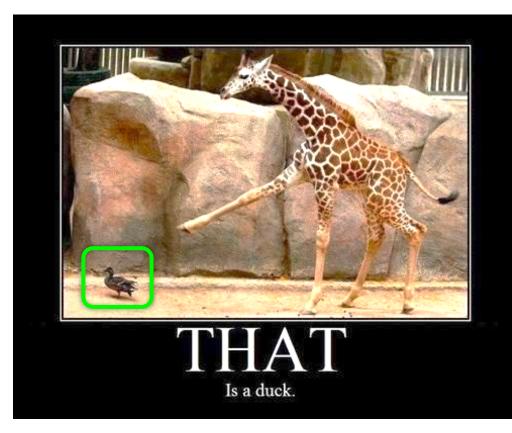
Introduction to Recognition

Presented by Abe Davis

Most Slides Originally from Noah Snavely



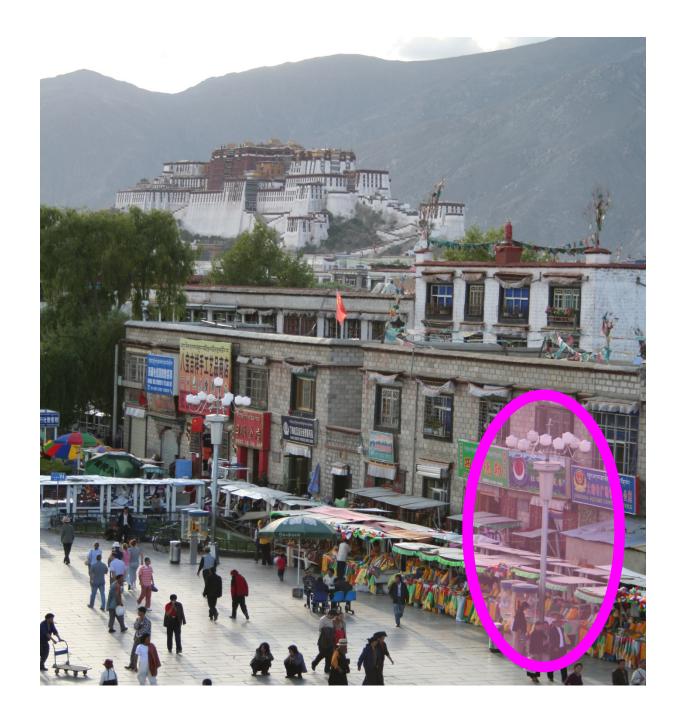
CS5670: Intro to Computer Vision

Where we go from here

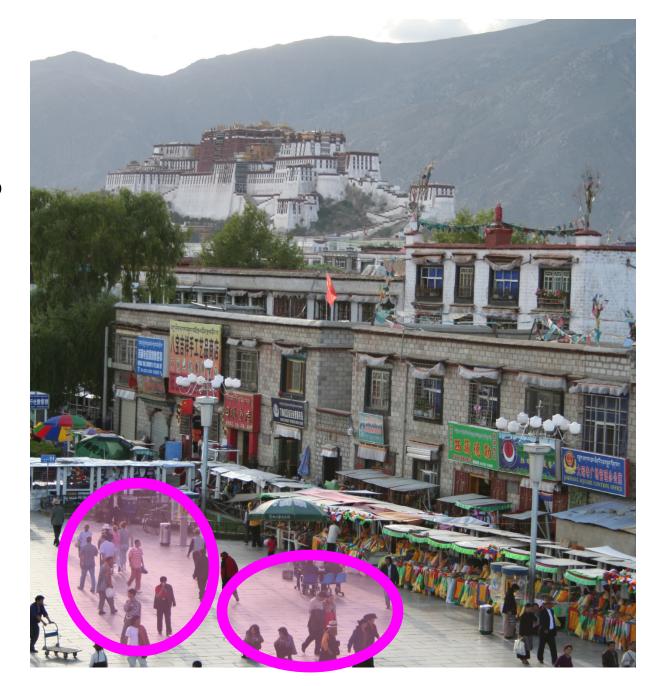
- What we know: Geometry
 - What is the shape of the world?
 - How does that shape appear in images?
 - How can we infer that shape from one or more images?
- What's next: Recognition
 - What are we looking at?

Next few slides adapted from Li, Fergus, & Torralba's excellent <u>short course</u> on category and object recognition

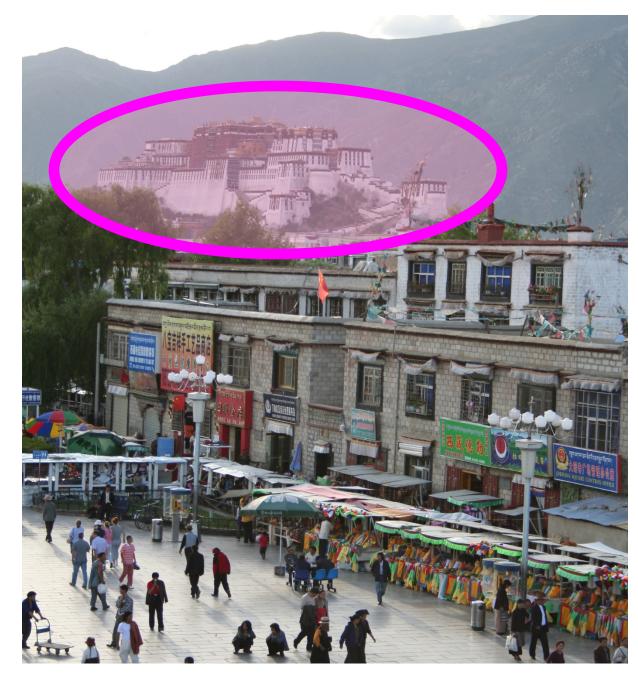
• Verification: is that a lamp?



- Verification: is that a lamp?
- Detection: where are the people?

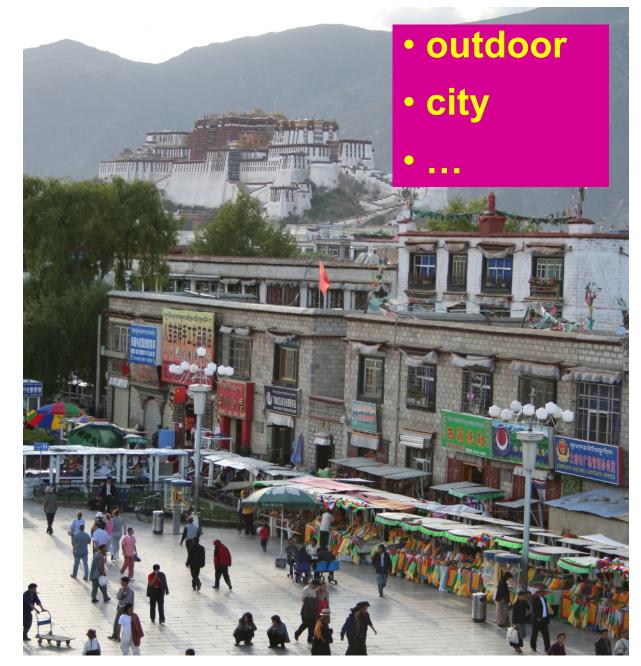


- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?

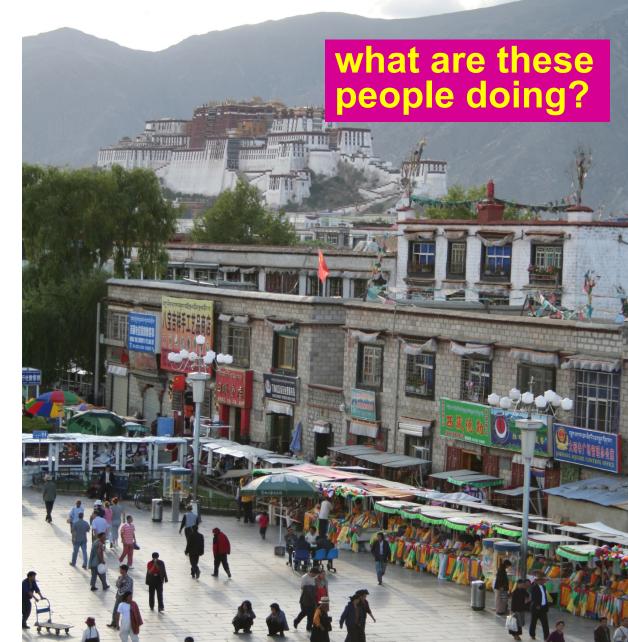


- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization

- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
- Scene and context categorization



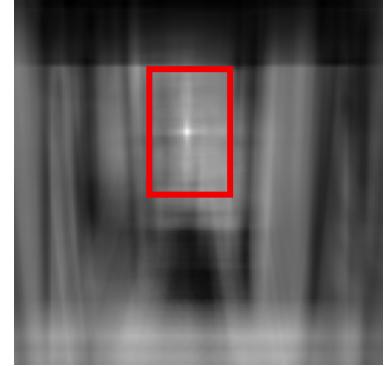
- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
- Scene and context categorization
- Activity / Event Recognition



Object recognition: Is it really so hard?

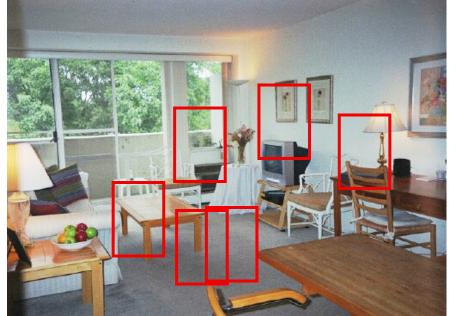
Find the chair in this image

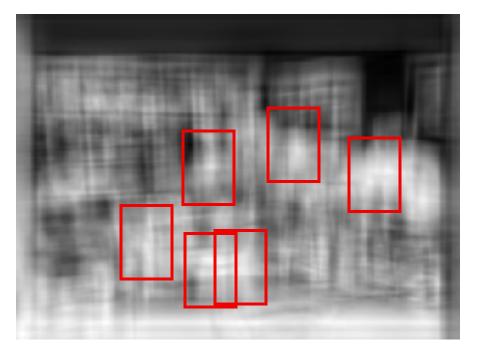
Output of normalized correlation



Object recognition: Is it really so hard?

Find the chair in this image

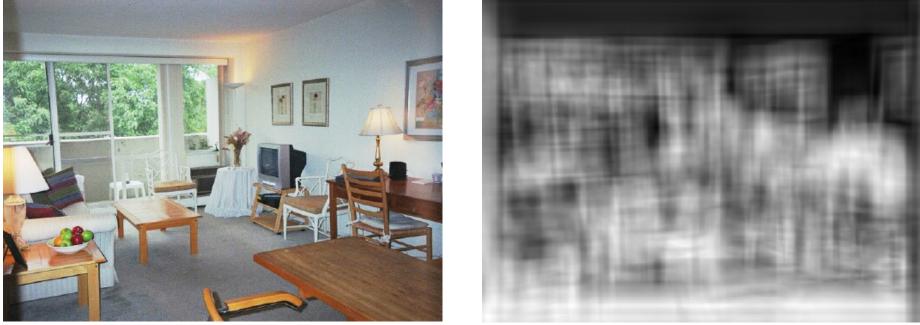




Pretty much garbage Simple template matching is not going to do the trick

Object recognition: Is it really so hard?

Find the chair in this image



A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

Why not use SIFT matching for everything?

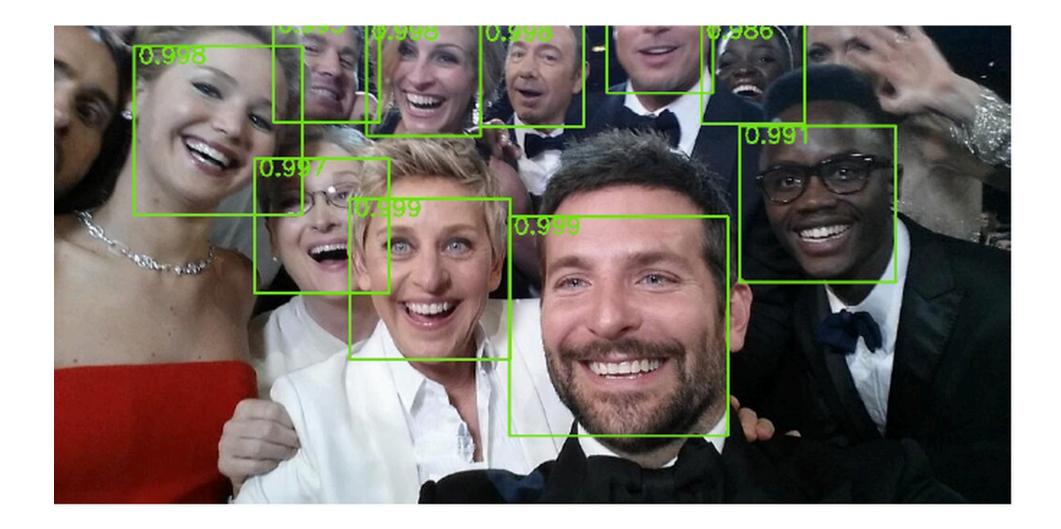
• Works well for object *instances* (or distinctive images such as logos)

• Not great for generic object *categories*

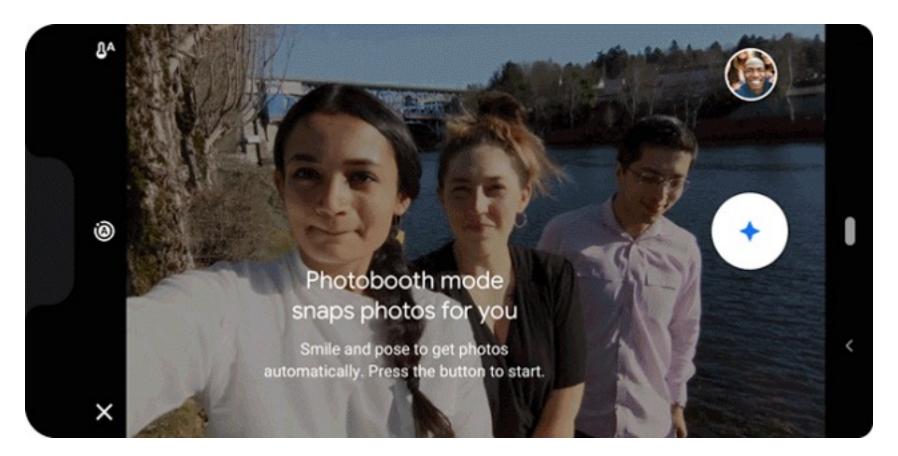
And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

Applications: Photography



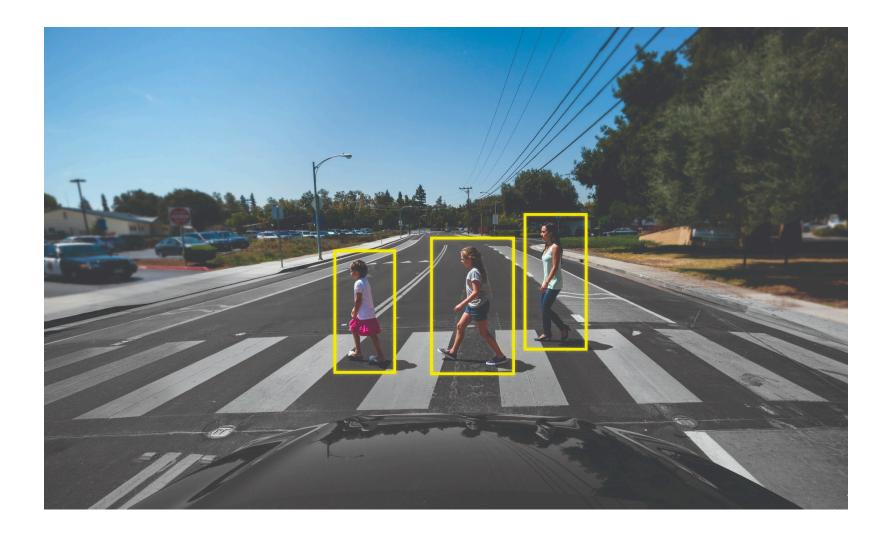
Applications: Shutter-free Photography



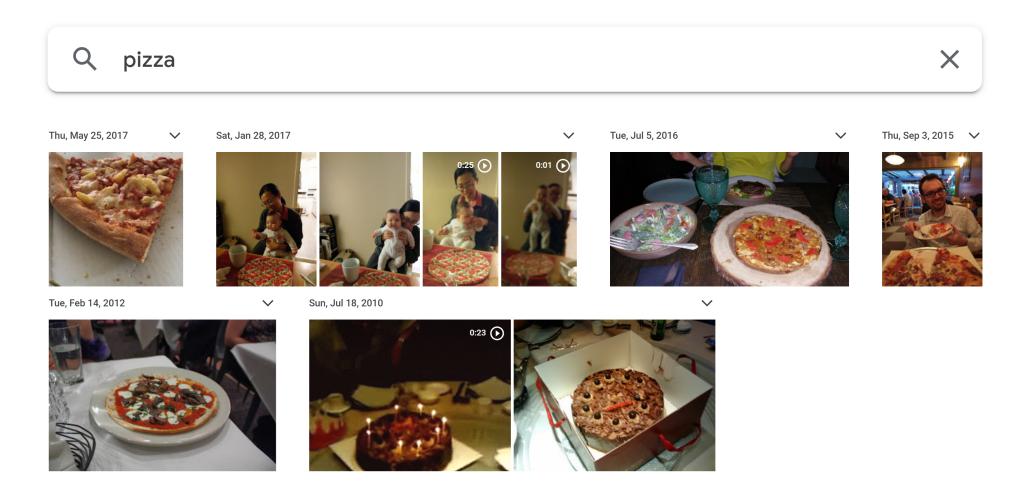
Take Your Best Selfie Automatically, with Photobooth on Pixel 3 <u>https://ai.googleblog.com/2019/04/take-your-best-selfie-automatically.html</u>

(Also features "kiss detection")

Applications: Assisted / autonomous driving

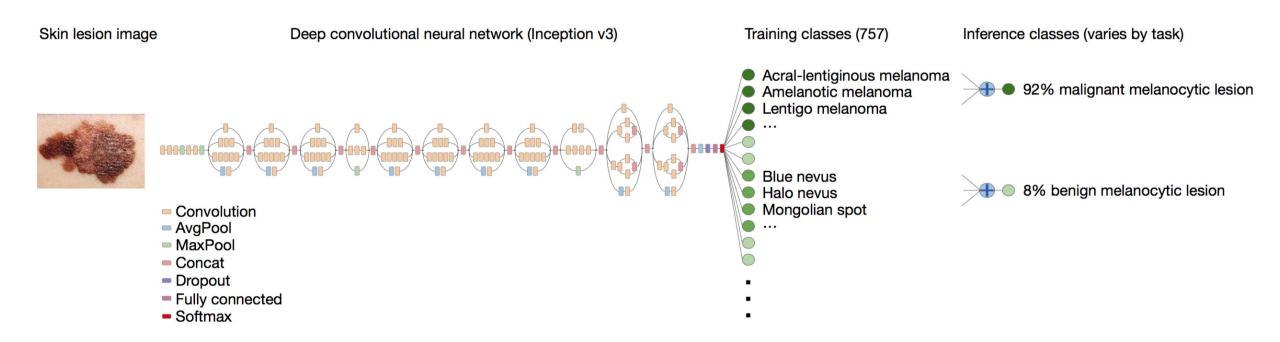


Applications: Photo organization



Source: Google Photos

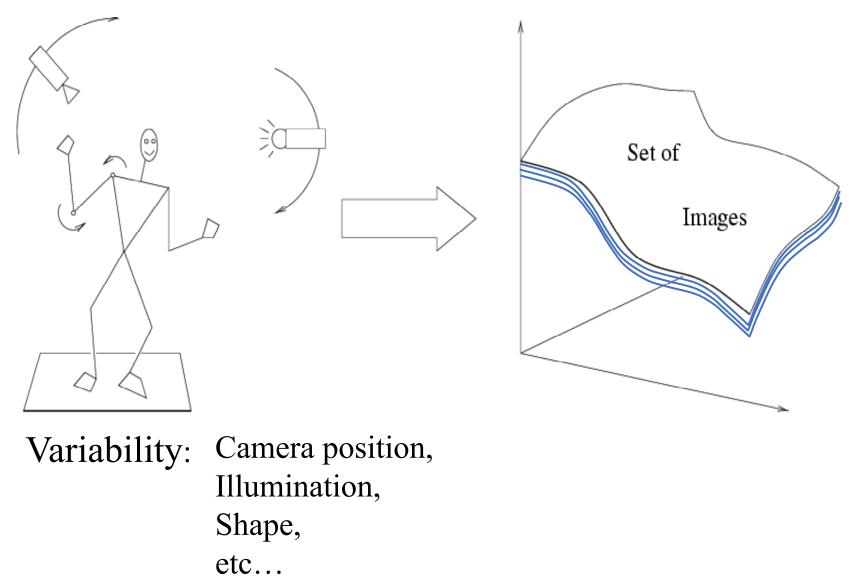
Applications: medical imaging



Dermatologist-level classification of skin cancer

https://cs.stanford.edu/people/esteva/nature/

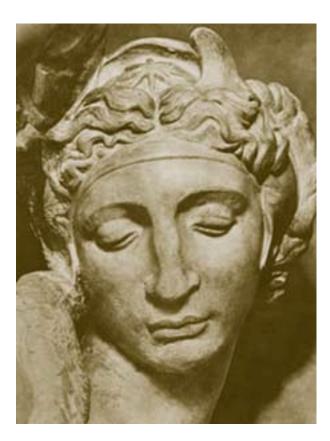
Why is recognition hard?



Svetlana Lazebnik

Challenge: lots of potential classes

Challenge: variable viewpoint



Michelangelo 1475-1564

Challenge: variable illumination

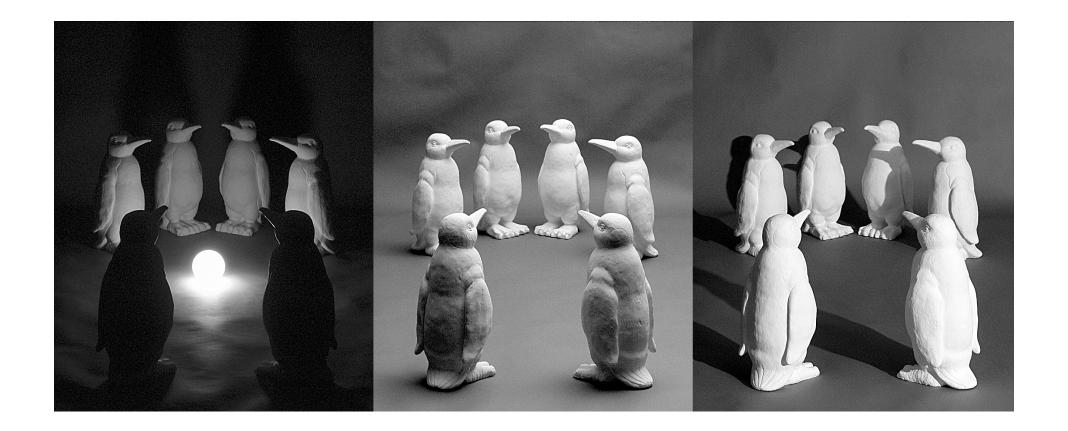
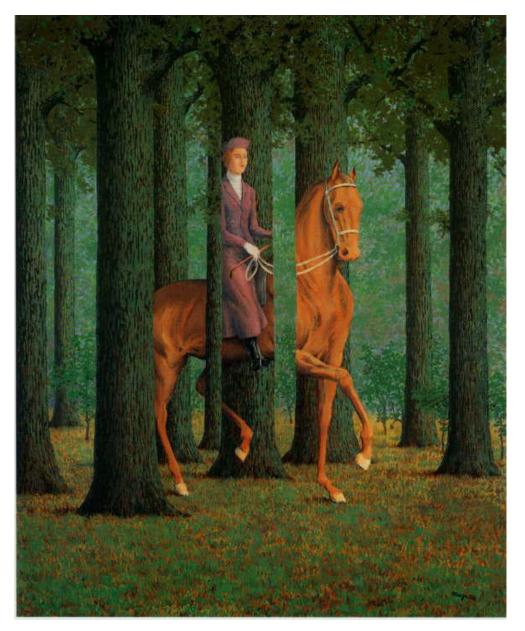


image credit: J. Koenderink

Challenge: scale

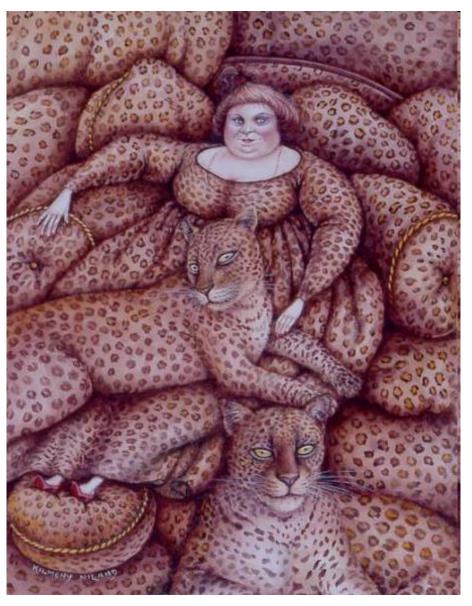
Challenge: deformation

Challenge: Occlusion



Magritte, 1957

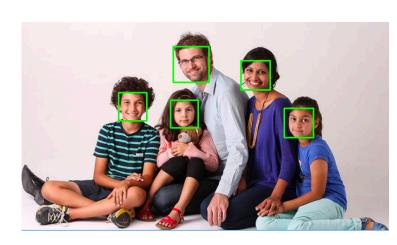
Challenge: background clutter

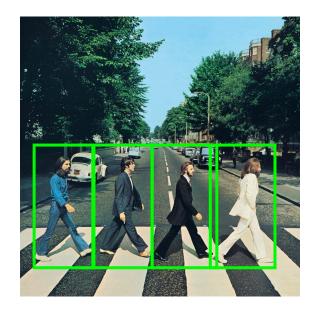


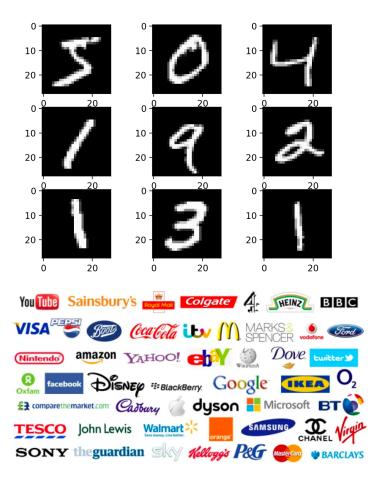
Kilmeny Niland. 1995

Challenge: intra-class variations

- What worked in 2011 (pre-deep-learning era in computer vision)
 - Optical character recognition
 - Face detection
 - Instance-level recognition (what logo is this?)
 - Pedestrian detection (sort of)
 - ... that's about it







- What works now, post-2012 (deep learning era)
 - Robust object classification across thousands of object categories (outperforming humans)

"Spotted salamander"

- What works now, post-2012 (deep learning era)
 - Face recognition at scale

FaceNet: A Unified Embedding for Face Recognition and Clustering

Florian Schroff fschroff@google.com Google Inc. Dmitry Kalenichenko dkalenichenko@google.com Google Inc. James Philbin jphilbin@google.com Google Inc.

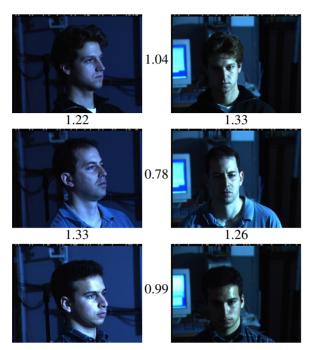


Figure 1. **Illumination and Pose invariance.** Pose and illumination have been a long standing problem in face recognition. This figure shows the output distances of FaceNet between pairs of faces of the same and a different person in different pose and illumination combinations. A distance of 0.0 means the faces are identical, 4.0 corresponds to the opposite spectrum, two different identities. You can see that a threshold of 1.1 would classify every pair correctly.

- What works now, post-2012 (deep learning era)
 - High-quality face synthesis (but not yet for completely general scenes)

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA) http://stylegan.xyz/paper

These people are not real – they were produced by our generator that allows control over different aspects of the image.

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - High level: Contextual dependence
 - Deep learned features
- Data
 - More is always better (as long as it is good data)
 - Annotation is the hard part

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - High level: Contextual dependence
 - Deep learned features

• Data

- More is always better (as long as it is good data)
- Annotation is the hard part

24 Hrs in Photos

Flickr Photos From 1 Day in 2011

http://www.kesselskramer.com/exhibitions/24-hrs-of-photos

Data Sets

- ImageNet
 - Huge, Crowdsourced, Hierarchical, *Iconic* objects
- PASCAL VOC
 - Not Crowdsourced, bounding boxes, 20 categories
- SUN Scene Database, Places
 - Not Crowdsourced, 397 (or 720) scene categories
- LabelMe (Overlaps with SUN)
 - Sort of Crowdsourced, Segmentations, Open ended
- SUN Attribute database (Overlaps with SUN)
 - Crowdsourced, 102 attributes for every scene
- OpenSurfaces
 - Crowdsourced, materials
- Microsoft COCO
 - Crowdsourced, large-scale objects

Large Scale Visual Recognition Challenge (ILSVRC)

2010-2017

Image20 object classes20 object classes22,591 images1000 object classes1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVRC

birds

bottles

cars

bottle

car

ILSVRC

cock

quail

partridge

ruffed grouse

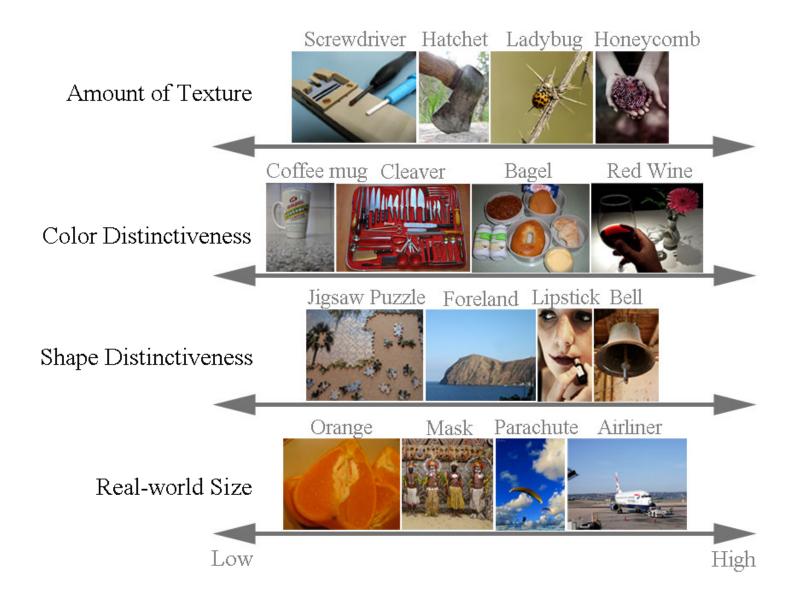
beer bottle wine bottle water bottle pop bottle ... pill bottle

flamingo

race car wagon

• •

Variety of object classes in ILSVRC



What's Still Hard?

- Few shot learning
 - How do we generalize from only a small number of examples?
- Fine-grain classification
 - How do we distinguish between more subtle class differences?

Animal->Bird->Oriole...

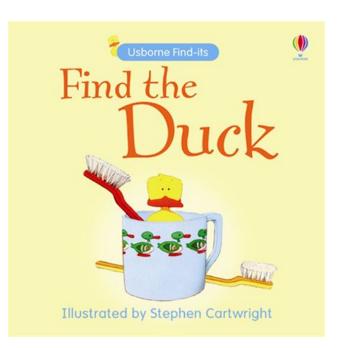
Baltimore Oriole

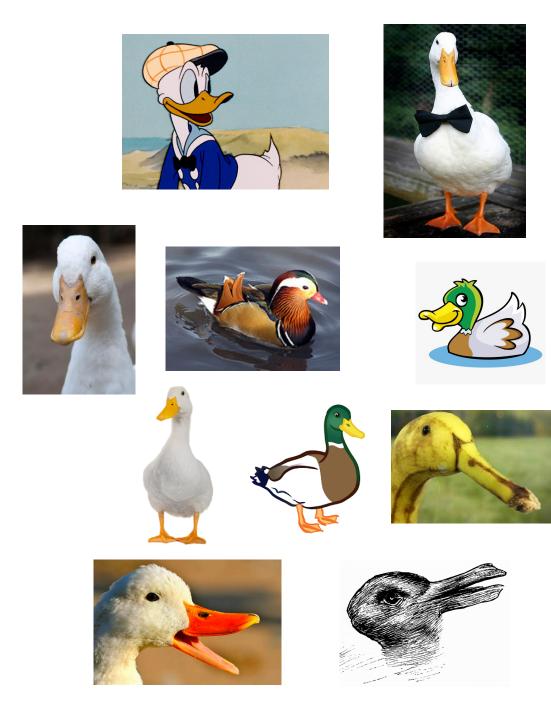
Hooded Oriole

Scott Oriole

What's Still Hard?

- Few shot learning
 - How do we generalize from only a small number of examples?





Questions?

CS5670: Computer Vision Next Time...

Image Classification

Some Slides from Fei-Fei Li, Justin Johnson, Serena Yeung http://vision.stanford.edu/teaching/cs231n/

Next Time

- Image classification pipeline
- Training, validation, testing
- Nearest neighbor classification
- Linear classification
- Building up to CNNs for learning
 - Next four lectures on deep learning

Image Classification: A core task in Computer Vision

- Assume given set of discrete labels
 - e.g. {cat, dog, cow, apple, tomato, truck, ... }

f() = "apple" f(**()**) = "tomato" f(____) = "cow"

Classification

"Cat"

"Dog"

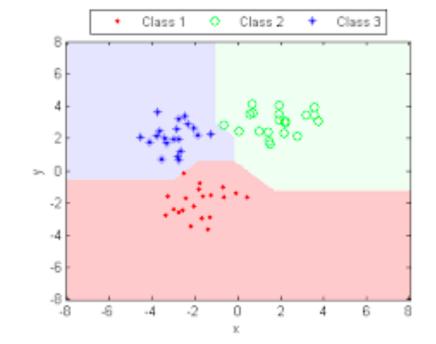
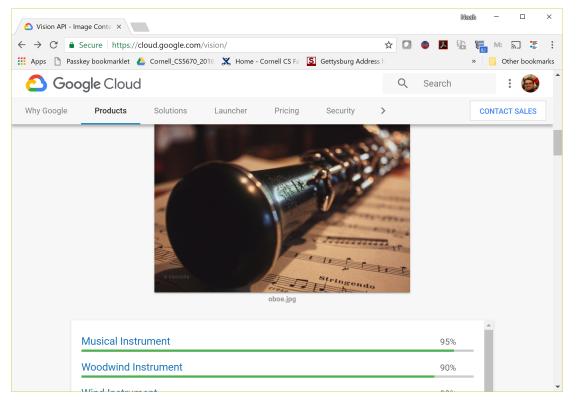


Image classification demo



https://cloud.google.com/vision/

See also:

https://aws.amazon.com/rekognition/

https://www.clarifai.com/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

• • •

Questions?