Projective Geometry Redux & Image Based Rendering

By Abe Davis

Announcements

- Project 4 is released
 - Due Friday, April 17 by 11:59pm.
 - The project will be done in groups of two, with groups defaulting to the Project 3 groups (though groups can be changed on CMSX)
- New Grading Policy
 - Check email for more information

Today's Lecture

- Homogeneous Coordinates and Geometry in n-dimensions
 - New slides, following my own derivations, intended to help with confusion I've noticed in the first part of the course
 - Mostly re-derives stuff you know, but hopefully with stronger motivation, rigor, and intuition
- Image Based Rendering and Light Fields
 - Not in previous versions of the course, but an active area of work in computer vision with many applications (e.g., AR/VR, film special effects, etc.)

Part 1: Building a Geometry of Points & Views

By Abe Davis

Or "Let's derive homogeneous coordinates from scratch!"

- We may observe geometry in different ways
 - e.g., different views or cameras
- How do we separate our description of geometry from our choice of reference frame?

- We may observe geometry in different ways
 - e.g., different views or cameras
- How do we separate our description of geometry from our choice of reference frame?

Multiplying a point by a constant

- We may observe geometry in different ways
 - e.g., different views or cameras
- How do we separate our description of geometry from our choice of reference frame?

- We may observe geometry in different ways
 - e.g., different views or cameras
- How do we separate our description of geometry from our choice of reference frame?

Problem:

Standard representation treats points like vectors from the origin

Points and vectors are NOT the same thing!

Relating Points and Vectors

- A point is a unique location
- A vector is the difference between two locations
- We can add vectors to points and to other vectors
- We can scale vectors

- A point is a unique location
- A vector is the difference between two locations
- We can add vectors to points and to other vectors
- We can scale vectors

Homogeneous Points and Vectors:

$$\mathbf{p}_a = \begin{bmatrix} p_a \\ 1 \end{bmatrix} \quad \mathbf{p}_b = \begin{bmatrix} p_b \\ 1 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} v \\ 0 \end{bmatrix}$$

Set an extra value to 1 for points

And to 0 for vectors

For now, let's only consider homogeneous values that are 0 or 1

- A point is a unique location 🗸
- A vector is the difference between two locations 🗸
- We can add vectors to points and to other vectors
- We can scale vectors 🗸

Homogeneous Points and Vectors:

$$\mathbf{p}_a = \begin{bmatrix} p_a \\ 1 \end{bmatrix} \quad \mathbf{p}_b = \begin{bmatrix} p_b \\ 1 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} v \\ 0 \end{bmatrix}$$

Set an extra value to 1 for points

And to 0 for vectors

For now, let's only consider homogeneous values that are 0 or 1

$$vector + vector = vector \quad \begin{bmatrix} v_a \\ 0 \end{bmatrix} + \begin{bmatrix} v_b \\ 0 \end{bmatrix} = \begin{bmatrix} v_a + v_b \\ 0 \end{bmatrix}$$

$$vector \times constant = vector \qquad c \begin{bmatrix} v_a \\ 0 \end{bmatrix} = \begin{bmatrix} cv_b \\ 0 \end{bmatrix}$$

- A point is a unique location 🗸
- A vector is the difference between two locations 🗸
- We can add vectors to points and to other vectors
- We can scale vectors 🗸

Homogeneous Points and Vectors:

$$\mathbf{p}_a = egin{bmatrix} p_a \ 1 \end{bmatrix} \quad \mathbf{p}_b = egin{bmatrix} p_b \ 1 \end{bmatrix} \quad \mathbf{v} = egin{bmatrix} v \ 0 \end{bmatrix}$$

Set an extra value to 1 for points

And to 0 for vectors

For now, let's only consider homogeneous values that are 0 or 1

$$\begin{bmatrix} p \\ 1 \end{bmatrix} + \begin{bmatrix} v \\ 0 \end{bmatrix} = \begin{bmatrix} p+v \\ 1 \end{bmatrix}$$

vector + vector = vector
$$\begin{bmatrix} v_a \\ 0 \end{bmatrix}$$

$$vector + vector = vector \quad \begin{bmatrix} v_a \\ 0 \end{bmatrix} + \begin{bmatrix} v_b \\ 0 \end{bmatrix} = \begin{bmatrix} v_a + v_b \\ 0 \end{bmatrix}$$

$$vector \times constant = vector$$

$$c \begin{vmatrix} v_a \\ 0 \end{vmatrix} = \begin{vmatrix} cv_b \\ 0 \end{vmatrix}$$

- What should it mean to multiply a point by a constant?
- What should it mean to add points?

- What should it mean to multiply a point by a constant?
- What should it mean to add points?

$$\mathbf{p}_a = \begin{bmatrix} p_a \\ 1 \end{bmatrix} \quad \mathbf{p}_b = \begin{bmatrix} p_b \\ 1 \end{bmatrix}$$

$$c\mathbf{p}_a = \begin{bmatrix} cp_a \\ c \end{bmatrix}$$

$$\mathbf{p}_a + \mathbf{p}_b = \begin{bmatrix} p_a + p_b \\ 2 \end{bmatrix}$$

What does it mean to have a homogeneous value that is not 0 or 1?

- What should it mean to multiply a point by a constant?
- What should it mean to add points?

$$\mathbf{p}_a = \begin{bmatrix} p_a \\ 1 \end{bmatrix} \quad \mathbf{p}_b = \begin{bmatrix} p_b \\ 1 \end{bmatrix}$$

$$c\mathbf{p}_a = \begin{bmatrix} cp_a \\ c \end{bmatrix}$$

$$\mathbf{p}_a + \mathbf{p}_b = \begin{bmatrix} p_a + p_b \\ 2 \end{bmatrix}$$

$$\alpha \mathbf{p}_a + \beta \mathbf{p}_b = \begin{bmatrix} \alpha p_a + \beta p_b \\ (\alpha + \beta) \end{bmatrix}$$

When eta = -lpha , this becomes $\,lpha(p_a-p_b)$, a vector

When
$$\beta=1-lpha$$
 this becomes $\left[rac{lpha p_a+(1-lpha)p_b}{1}
ight]$, a point

When can these operations be combined to get valid points or vectors?

- What should it mean to multiply a point by a constant?
- What should it mean to add points?

$$\mathbf{p}_a = egin{bmatrix} p_a \ 1 \end{bmatrix} \ \mathbf{p}_b = egin{bmatrix} p_b \ 1 \end{bmatrix}$$

$$c\mathbf{p}_a = \begin{bmatrix} cp_a \\ c \end{bmatrix}$$

$$\mathbf{p}_a + \mathbf{p}_b = \begin{bmatrix} p_a + p_b \\ 2 \end{bmatrix}$$

When can these operations be combined to get valid points or vectors?

$$\alpha \mathbf{p}_a + \beta \mathbf{p}_b = \begin{bmatrix} \alpha p_a + \beta p_b \\ (\alpha + \beta) \end{bmatrix}$$

When $\beta = -\alpha$, this becomes $\alpha(p_a - p_b)$, a vector

When
$$eta=1-lpha$$
 this becomes $egin{bmatrix} lpha p_a+(1-lpha)p_b \ 1 \end{bmatrix}$, a point $lpha>1$

$$p_{a}$$
 $\alpha > 1$
 $\alpha < 0$
 $\alpha = 1$

Homogeneous Values Coordinates

- Homogeneous values keep track of how much our choice of origin has influenced our coordinates
- We can correct for the influence on a point by dividing all coordinates by the homogeneous value

Barycentric Coordinates, Homogenization, & Center of Mass

• If we homogenize the weighted sum of *k* points, we get get their center of mass

$$p = \frac{\sum \alpha_i p_i}{\sum \alpha_i}$$

Weighted sum of points (weights given by alphas)

$$\mathbf{c} = \frac{\sum m_i p_i}{\sum m_i}$$

Equation for center of mass (masses given by m's)

Homogeneous Coordinates & Projection

• How to project an n-dimensional vector onto an image plane?

Homogeneous Coordinates & Projection

• How to project an n-dimensional vector onto an image plane?

What is the projection $\mathcal{P}u$ of \mathcal{P} onto the image plane?

Homogeneous Coordinates & Projection

How to project an n-dimensional vector onto an image plane?

 $p = \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix} \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ How do we express this as a matrix?

$$\mathbf{P}p = \begin{bmatrix} \mathbf{v} \\ \mathbf{u}^\mathsf{T} \mathbf{v} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I}_{\mathbf{n}\times\mathbf{n}} & \mathbf{0}_{n\times1} \\ \mathbf{u}^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \mathbf{u}^{\mathsf{T}}\mathbf{v} \end{bmatrix}$$

Projection onto image plane defined by ${f u}$

Similar triangles used to compute Pu (Extra Slide)

• 3D translation is not linear in regular 3D coordinates

• Translation is not linear in regular coordinates

$$egin{bmatrix} \mathbf{x}_x & \mathbf{y}_x & \mathbf{z}_x \ \mathbf{x}_y & \mathbf{y}_y & \mathbf{z}_y \ \mathbf{x}_z & \mathbf{y}_z & \mathbf{z}_z \end{bmatrix} egin{bmatrix} \mathbf{p}_x \ \mathbf{p}_y \ \mathbf{p}_z \end{bmatrix} = \mathbf{p}_x \mathbf{x} + \mathbf{p}_y \mathbf{y} + \mathbf{p}_z \mathbf{z}$$

• Translation is not linear in regular coordinates

$$\begin{bmatrix} \mathbf{x}_x & \mathbf{y}_x & \mathbf{z}_x & \mathbf{t}_x \\ \mathbf{x}_y & \mathbf{y}_y & \mathbf{z}_y & \mathbf{t}_y \\ \mathbf{x}_z & \mathbf{y}_z & \mathbf{z}_z & \mathbf{t}_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p}_x \\ \mathbf{p}_y \\ \mathbf{p}_z \\ 1 \end{bmatrix} = \mathbf{p}_x \mathbf{x} + \mathbf{p}_y \mathbf{y} + \mathbf{p}_z \mathbf{z} + \mathbf{t}$$

• Tray

Translation & Rotation: Vectors vs Points

- Points rotate and translate
- Vectors rotate but **do not translate**
 - Consider the surface normal of an object
 - If we translate the object, the surface normal direction does not change

• Translating vectors (e.g., surface normals)

$$\begin{bmatrix} \mathbf{x}_x & \mathbf{y}_x & \mathbf{z}_x & \mathbf{t}_x \\ \mathbf{x}_y & \mathbf{y}_y & \mathbf{z}_y & \mathbf{t}_y \\ \mathbf{x}_z & \mathbf{y}_z & \mathbf{z}_z & \mathbf{t}_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{n}_x \\ \mathbf{n}_y \\ \mathbf{n}_z \\ 0 \end{bmatrix} = \mathbf{n}_x \mathbf{x} + \mathbf{n}_y \mathbf{y} + \mathbf{n}_z \mathbf{z}$$

Homogeneous Coordinates: Putting It All Together

Part 2: Image-Based Rendering

By Abe Davis

Light Fields & Image-Based Rendering

With Stick Figures!

Traditional Photography

Traditional Photography

Image-Based Rendering

What would be the simplest, most naïve, brute force approach to give the viewer control of the camera?

"Light Field" Photography

"Light Field" Photography

We can't capture all the images

Light Field Photography

Light Field Photography

Camera parameters

(e.g. position, orientation, focus, depth of field...)

- How do we sample?
- What space do we use to represent our data?
- How do we Interpolate in that space?
- How do we extract images from that space?

- How do we sample?
- What space do we use to represent our data?
- How do we Interpolate in that space?
- How do we extract images from that space?

- How do we sample?
- What space do we use to represent our data?
- How do we Interpolate in that space?
- How do we extract images from that space?

Sampling and Reconstructing Rays

Sampling and Reconstructing Rays

Sampling and Reconstructing Rays

Sample ≈ Pixel ≈ 1 Ray of Light

How should we parameterize light?

Light ray = f(?)

Light

- Radiance:
 - R(position, angle)
 - How many dimensions?

Light

- Radiance:
 - R(position, angle)
 - Position = (x,y,z)
 - Angle = (theta, phi)
 - 5 dimensions

What is a good parameterization for light?

The Light Field

What is a good parameterization for light?

- The Light Field
 - Unobstructed light
 - Each ray defined by intersection with 2 planes

Figure 1: The light slab representation.

What is a good parameterization for light?

- The Light Field
 - Unobstructed light
 - Each ray defined by intersection with 2 planes

Figure 1: The light slab representation.

The Light Field

Figure 1: The light slab representation.

u s

P •

u s

u s

u s

u s

Captured Image

Captured Image

Requested Image

3D Geometry

Projection Mapping

Projection Mapping

Stereo

Capture Strategies

S

Capture Strategies

Specialized Devices

