Projective Geometry Redux \& Image Based Rendering

By Abe Davis

Announcements

- Project 4 is released
- Due Friday, April 17 by 11:59pm.
- The project will be done in groups of two, with groups defaulting to the Project 3 groups (though groups can be changed on CMSX)
- New Grading Policy
- Check email for more information

Today's Lecture

- Homogeneous Coordinates and Geometry in n-dimensions
- New slides, following my own derivations, intended to help with confusion I've noticed in the first part of the course
- Mostly re-derives stuff you know, but hopefully with stronger motivation, rigor, and intuition
- Image Based Rendering and Light Fields
- Not in previous versions of the course, but an active area of work in computer vision with many applications (e.g., AR/VR, film special effects, etc.)

Part 1:
 Building a Geometry of Points \& Views

By Abe Davis

Or "Let's derive homogeneous coordinates from scratch!"

Motivation

- We may observe geometry in different ways
- e.g., different views or cameras
- How do we separate our description of geometry from our choice of reference frame?

Motivation

- We may observe geometry in different ways
- e.g., different views or cameras
- How do we separate our description of geometry from our choice of reference frame?

Multiplying a point by a constant

Motivation

- We may observe geometry in different ways
- e.g., different views or cameras
- How do we separate our description of geometry from our choice of reference frame?

Adding two points

Motivation

- We may observe geometry in different ways
- e.g., different views or cameras
- How do we separate our description of geometry from our choice of reference frame?

Problem:

Standard representation treats points like vectors from the origin

Points and vectors are NOT the same thing!

Relating Points and Vectors

- A point is a unique location
- A vector is the difference between two locations
- We can add vectors to points and to other vectors
- We can scale vectors

Homogeneous Values

- A point is a unique location
- A vector is the difference between two locations
- We can add vectors to points and to other vectors
- We can scale vectors

Homogeneous Points and Vectors:

$$
\begin{array}{cc}
\mathbf{p}_{a}=\left[\begin{array}{c}
p_{a} \\
1
\end{array}\right] \quad \mathbf{p}_{b}=\left[\begin{array}{c}
p_{b} \\
1
\end{array}\right] & \mathbf{v}=\left[\begin{array}{l}
v \\
0
\end{array}\right] \\
\text { Set an extra value to } 1 & \text { And to } 0 \\
\text { for points } & \text { for vectors }
\end{array}
$$

Homogeneous Values

- A point is a unique location
- A vector is the difference between two locations
- We can add vectors to points and to other vectors
- We can scale vectors

Homogeneous Points and Vectors:

$$
\begin{array}{cc}
\mathbf{p}_{a}=\left[\begin{array}{c}
p_{a} \\
1
\end{array}\right] \quad \mathbf{p}_{b}=\left[\begin{array}{c}
p_{b} \\
1
\end{array}\right] & \mathbf{v}=\left[\begin{array}{l}
v \\
0
\end{array}\right] \\
\text { Set an extra value to } 1 & \text { And to } 0 \\
\text { for points } & \text { for vectors }
\end{array}
$$

$$
\text { point }- \text { point }=\text { vector } \quad\left[\begin{array}{c}
p_{b} \\
1
\end{array}\right]-\left[\begin{array}{c}
p_{a} \\
1
\end{array}\right]=\left[\begin{array}{c}
p_{b}-p_{a} \\
0
\end{array}\right]
$$

$$
\text { point }+ \text { vector }=\text { point }
$$

$$
\left[\begin{array}{l}
p \\
1
\end{array}\right]+\left[\begin{array}{l}
v \\
0
\end{array}\right]=\left[\begin{array}{c}
p+v \\
1
\end{array}\right]
$$

$$
\text { vector }+ \text { vector }=\text { vector }\left[\begin{array}{c}
v_{a} \\
0
\end{array}\right]+\left[\begin{array}{c}
v_{b} \\
0
\end{array}\right]=\left[\begin{array}{c}
v_{a}+v_{b} \\
0
\end{array}\right]
$$

vector \times constant $=$ vector

$$
c\left[\begin{array}{c}
v_{a} \\
0
\end{array}\right]=\left[\begin{array}{c}
c v_{b} \\
0
\end{array}\right]
$$

Homogeneous Values

- A point is a unique location
- A vector is the difference between two locations
- We can add vectors to points and to other vectors
- We can scale vectors

Homogeneous Points and Vectors:

Set an extra value to 1
for points
And to 0
for vectors
point - point $=$ vector
point + vector $=$ point

$$
\begin{aligned}
& \text { vector }+ \text { vector }=\text { vector } \quad\left[\begin{array}{c}
v_{a} \\
0
\end{array}\right]+\left[\begin{array}{c}
v_{b} \\
0
\end{array}\right]=\left[\begin{array}{c}
v_{a}+v_{b} \\
0
\end{array}\right] \\
& \text { vector } \times \text { constant }=\text { vector }
\end{aligned} \quad c\left[\begin{array}{c}
v_{a} \\
0
\end{array}\right]=\left[\begin{array}{c}
c v_{b} \\
0
\end{array}\right]
$$

Homogeneous Values

- What should it mean to multiply a point by a constant?
- What should it mean to add points?

Recall: The Problem With Regular Coordinates

Multiplying a point by a constant With regular coordinates

Adding two points
With regular coordinates

Homogeneous Values

- What should it mean to multiply a point by a constant?
- What should it mean to add points?

$$
\begin{gathered}
\mathbf{p}_{a}=\left[\begin{array}{c}
p_{a} \\
1
\end{array}\right] \quad \mathbf{p}_{b}=\left[\begin{array}{c}
p_{b} \\
1
\end{array}\right] \\
c \mathbf{p}_{a}=\left[\begin{array}{c}
c p_{a} \\
c
\end{array}\right] \\
\mathbf{p}_{a}+\mathbf{p}_{b}=\left[\begin{array}{c}
p_{a}+p_{b} \\
2
\end{array}\right]
\end{gathered}
$$

Homogeneous Values

- What should it mean to multiply a point by a constant?
- What should it mean to add points?

$$
\begin{gathered}
\mathbf{p}_{a}=\left[\begin{array}{c}
p_{a} \\
1
\end{array}\right] \quad \mathbf{p}_{b}=\left[\begin{array}{c}
p_{b} \\
1
\end{array}\right] \\
c \mathbf{p}_{a}=\left[\begin{array}{c}
c p_{a} \\
c
\end{array}\right] \\
\mathbf{p}_{a}+\mathbf{p}_{b}=\left[\begin{array}{c}
p_{a}+p_{b} \\
2
\end{array}\right]
\end{gathered}
$$

$$
\alpha \mathbf{p}_{a}+\beta \mathbf{p}_{b}=\left[\begin{array}{c}
\alpha p_{a}+\beta p_{b} \\
(\alpha+\beta)
\end{array}\right]
$$

When $\beta=-\alpha$, this becomes $\alpha\left(p_{a}-p_{b}\right)$, a vector

$$
\text { When } \beta=1-\alpha \text { this becomes }\left[\begin{array}{c}
\alpha p_{a}+(1-\alpha) p_{b} \\
1
\end{array}\right] \text {, a point }
$$

When can these operations be combined to get valid points or vectors?

Homogeneous Values

-What should it mean to multiply a point by a constant?

- What should it mean to add points?

$$
\alpha \mathbf{p}_{a}+\beta \mathbf{p}_{b}=\left[\begin{array}{c}
\alpha p_{a}+\beta p_{b} \\
(\alpha+\beta)
\end{array}\right]
$$

$$
\mathbf{p}_{a}=\left[\begin{array}{c}
p_{a} \\
1
\end{array}\right] \quad \mathbf{p}_{b}=\left[\begin{array}{c}
p_{b} \\
1
\end{array}\right]
$$

$$
c \mathbf{p}_{a}=\left[\begin{array}{c}
c p_{a} \\
c
\end{array}\right]
$$

$$
\mathbf{p}_{a}+\mathbf{p}_{b}=\left[\begin{array}{c}
p_{a}+p_{b} \\
2
\end{array}\right]
$$

When $\beta=-\alpha$, this becomes $\alpha\left(p_{a}-p_{b}\right)$, a vector
When $\beta=1-\alpha$ this becomes $\left[\begin{array}{c}\alpha p_{a}+(1-\alpha) p_{b} \\ 1\end{array}\right]$, a point

Homogeneous Values Coordinates

- Homogeneous values keep track of how much our choice of origin has influenced our coordinates
- We can correct for the influence on a point by dividing all coordinates by the homogeneous value

Barycentric Coordinates, Homogenization, \& Center of Mass

- If we homogenize the weighted sum of k points, we get get their center of mass

$$
p=\frac{\sum \alpha_{i} p_{i}}{\sum \alpha_{i}}
$$

$$
\mathbf{c}=\frac{\sum m_{i} p_{i}}{\sum m_{i}}
$$

Weighted sum of points (weights given by alphas)

Equation for center of mass
(masses given by m's)

Homogeneous Coordinates \& Projection

- How to project an n-dimensional vector onto an image plane?

Homogeneous Coordinates \& Projection

- How to project an n-dimensional vector onto an image plane?

Homogeneous Coordinates \& Projection

- How to project an n-dimensional vector onto an image plane?

How do we express this as a matrix?

$$
\mathbf{P} p=\left[\begin{array}{c}
\mathbf{v} \\
\mathbf{u}^{\top} \mathbf{v}
\end{array}\right]
$$

Projection onto image plane defined by \mathbf{u}

Similar triangles used to compute p_{u} (Extra Slide)

Homogeneous Coordinates \& Translation

-3D translation is not linear in regular 3D coordinates

In regular coordinates, no matrix can take the origin away from the origin...

Homogeneous Coordinates \& Translation

- Translation is not linear in regular coordinates

$$
\left[\begin{array}{lll}
\mathbf{x}_{x} & \mathbf{y}_{x} & \mathbf{z}_{x} \\
\mathbf{x}_{y} & \mathbf{y}_{y} & \mathbf{z}_{y} \\
\mathbf{x}_{z} & \mathbf{y}_{z} & \mathbf{z}_{z}
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{x} \\
\mathbf{p}_{y} \\
\mathbf{p}_{z}
\end{array}\right]=\mathbf{p}_{x} \mathbf{x}+\mathbf{p}_{y} \mathbf{y}+\mathbf{p}_{z} \mathbf{z}
$$

Homogeneous Coordinates \& Translation

- Translation is not linear in regular coordinates

$$
\left[\begin{array}{cccc}
\mathbf{x}_{x} & \mathbf{y}_{x} & \mathbf{z}_{x} & \mathbf{t}_{x} \\
\mathbf{x}_{y} & \mathbf{y}_{y} & \mathbf{z}_{y} & \mathbf{t}_{y} \\
\mathbf{x}_{z} & \mathbf{y}_{z} & \mathbf{z}_{z} & \mathbf{t}_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{x} \\
\mathbf{p}_{y} \\
\mathbf{p}_{z} \\
1
\end{array}\right]=\mathbf{p}_{x} \mathbf{x}+\mathbf{p}_{y} \mathbf{y}+\mathbf{p}_{z} \mathbf{z}+\mathbf{t}
$$

Homogeneous Coordinates \& Translation

- Tra Translation \& Rotation: Vectors vs Points

- Points rotate and translate
- Vectors rotate but do not translate
- Consider the surface normal of an object
- If we translate the object, the surface normal direction does not change

Homogeneous Coordinates \& Translation

- Translating vectors (e.g., surface normals)

$$
\left[\begin{array}{cccc}
\mathbf{x}_{x} & \mathbf{y}_{x} & \mathbf{z}_{x} & \mathbf{t}_{x} \\
\mathbf{x}_{y} & \mathbf{y}_{y} & \mathbf{z}_{y} & \mathbf{t}_{y} \\
\mathbf{x}_{z} & \mathbf{y}_{z} & \mathbf{z}_{z} & \mathbf{t}_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{n}_{x} \\
\mathbf{n}_{y} \\
\mathbf{n}_{z} \\
0
\end{array}\right]=\mathbf{n}_{x} \mathbf{x}+\mathbf{n}_{y} \mathbf{y}+\mathbf{n}_{z} \mathbf{z}
$$

Homogeneous Coordinates: Putting It All Together

Change of
Basis/Rotation
$\left[\begin{array}{lll}\mathbf{x}_{x} & \mathbf{y}_{x} & \mathbf{z}_{x} \\ \mathbf{x}_{y} & \mathbf{y}_{y} & \mathbf{z}_{y} \\ \mathbf{x}_{z} & \mathbf{y}_{z} & \mathbf{z}_{z} \\ \hline & \mathbf{u}^{\top} & \\ \end{array}\right.$

Image Plane for Projection

Translation
$\left.\begin{array}{c}\mathbf{t}_{x} \\ \mathbf{t}_{y} \\ \mathbf{t}_{z} \\ 0 \\ \hline\end{array}\right]$
0 if projection is done, 1 otherwise

Location
$\left[\begin{array}{c}\mathbf{v}_{x} \\ \mathbf{v}_{y} \\ \mathbf{v}_{z}\end{array}\right]=\left[\begin{array}{c}\mathbf{v}_{x} \mathbf{x}+\mathbf{v}_{y} \mathbf{y}+\mathbf{v}_{z} \mathbf{z}+\mathbf{t} \\ \mathbf{u}^{\top} \mathbf{v}\end{array}\right]$

Whether Point or Vector

Part 2: Image-Based Rendering

By Abe Davis

Light Fields \& Image-Based Rendering

With Stick Figures!

Traditional Photography

User

Traditional Photography

Photographer

User

Image-Based Rendering

Photographer

Scene

User

What would be the simplest, most naïve, brute force approach to give the viewer control of the camera?

"Light Field" Photography

User

"Light Field" Photography

User

We can't capture all the images

Light Field Photography

Captured Views
Synthesized Views

Scene

Light Field Photography

Captured Views
Synthesized Views

Scene

Sampling and Reconstruction

Camera parameters

(e.g. position, orientation, focus, depth of field...)

Sampling and Reconstruction

- How do we sample?
- What space do we use to represent our data?
- How do we Interpolate in that space?
- How do we extract images from that space?

Sampling and Reconstruction

- How do we sample?
- What space do we use to represent our data?
- How do we Interpolate in that space?
- How do we extract
 images from that space?

Sampling and Reconstruction

- How do we sample?
- What space do we use to represent our data?
- How do we Interpolate in that space?
- How do we extract images from that space?

Sampling and Reconstructing Rays

Sampling and Reconstructing Rays

Sampling and Reconstructing Rays

Sample \approx Pixel ≈ 1 Ray of Light

Captured Images

Ray Space

New
 Images

Interpolation
happens here

How should we parameterize light?

Light ray = f(?)

Light

- Radiance:
- R(position, angle)
- How many dimensions?

Light

- Radiance:
- R(position, angle)
- Position $=(x, y, z)$
- Angle $=($ theta, phi$)$
- 5 dimensions

What is a good parameterization for light?

- The Light Field

What is a good parameterization for light?

- The Light Field
- Unobstructed light
- Each ray defined by intersection with 2 planes

Figure 1: The light slab representation.

What is a good parameterization for light?

- The Light Field
- Unobstructed light
- Each ray defined by intersection with 2 planes

Figure 1: The light slab representation.

The Light Field

Figure 1: The light slab representation.

Ray Space

Ray Space

Ray Space

\mathbf{u}
S

Ray Space

\mathbf{u}

Ray Space

\mathbf{u}

Ray Space

\mathbf{u}

Ray Space

\mathbf{u}

Ray Space

Ray Space

S

Ray Space

Ray Space

S

Projection Mapping

Ray Space

Capture Strategies

What happens when we don't know geometry?

What happens when we don't know geometry?

SIGGRA

What happens when we don't know geometry?

Ray Space

Ray Space

Ray Space

Ray Space

Capture Strategies

Specialized Devices

