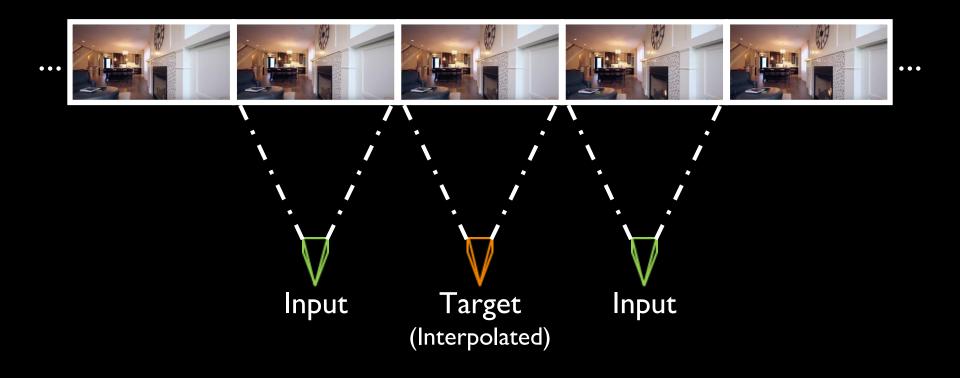


10 million frames from 80,000 video clips from 10,000 videos https://google.github.io/realestate10k/

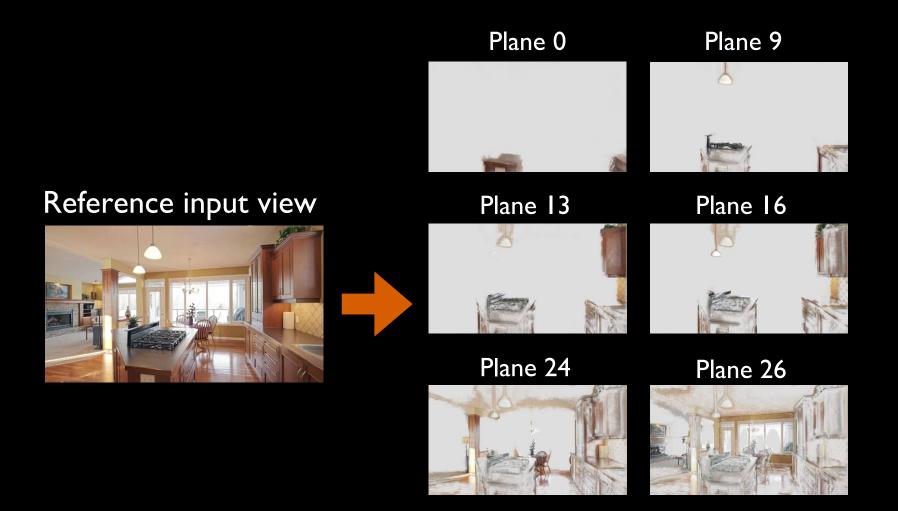
Sampling Training Examples



Sampling Training Examples

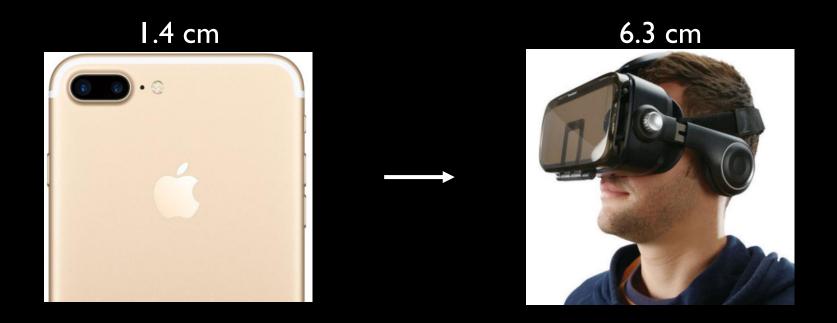


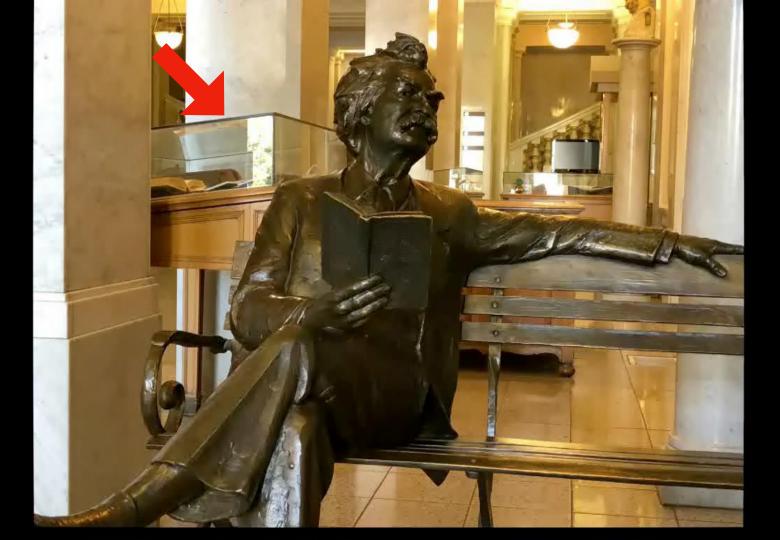
Results





Extrapolating Cellphone Footage





Learning 3D geometry: Key Ingredients

- Use the right representation (e.g., Multi-plane Images)
- Train on lots of data (e.g., Internet videos)
- Train using a widely available source of supervision other video frames
 - This idea of multi-view supervision has been very active in 3D vision for the past few years
 - Predict from one frame, test by projecting into another and computing a reprojection loss

Questions?

Limitation: Dynamic Scenes

- So far, our training data assumes rigid scenes
- Otherwise, SfM / SLAM will fail, as will reprojection loss
- But most scenes have moving and non-rigid objects, especially people

Statues vs. people

https://www.balletforadults.com/back-to-basics-the-five-positions-of-the-arms/

Learning Depths of Moving People by Watching Frozen People

Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu, Bill Freeman

CVPR 2019 (best paper runner up)

MannequinChallenge Dataset

- 2000 YouTube videos
- Frozen people, moving camera
- Diverse scenes, natural poses

MannequinChallenge Training Data

"Ground truth" depth from SfM + Multi View Stereo (MVS)

Input video

Estimated depth

Removing Humans for View Synthesis

Takeaways

- Harness the power of multi-view supervision for 3D learning
- The Internet is an amazing source of training data full of surprising images and videos
- Representations are important! Layers are one nice approach,
 but the best representation is elusive
 - Should be expressive, efficient, good for learning, etc...

Future directions

- Train on much more varied (noisier) data (all of YouTube?)
- Much larger view extrapolations (requires better inpainting in disoccluded regions)
- Predicting richer representations from a single view
 - Towards full inverse graphics: image to shape, materials, and geometry

Thank you!

Richard Tucker

Zhengqi Li

Tinghui Zhou

John Flynn

Graham Fyffe

Shubham Tulsiani

David Lowe

Matt Brown

Questions?