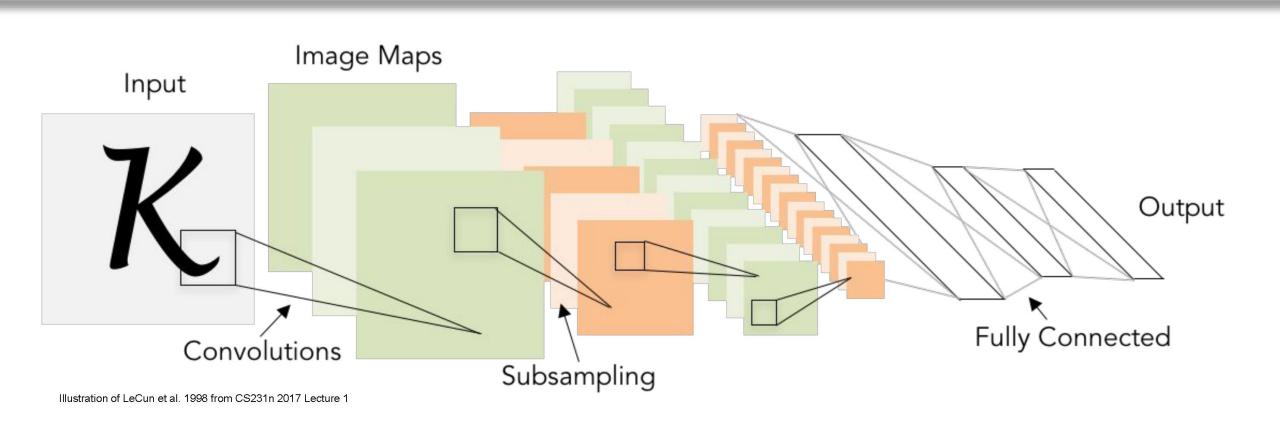
CS5670: Computer Vision

Convolutional neural networks



Slides from Fei-Fei Li, Justin Johnson, Serena Yeung http://vision.stanford.edu/teaching/cs231n/

Announcements

- Project 4 due this Friday, April 17, by 11:59pm on CMSX
- Project 5 (Convolutional Neural Networks) will be released next Monday, April 20
 - Due Wednesday, April 29
- Take-home final exam, timing TBA but likely released on May 4 and due on May 7

Readings

- Neural networks
 - <u>http://cs231n.github.io/neural-networks-1/</u>
 - <u>http://cs231n.github.io/neural-networks-2/</u>
 - http://cs231n.github.io/neural-networks-3/
 - <u>http://cs231n.github.io/neural-networks-case-study/</u>
- Convolutional neural networks
 - http://cs231n.github.io/convolutional-networks/

Last time

- Image classification
 - k-nearest neighbors
 - Linear classiciation
 - Score functions
 - Cross-entropy loss functions

Today

- Neural networks
- Convolutional neural networks

Bar Kadosh and Ben Kadosh

Third Place (tied)

Suli Li and Wenyi Chu

Mahimna Kelkar and Pablo Herrera

Irene Font Peradejordi and Shreya Chandrasekar

Surya Omesh Allena and Sarath Chandra Chennareddy

Image Classification: a core task in computer vision

• Assume given set of discrete labels, e.g.

{cat, dog, cow, apple, tomato, truck, ... }

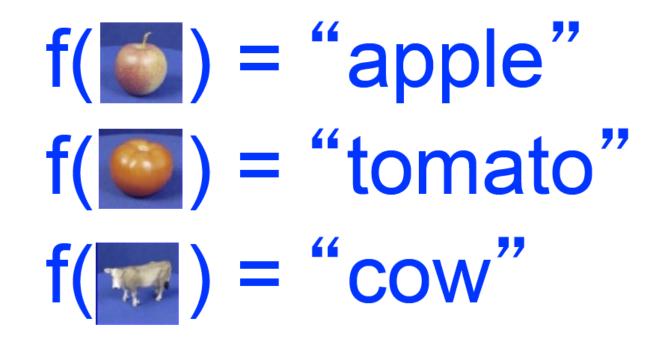
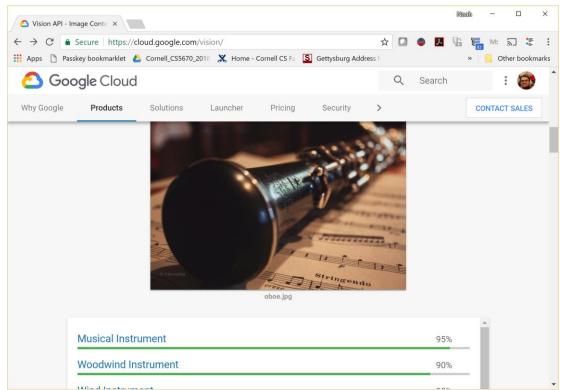


Image classification demo



https://cloud.google.com/vision/docs/drag-and-drop

See also:

https://aws.amazon.com/rekognition/

https://www.clarifai.com/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

• • •

Recap: linear classification

- Have score function and loss function
 - Score function maps an input data instance (e.g., an image) to a vector of scores, one for each category
 - Last time, our score function is based on linear classifier

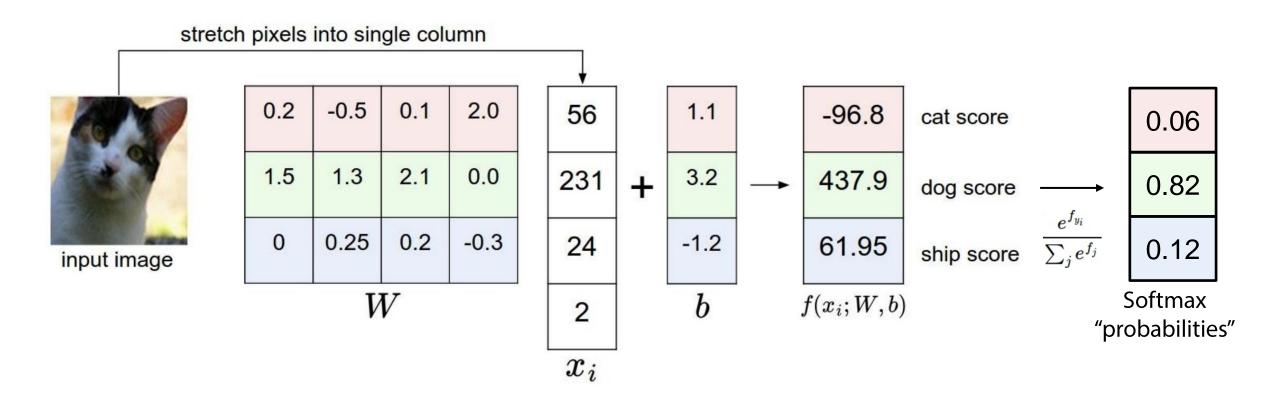
f(x,W) = Wx + b **f**: score function **x**: input instance **W**, **b**: parameters of a linear (actually affine) function

• Find W and b to minimize a loss, e.g. cross-entropy loss

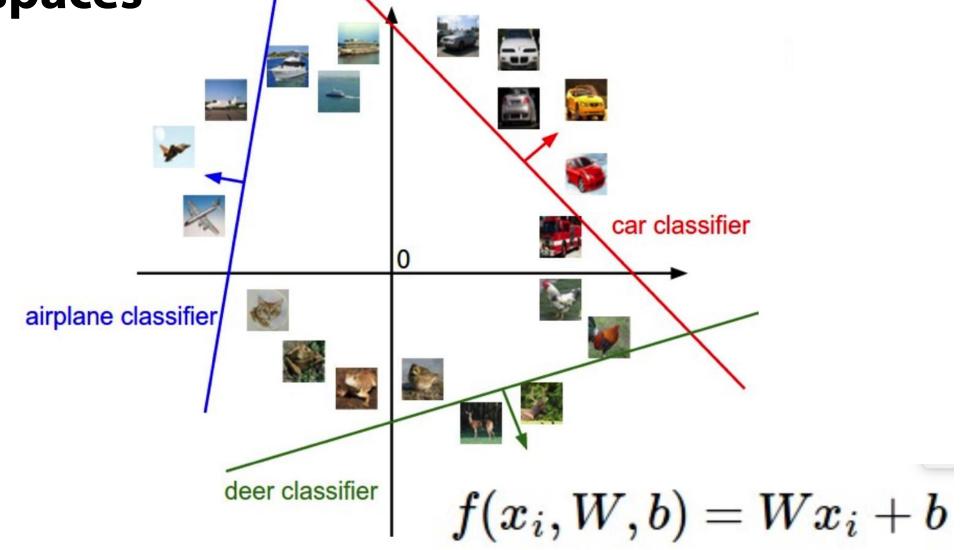
$$L = rac{1}{N} \sum_i -\log\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)$$

Recap: Image classification

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Linear classifiers separate features space into half-spaces

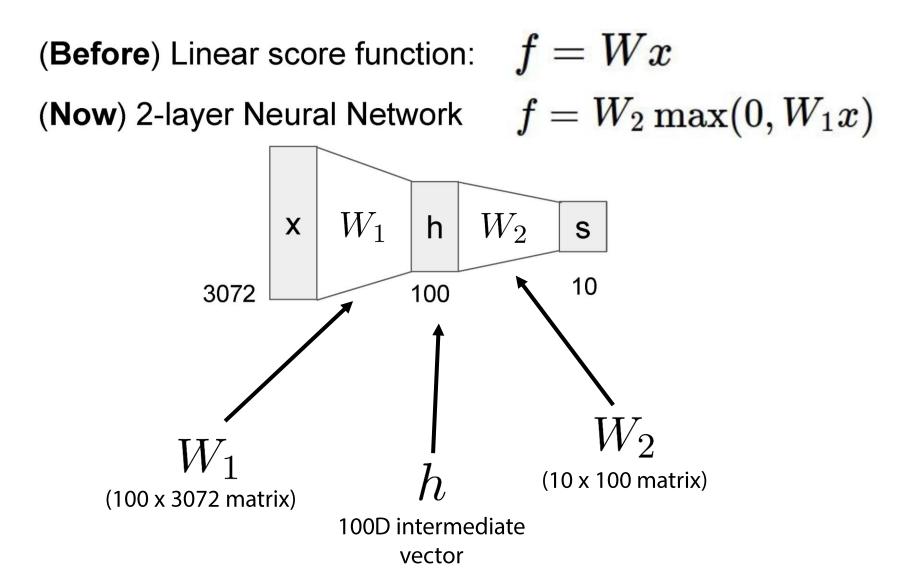


(**Before**) Linear score function: f = Wx

(**Before**) Linear score function:

(Now) 2-layer Neural Network

$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$



(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x W_1 h W_2 s$ 3072 10

Total number of weights to learn:
 3,072 x 100 + 100 x 10 = 308,200

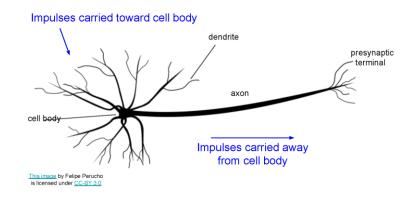
(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1 x))$

> also called "Multi-Layer Perceptrons" (MLPs)

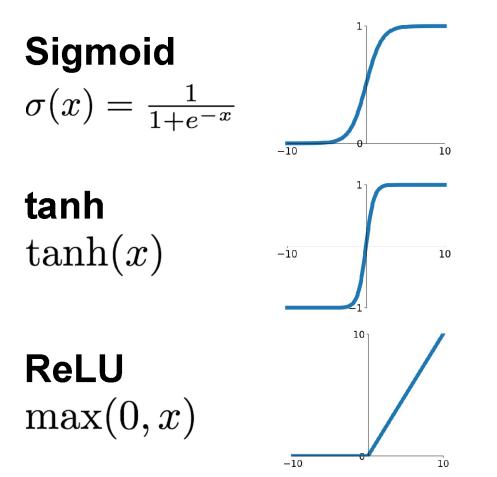
- Very coarse generalization of neural networks:
 - Linear functions chained together and separated by nonlinearities (*activation functions*), e.g. "max"

 $f=W_3\max(0,W_2\max(0,W_1x))$

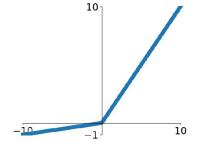
- Why separate linear functions with non-linear functions?
- Very roughly inspired by real neurons



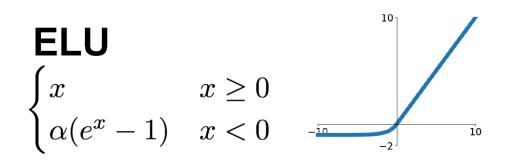
Activation functions



Leaky ReLU $\max(0.1x, x)$

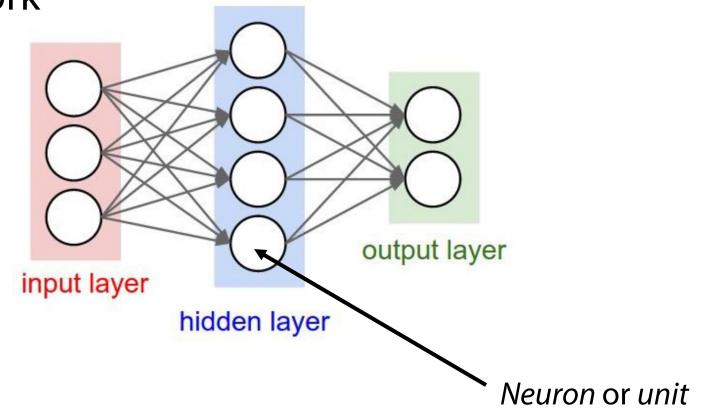


Maxout $\max(w_1^T x + b_1, w_2^T x + b_2)$

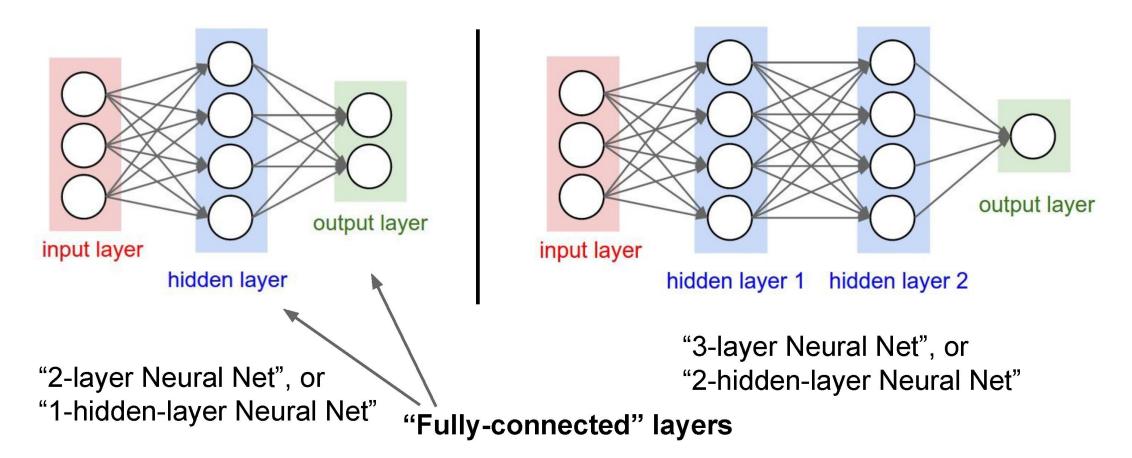


Neural network architecture

 Computation graph for a 2-layer neural network

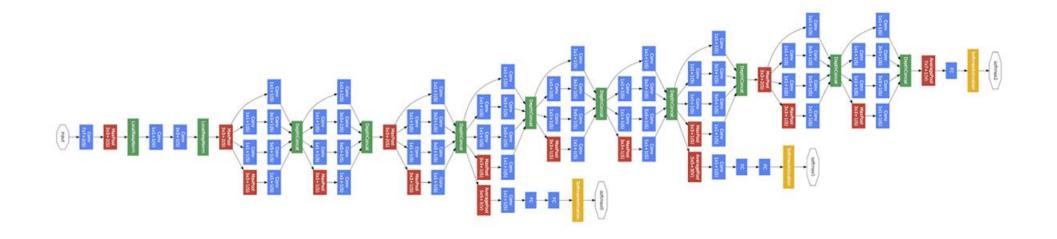


Neural networks: Architectures



• **Deep** networks typically have many layers and potentially millions of parameters

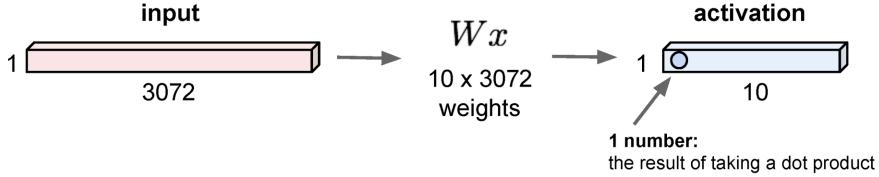
Deep neural network



- Inception network (Szegedy et al, 2015)
- 22 layers

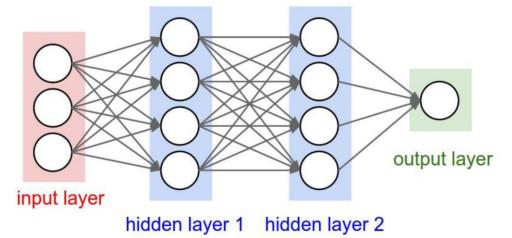
Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1



between a row of W and the input (a 3072-dimensional dot product)

Example feed-forward computation of a neural network



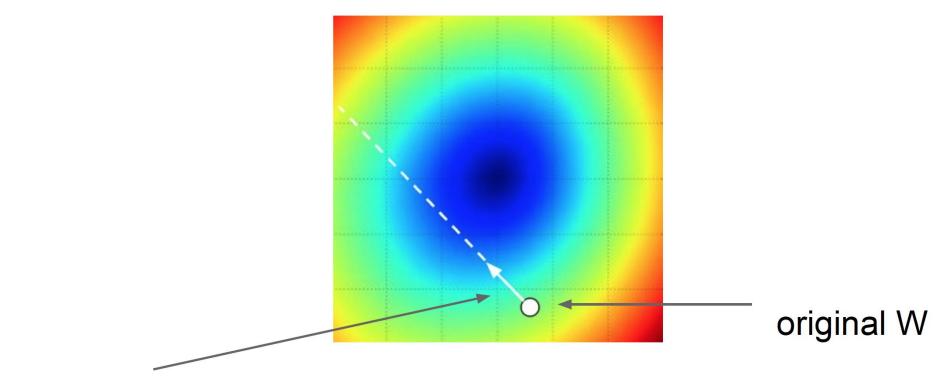
forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Summary

- We arrange neurons into fully-connected layers
- The abstraction of a **layer** has the nice property that it allows us to use efficient vectorized code (e.g. matrix multiplies)
- Neural networks are not really neural

Optimizing parameters with gradient descent

- How do we find the best **W** and **b** parameters?
- In general: gradient descent
 - 1. Start with a guess of a good **W** and **b** (or randomly initialize them)
 - 2. Compute the loss function for this initial guess and the *gradient* of the loss function
 - 3. Step some distance in the negative gradient direction (direction of steepest descent)
 - 4. Repeat steps 2 & 3
- Note: efficiently performing step 2 for deep networks is called *backpropagation*



negative gradient direction

Gradient descent: walk in the direction opposite gradient

- **Q**: How far?
- A: Step size: *learning rate*
- Too big: will miss the minimum
- Too small: slow convergence

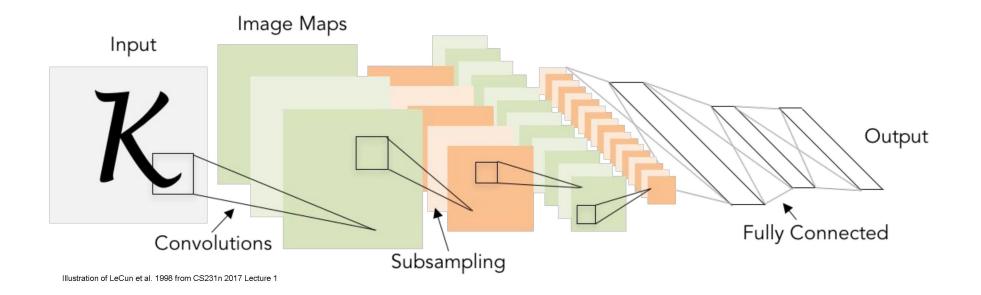
2D example: TensorFlow Playground

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise. Epoch Learning rate Activation Regularization Regularization rate Problem type 5 000.000 0.03 Tanh None Classification 2 HIDDEN LAYERS DATA **FEATURES** OUTPUT Which dataset do Which properties Test loss 0.505 you want to use? do you want to Training loss 0.502 feed in? 4 neurons 2 neurons **3** X_2 Ratio of training to test data: 50% The outputs are mixed with varying weights, shown Noise: 0 X₂² by the thickness of the lines. Batch size: 10 X₁X₂ This is the output from one neuron -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 Hover to see it

https://playground.tensorflow.org

Questions?

Convolutional neural networks



A bit of history...

The **Mark I Perceptron** machine was the first implementation of the perceptron algorithm.

The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image. $1 \quad \text{if } w \cdot x + b > 0$

recognized letters of the alphabet

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + \\ 0 & \text{otherwise} \end{cases}$$

axon from a neuron synapse

 w_1x_1

 w_2x_2

woxo

cell body

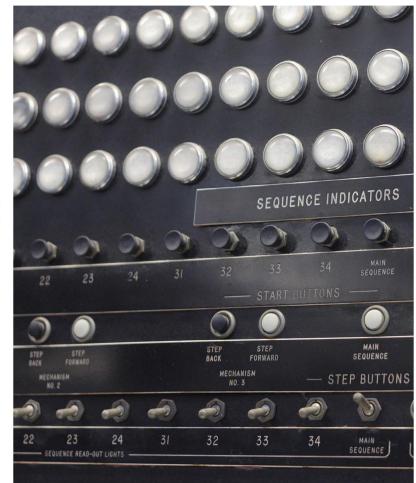
 $f\left(\sum w_i x_i + b\right)$

ctivation

output ax

update rule: $w_i(t+1) = w_i(t) + \alpha(d_i - y_i(t))x_{j,i}$

Frank Rosenblatt, ~1957: Perceptron



This image by Rocky Acosta is licensed under CC-BY 3.0

A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in Deep Learning

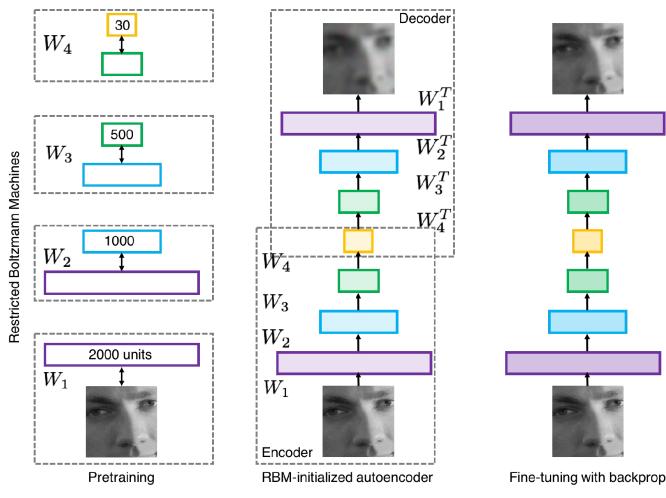
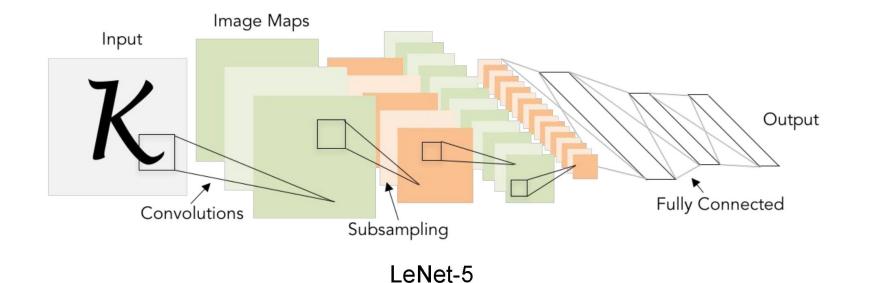


Illustration of Hinton and Salakhutdinov 2006 by Lane McIntosh, copyright CS231n 2017

Hinton and Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science, 2016.

A bit of history: Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]



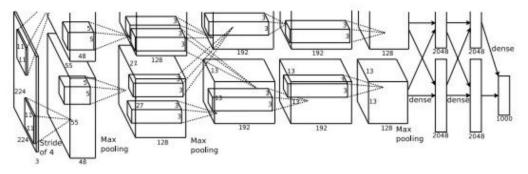
First strong results

Acoustic Modeling using Deep Belief Networks

Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010 Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional neural networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012



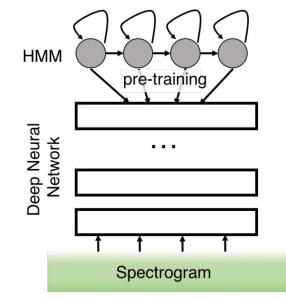
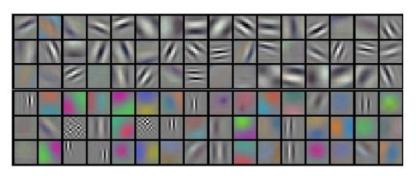


Illustration of Dahl et al. 2012 by Lane McIntosh, copyright CS231n 2017



Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

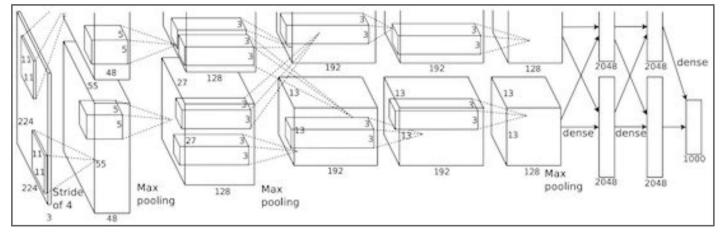


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

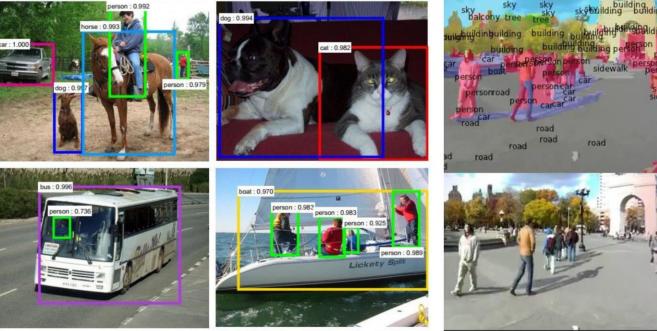
"AlexNet"

Classification

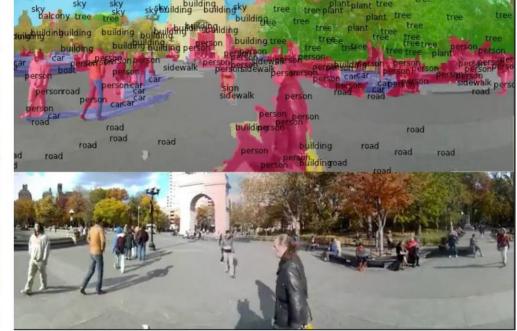
Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Detection



Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission. [Faster R-CNN: Ren, He, Girshick, Sun 2015] Segmentation



Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

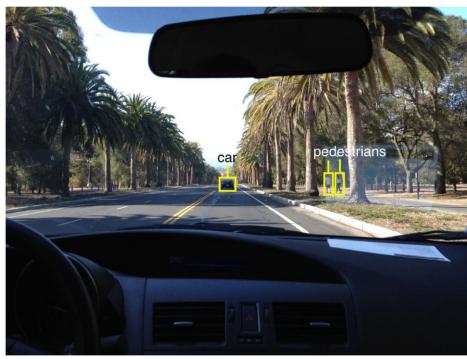


Photo by Lane McIntosh. Copyright CS231n 2017.

self-driving cars

NVIDIA Tesla line (these are the GPUs on rye01.stanford.edu)

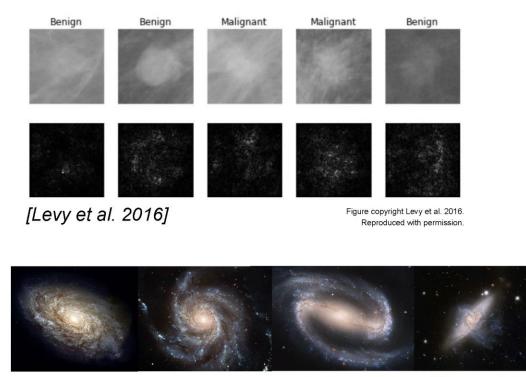
Note that for embedded systems a typical setup would involve NVIDIA Tegras, with integrated GPU and ARM-based CPU cores.

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

[Toshev, Szegedy 2014]

[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission.



[Dieleman et al. 2014]

From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, <u>public domain by NASA</u>, and <u>public domain</u>.

[Sermanet et al. 2011] [Ciresan et al.] Photos by Lane McIntosh. Copyright CS231n 2017.

No errors

Minor errors

Somewhat related

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

A woman is holding a cat in her hand

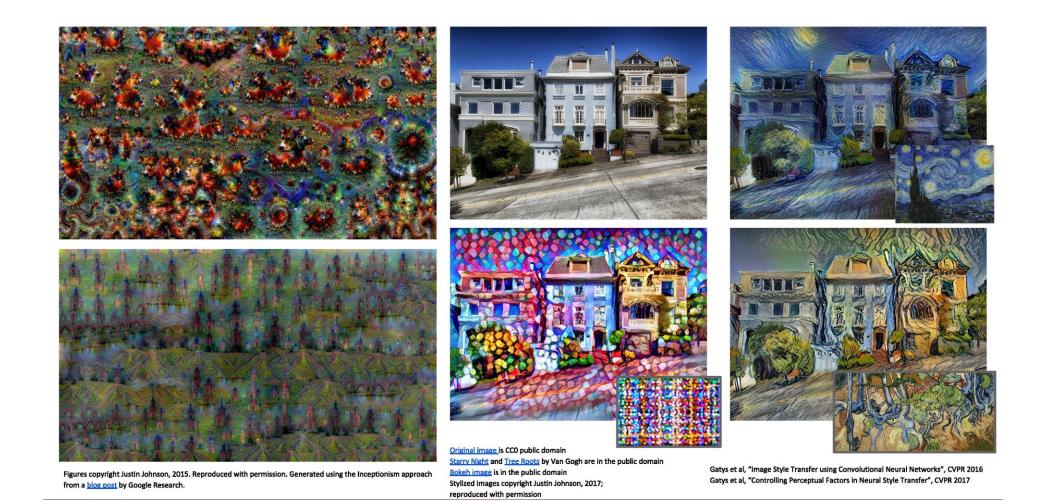
A woman standing on a beach holding a surfboard

Image Captioning

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015]

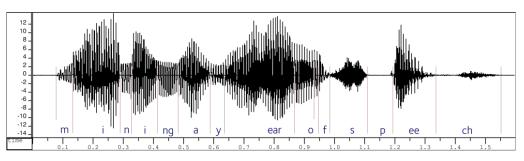
All images are CC0 Public domain: https://pixabav.com/en/luqaage-antique-cat-1643010/ https://pixabav.com/en/leddv-plush-bears-cute-teddv-bear-1623436/ https://pixabav.com/en/suft-wave-summer-sport-litoral-1668716/ https://pixabav.com/en/woman-female-model-portrait-adult-983967/ https://pixabav.com/en/handstand-lake-meditation-496008/ https://pixabav.com/en/haseball-plaver-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2



Convolutional neural networks

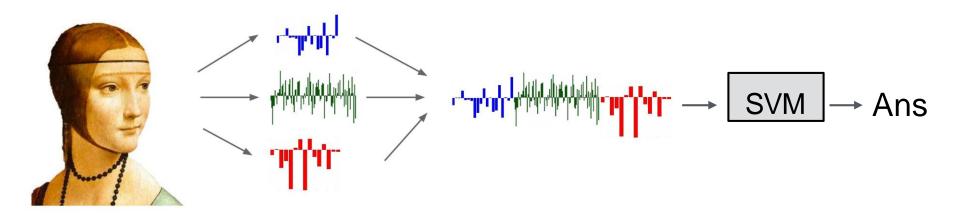
- Version of deep neural networks designed for signals
 - 1D signals (e.g., speech waveforms)



– 2D signals (e.g., images)

Motivation – Feature Learning

Life Before Deep Learning



Input Extract Concatenate into Linear Pixels Hand-Crafted a vector **x** Classifier Features

Figure: Karpathy 2016

Why use features? Why not pixels?

airplaneImage: Solution of the soluti

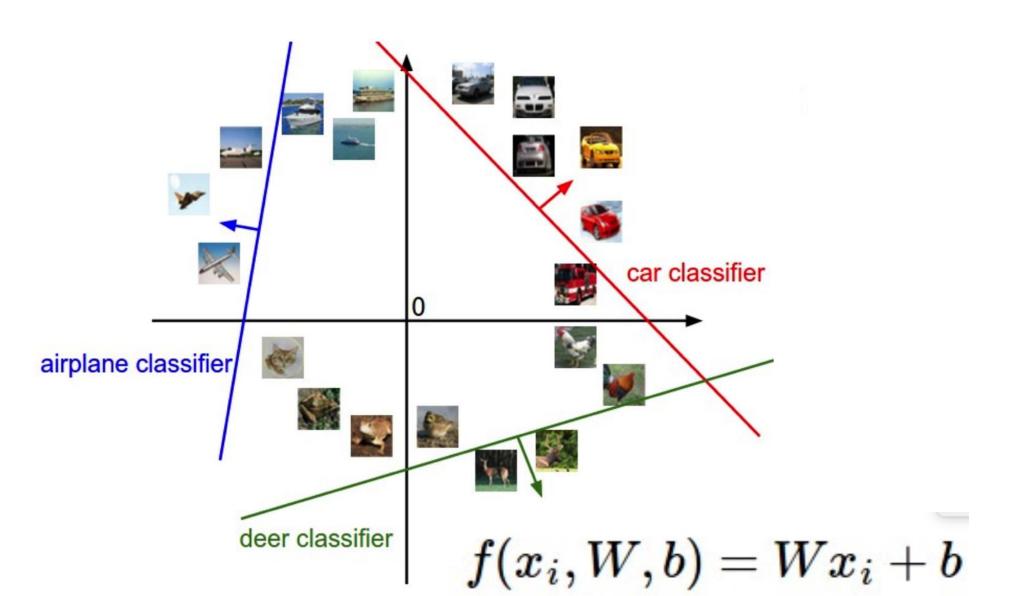
 $f(x_i, W, b) = Wx_i + b$

Q: What would be a very hard set of classes for a linear classifier to distinguish?

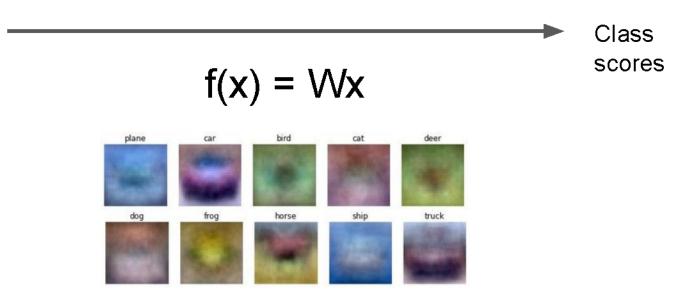
(assuming x = pixels)

Slide from Karpathy 2016

Linearly separable classes



Aside: Image Features



Aside: Image Features

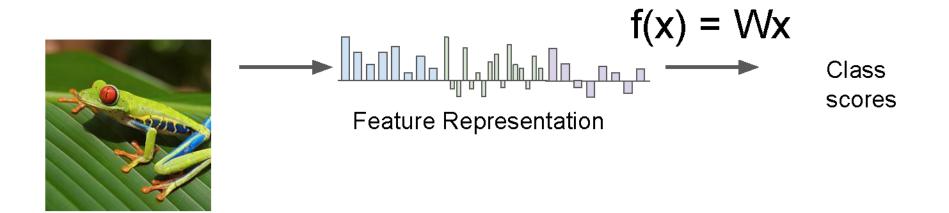
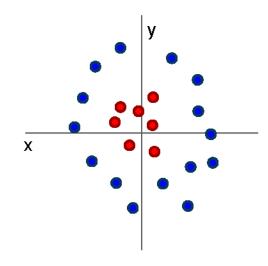
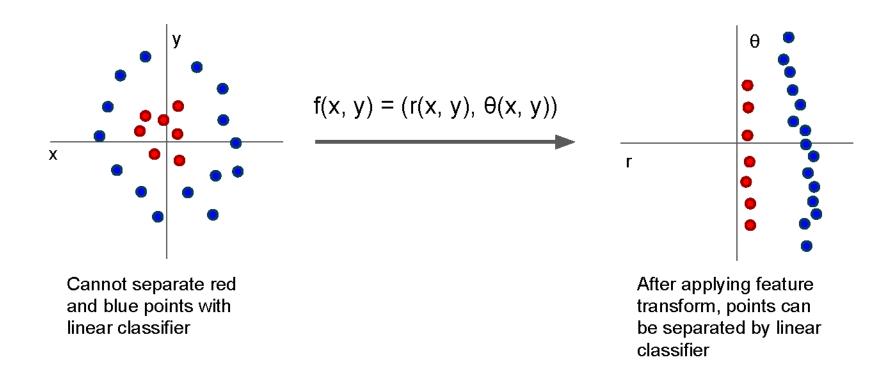


Image Features: Motivation

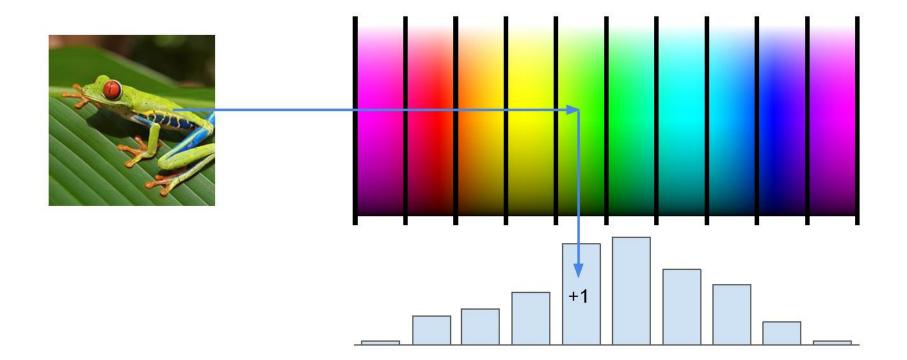


Cannot separate red and blue points with linear classifier

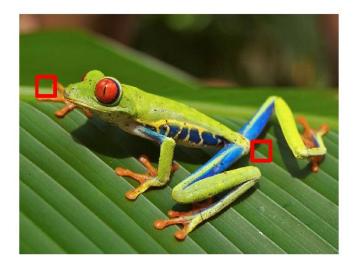
Image Features: Motivation



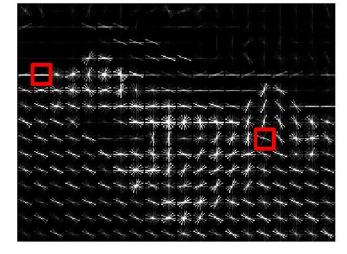
Example: Color Histogram



Example: Histogram of Oriented Gradients (HoG)



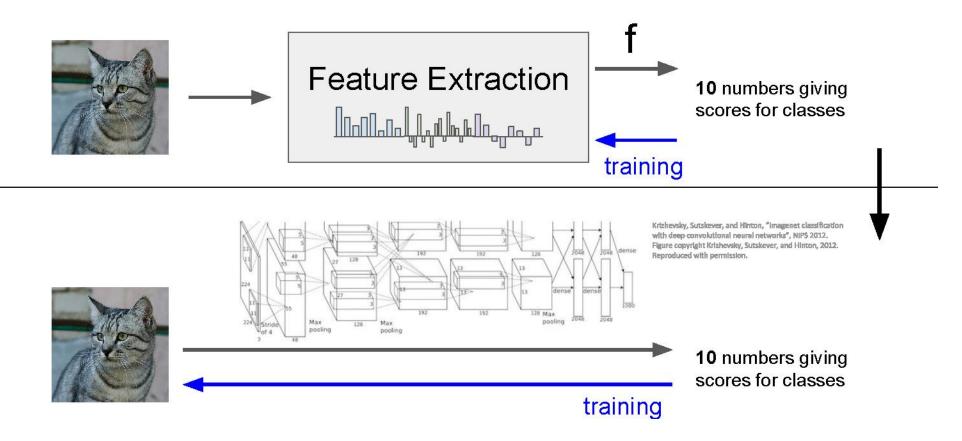
Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins



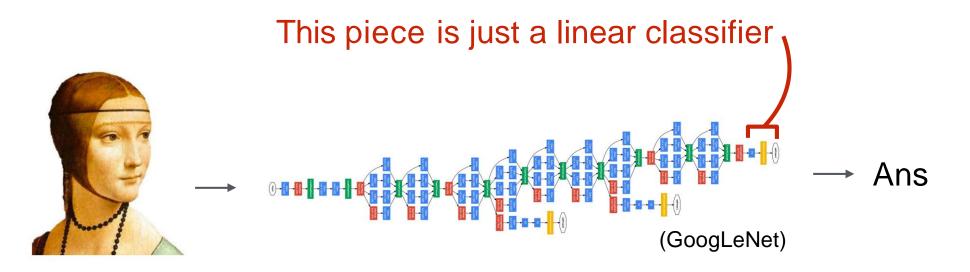
Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image features vs ConvNets



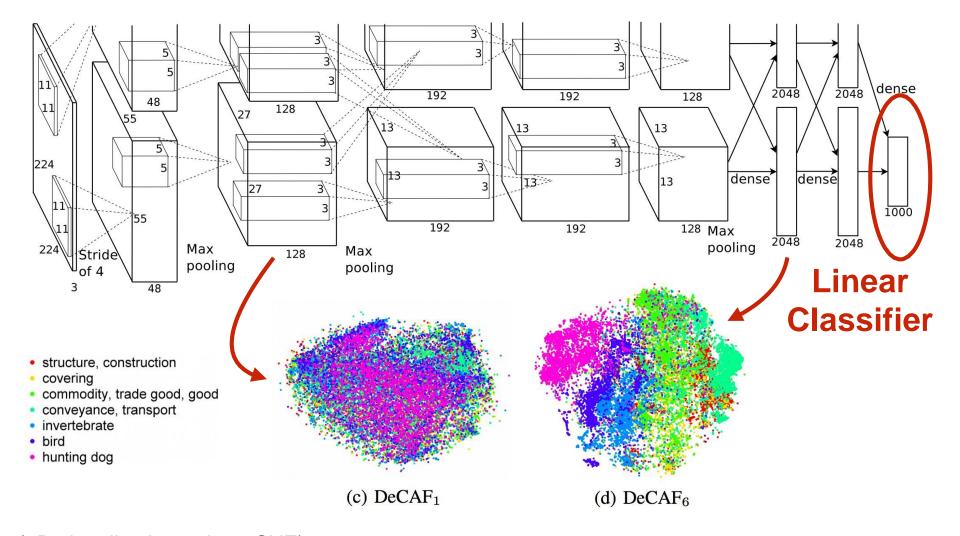
The last layer of (most) CNNs is a linear classifier



Input Perform everything with a big neural Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get to the end of the network, the classes are linearly separable

Example: Visualizing AlexNet in 2D with t-SNE



(2D visualization using t-SNE)

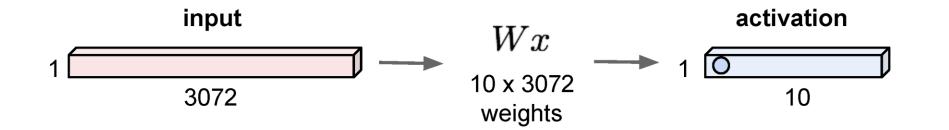
[Donahue, "DeCAF: DeCAF: A Deep Convolutional ...", arXiv 2013]

Convolutional neural networks

- Layer types:
 - Fully-connected layer
 - Convolutional layer
 - Pooling layer

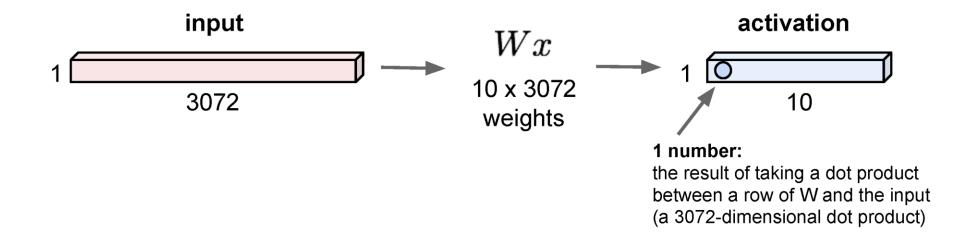
Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

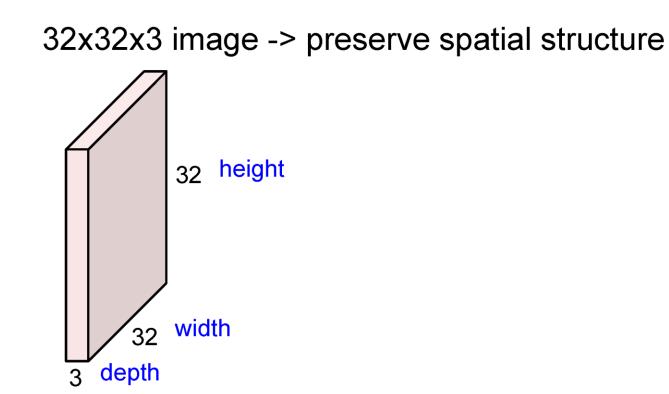


Fully Connected Layer

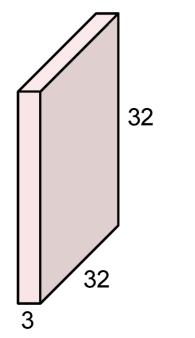
32x32x3 image -> stretch to 3072 x 1



Same as a linear classifer!

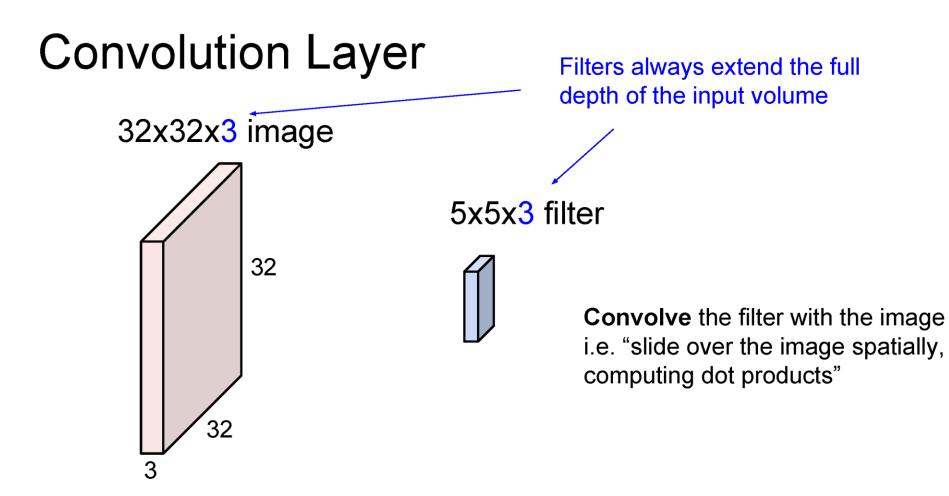


32x32x3 image

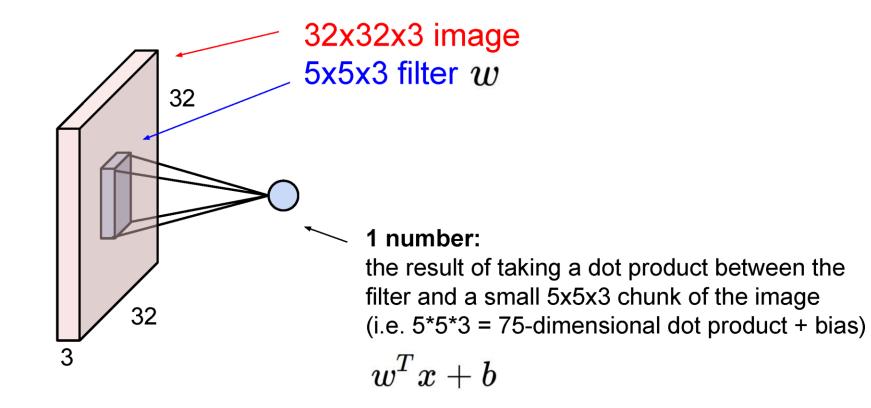


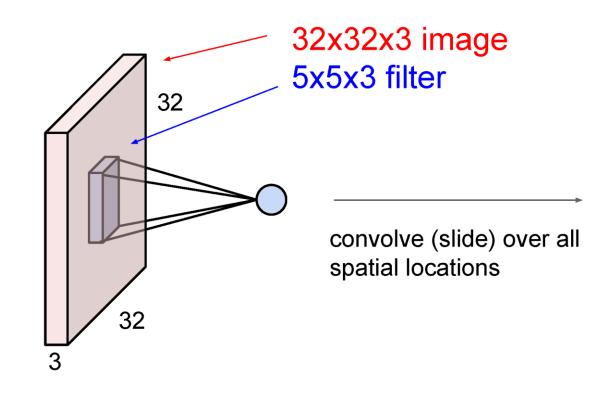
5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

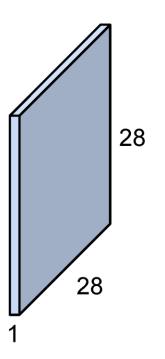


32x32x3 image 5x5x3 filter 32 **Convolve** the filter with the image i.e. "slide over the image spatially, computing dot products" 32 Number of weights: $5 \times 5 \times 3 + 1 = 76$ (vs. 3072 for a fully-connected layer) (+1 for bias)



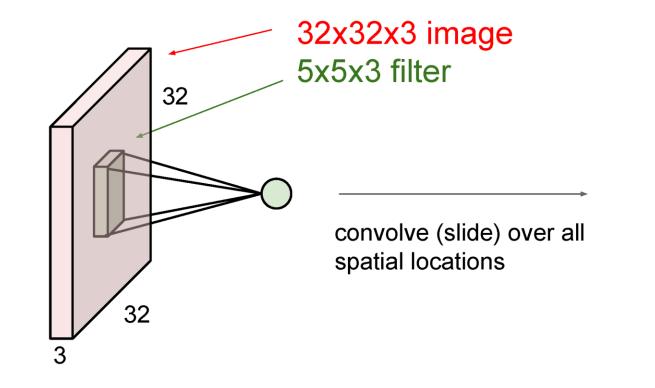


activation map

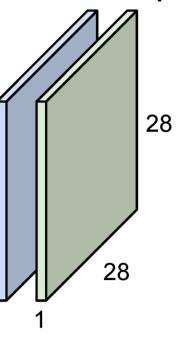


consider a second, green filter

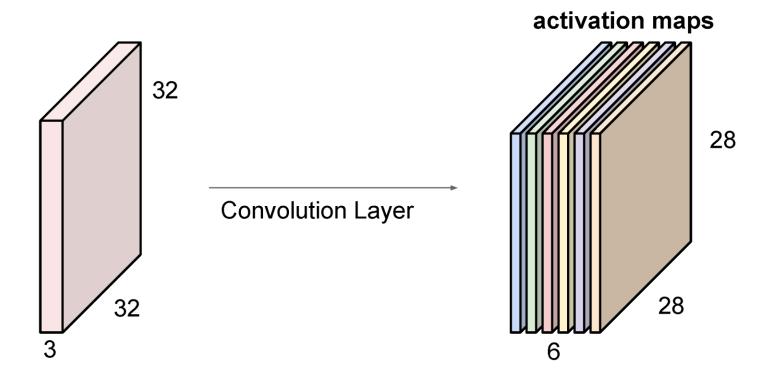
Convolution Layer



activation maps



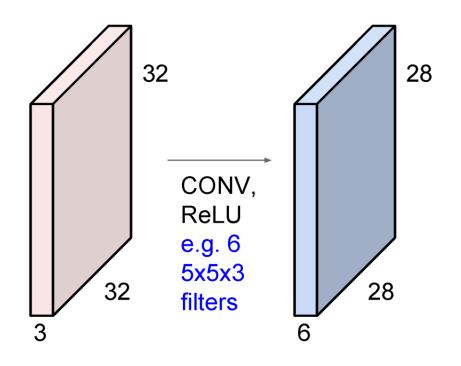
For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



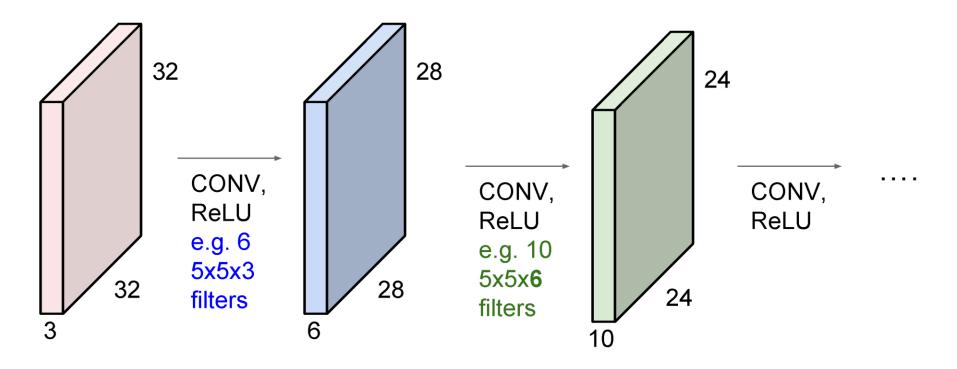
We stack these up to get a "new image" of size 28x28x6!

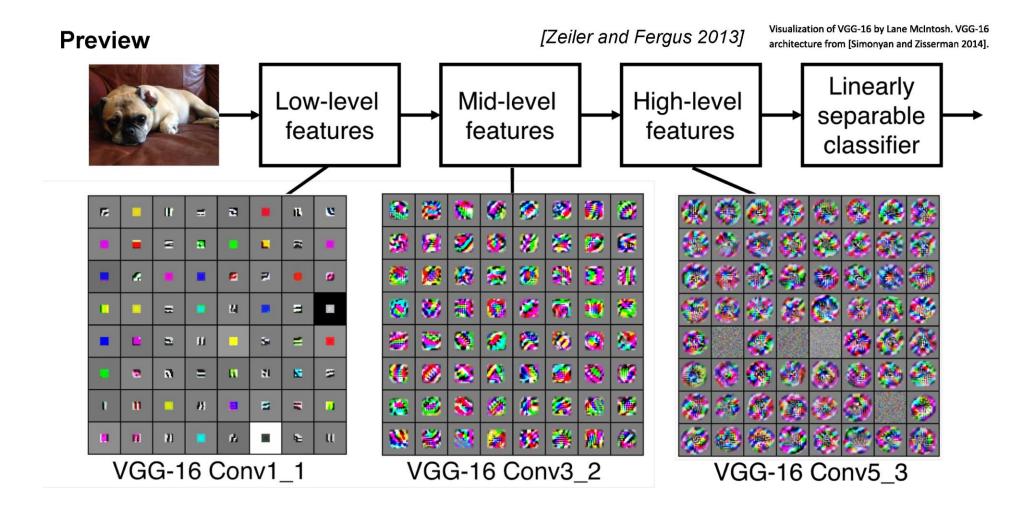
(total number of parameters: $6 \times (75 + 1) = 456$)

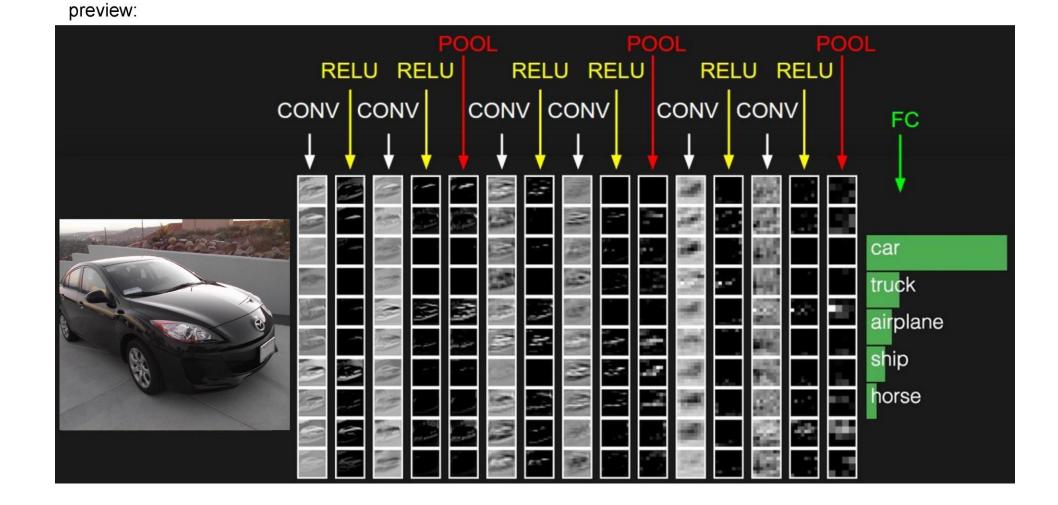
Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

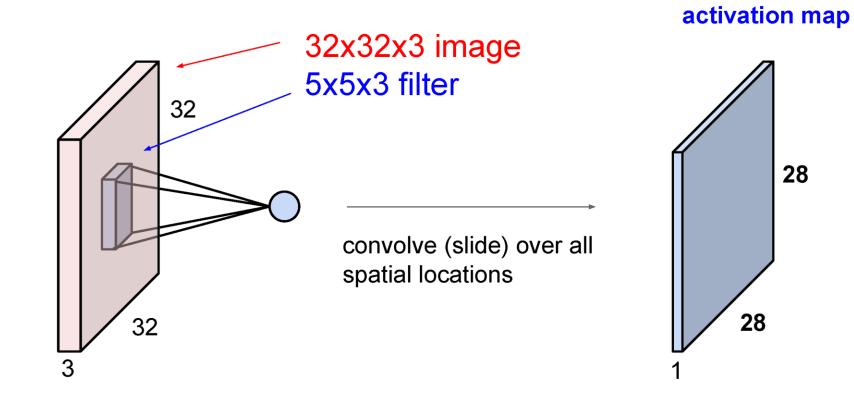


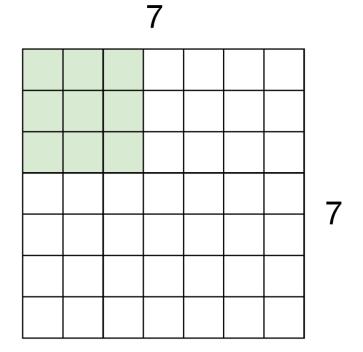
Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

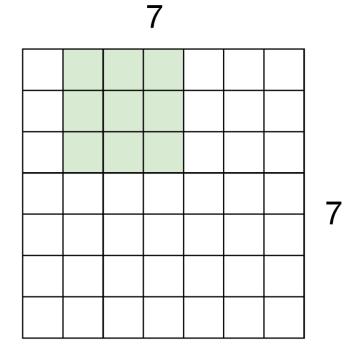


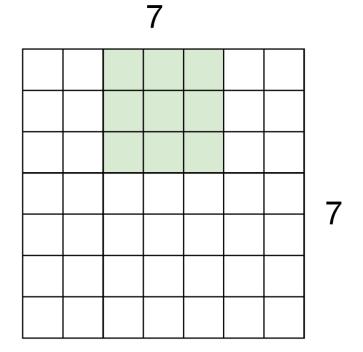


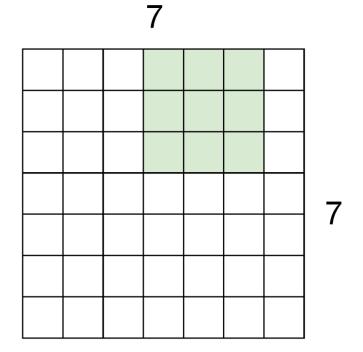


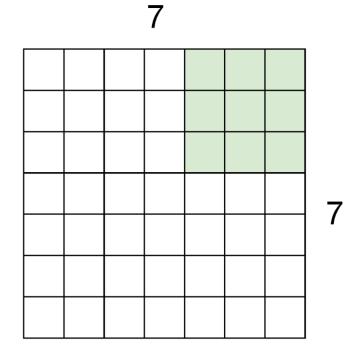






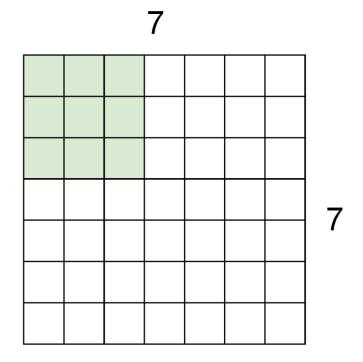




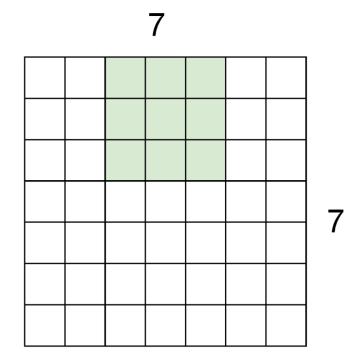


7x7 input (spatially) assume 3x3 filter

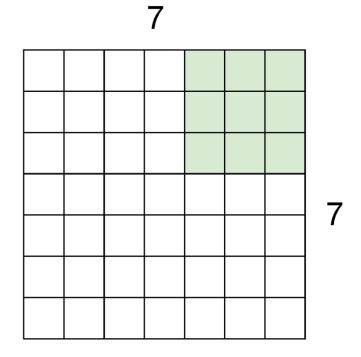
=> 5x5 output



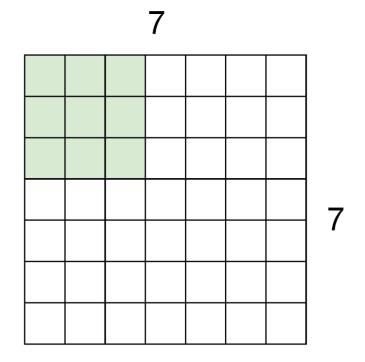
7x7 input (spatially) assume 3x3 filter applied **with stride 2**



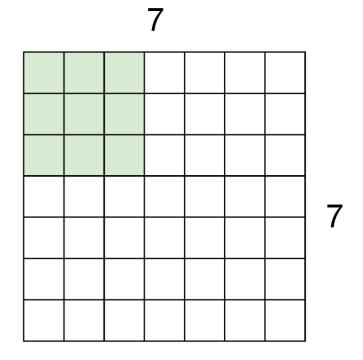
7x7 input (spatially) assume 3x3 filter applied **with stride 2**



7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

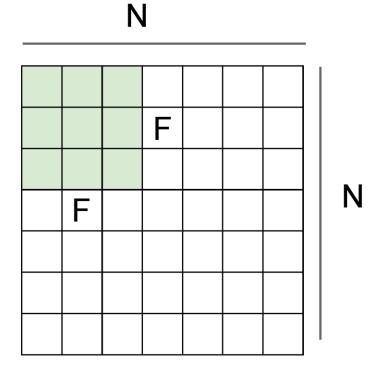


7x7 input (spatially) assume 3x3 filter applied **with stride 3?**



7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.



Output size: (N - F) / stride + 1

e.g. N = 7, F = 3: stride 1 => (7 - 3)/1 + 1 = 5 stride 2 => (7 - 3)/2 + 1 = 3 stride 3 => (7 - 3)/3 + 1 = 2.33 :\

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:) (N - F) / stride + 1

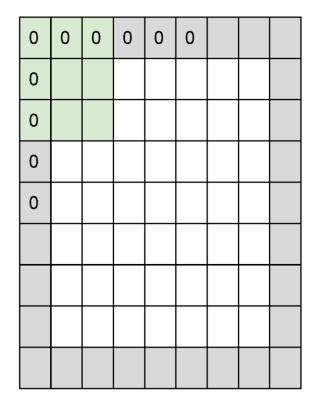
In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border



e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

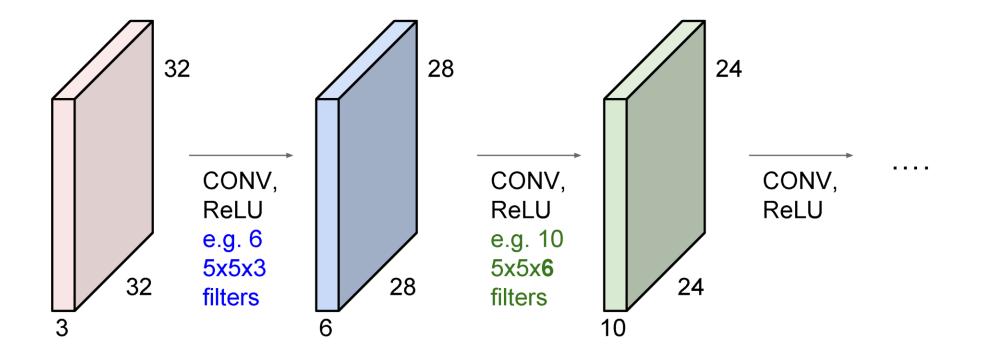
e.g. $F = 3 \Rightarrow 2ero pad with 1$

F = 5 => zero pad with 2

F = 7 => zero pad with 3

Remember back to...

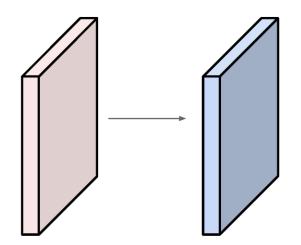
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.



Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

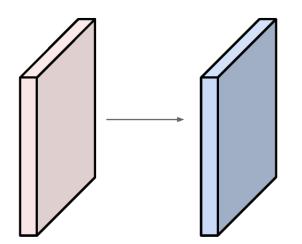
Output volume size: ?

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2



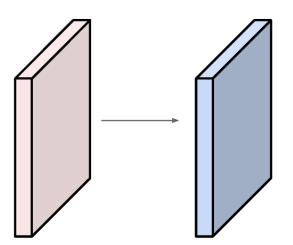
Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

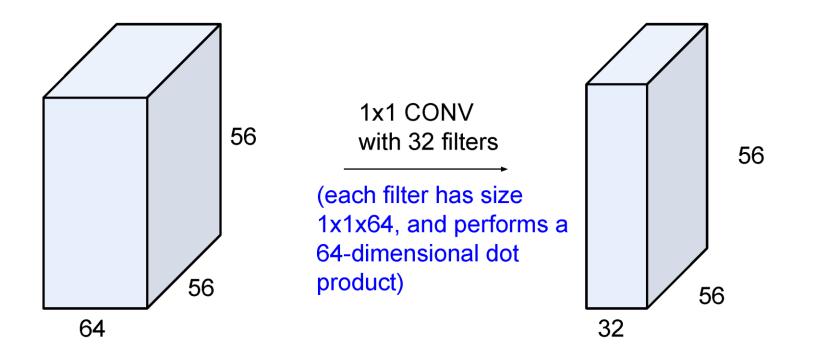


Number of parameters in this layer?

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

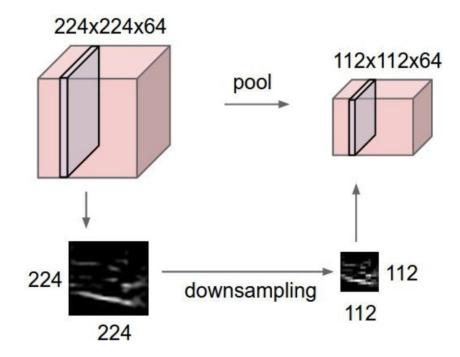


Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760 (btw, 1x1 convolution layers make perfect sense)

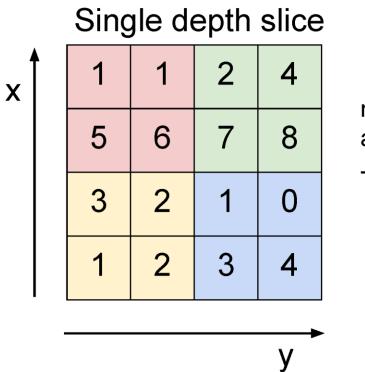


Pooling layer

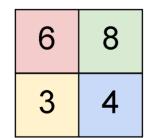
- makes the representations smaller and more manageable
- operates over each activation map independently:



MAX POOLING

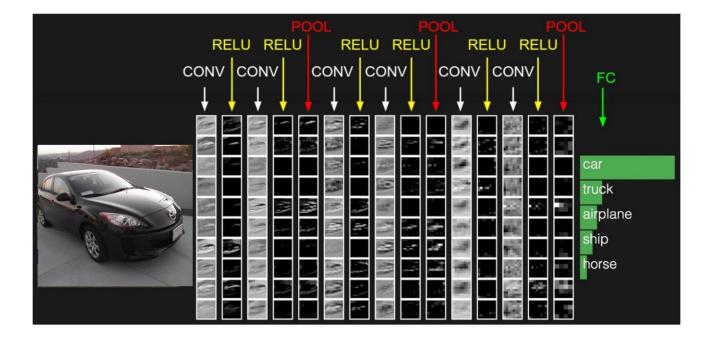


max pool with 2x2 filters and stride 2



Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks



[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

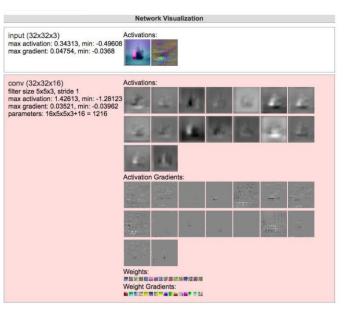
Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

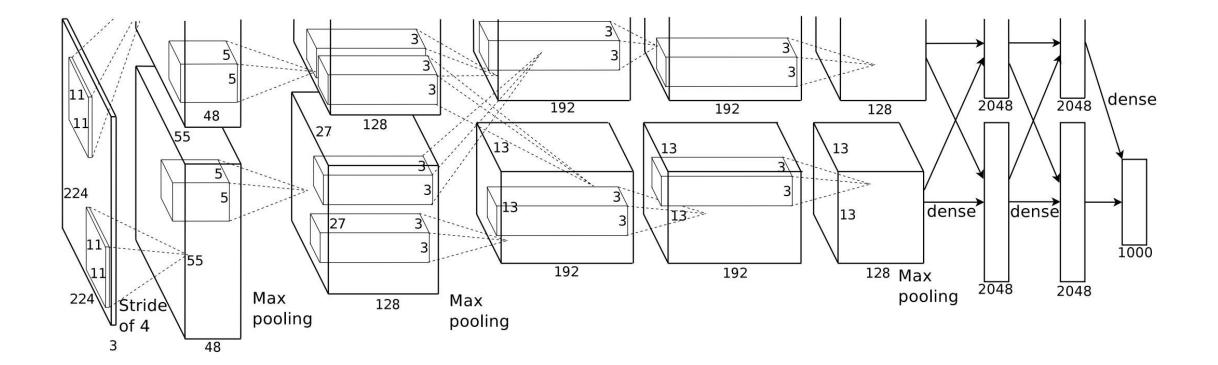
By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

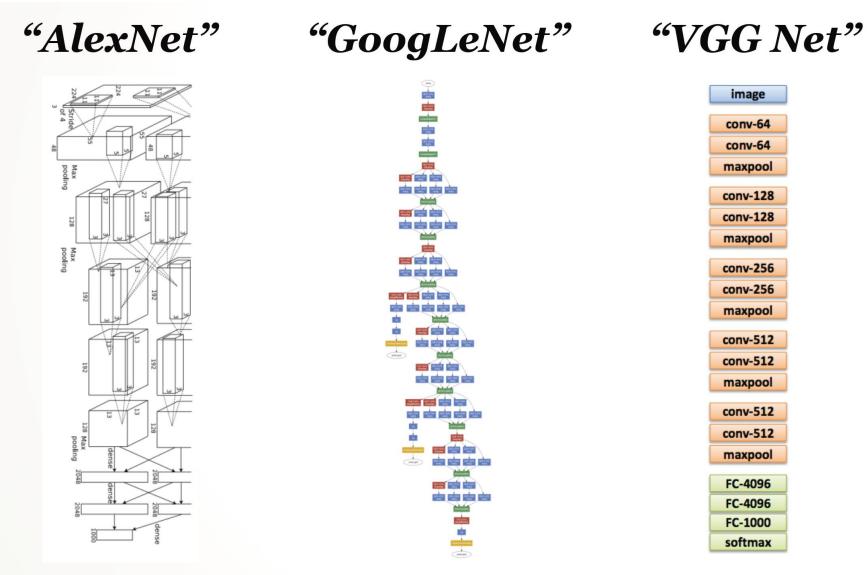
Report questions/bugs/suggestions to @karpathy.



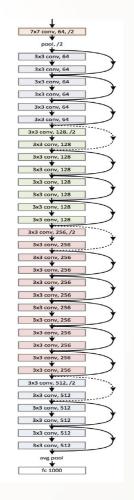
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

AlexNet





"ResNet"



[He et al. CVPR 2016]

[Krizhevsky et al. NIPS 2012]

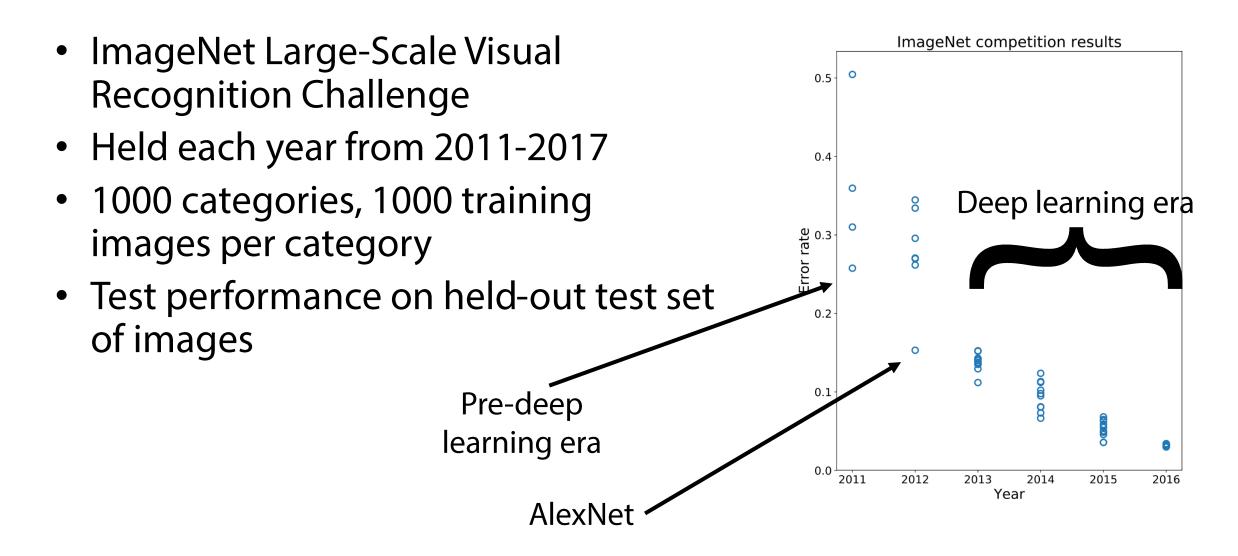
[Szegedy et al. CVPR 2015]

[Simonyan & Zisserman, ICLR 2015]

Big picture

- A convolutional neural network can be thought of as a function from images to class scores
 - With millions of adjustable weights...
 - ... leading to a very non-linear mapping from images to features / class scores.
 - We will set these weights based on classification accuracy on training data...
 - ... and hopefully our network will generalize to new images at test time

Performance improvements on ILSVRC



Questions?